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Abstract We study the efficiency property of responsive pricing, a scheme that
proposes to increase prices as a function of the level of capacity utilization in envi-
ronments where traditional allocation schemes (e.g. competitive markets, non-lin-
ear pricing) cannot be implemented in practice. We show that although responsive
pricing implements allocations that are arbitrarily close to full capacity utiliza-
tion (no wasted capacity and no excess demand), these allocations are not always
efficient. We identify conditions under which efficiency occurs and discuss impli-
cations for the use of responsive pricing.
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1 Introduction

Economists have long recognized the necessity to vary prices to allocate congestible
resources efficiently when demand changes over time. In this paper, we investigate
the extent to which responsive pricing, a pricing scheme introduced by Vickrey in
1971 that proposes to vary prices in real time as a function of the level of capacity
utilization, can increase efficiency when demand changes cannot be anticipated.1

The class of applications that are relevant include

• Telephone use: This was the original application used by Vickrey to motivate
responsive pricing. Vickrey proposed to quote each new user a charge that
would vary as a function of the level of network congestion. Other economists
have proposed to vary price in real time in electricity markets (Borenstein 2001)
and Internet pricing (MacKie-Mason and Varian 1995).2

• Road pricing: The San Diego’s Regional Planning Agency has used responsive
pricing to allocate fast track lanes in highways. Cars that want to use the fast
track lanes have to pay a fee that varies in real time as a function of congestion.
Consumers face a trade-off between the amount of time they want to save and
the fees they are willing to pay (http://argo.sandag.org/fastrak/).

• Ski resorts: Prices could vary in real time to give an incentive to ski less during
high demand periods thus reducing lines, and to ski more when demand is low
thus achieving a more efficient use of capacity. The same principle could be
applied to price access to other sport facilities and theme parks.3

Other examples can easily be found. In these applications, traditional alloca-
tion schemes, such competitive resale markets, auctions, or even advance screening
contracts, would be difficult to implement in practice. Responsive pricing is much
simpler. It only requires to measure congestion (i.e. utilization rate) in real time and
to be able to communicate congestion-contingent prices to consumers. Responsive
pricing proposes to increase access prices as utilization rates increase, that is, as
the level of capacity utilization gets closer to congestion.

To understand why prices have to respond to demand shocks, consider what
happens under unresponsive pricing. If prices are set according to the expected
level of demand at a given time the very nature of the randomness of the arrival
process implies that there are times when the number of new arrivals exceeds or
falls short of available capacity. If prices do not vary as a function of realized
demand, some potential buyers are denied access when there is a sudden arrival of
consumers and capacity is wasted when there is a low demand realization.

The set of applications where responsive pricing could be used have the charac-
teristics that although demand variations, due to changes in the number of consum-
ers requesting access, are to some extent impossible to predict, it may be possible

1 Vickrey’s main message was to “call attention to the possibilities that arise if one attempts
seriously to promote efficiency through causing prices to fluctuate so as to clear the market [. . .]
even in response to those fluctuations that can not be fully predicted in advance.”

2 To illustrate, easyEverything, the largest chain of Internet café in the world, followed
Vickrey’s proposal and gives discounts that are a function of the number of vacant terminals
(http://www.easyeverything.com/; Courty and Pagliero 2003).

3 To deal with waiting on popular rides, some theme parks sell fast track passes that enables
holders to bypass queues (http://www.sixflags.com/parks/wyandotlake/parkinfo/fastlane.asp)
while others offer reservation systems which replace waits with virtual lines assigning ride times
(http://www.themeparksonline.org/).
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to influence the length of time consumers use the service. When this is the case,
one can seriously think of using prices to achieve more efficient allocations of the
congestible resource between users. The welfare gains from using responsive pric-
ing are potentially great since congestion and/or unused capacity otherwise prevail.
For example, lines in ski resorts and unused telephone capacity are common.

There are two basic elements to responsive pricing. First, responsive pricing
charges consumers in real time, as consumption takes place. If ω denotes an arrival
realization and t time, responsive pricing computes and announces the price for
consumption in interval t + dt , pt (ω), only at time t . This rules out, for exam-
ple, advance bookings. Second, the instantaneous price depends on a single state
variable: the level of capacity utilization. If capacity utilization is qt (ω), then the
instantaneous price is set according to pt (ω) = r(qt (ω)) where r() is a given
non-decreasing function. Once the function r() is set, consumers play a game of
incomplete information. They try to guess future prices to make their consump-
tion decisions. In turn, their consumption decisions determine future prices in
equilibrium.

This work is a first step towards understanding the efficiency properties of
responsive pricing. We consider a social planner who sets the responsive pricing
function r() to maximize social welfare. Can the social planner achieve, or at least
approach, the efficient allocation with responsive pricing? Stated formally, does
there exist a function r() such that the allocation that results from the game that
consumers subsequently play be arbitrarily close to the efficient allocation?

We model the dynamic allocation problem as follows. At every point in time
a random arrival flow of consumers requests access. Consumers consume one unit
of service per unit of time and value each additional unit less than the previous
one. We focus the analysis on the consumers’ incentives to terminate consumption.
Additional decisions that could also matter include the decisions to request access
(endogeneous arrival flow) and to delay consumption, but for tractability concerns,
and given the early stage of the research as well, it is sensible to narrow down the
problem. The decision to terminate consumption is arguably central to most, if not
all, of the congestion problems mentioned earlier while these other issues aren’t so.

The analysis proceeds in three steps. We first derive the efficient allocation.
Second, we compute the equilibrium under responsive pricing and show that there
is no function r() that implements the efficient allocation. Finally, we investigate
whether it is possible to construct a sequence of responsive pricing functions r()
that approach the efficient allocation.

Our analysis establishes several results. We show that responsive pricing
achieves full capacity utilization in the limit – when the price is extremely respon-
sive to changes in the level of capacity utilization. We also show that the limit
outcome is efficient under a simple condition on consumer demands, called the
no-crossing condition. When this condition holds, equilibrium consumption strat-
egies are very simple. Consumer terminate consumption when their marginal
willingness to pay is equal to the instantaneous price. The efficiency result, how-
ever, does not generalize to the case where the no-crossing condition does not hold.
In fact, we present an example where consumer demands may cross and where no
responsive pricing function can approximate the efficient allocation.

This work stresses the distinction between the concepts of full capacity utili-
zation and efficiency. These two concepts are equivalent in the standard textbook
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model of supply and demand. In our application, they are not always equivalent.
Although responsive pricing achieves outcomes that are arbitrarily close to full
capacity utilization, these outcomes are not always efficient.

The closest work to our analysis is Vickrey (1971). Vickrey introduced the con-
cept of responsive pricing and speculated that it may achieve efficiency. Vickrey’s
intuition has been applied, for example, to pricing in electricity markets: Joskow
and Tirole (2004) argue that “the case of price-sensitive consumers who react effi-
ciently to real time prices is the textbook representation of consumer demand.” Our
analysis qualifies this conjecture and shows that efficiency is not always warranted
under responsive pricing. Our analysis builds on a concern already identified by
Vickrey (in the context of an application to telephone pricing) in his original pro-
posal: “ one significant imperfection would remain with such a system: a user upon
being informed of the current rate may still be unclear as to whether he should let
the call go through at the current rate or defer the call until later, since he has no
assurance of what the rate would be at the later time.” 4 Our model formalizes
Vickrey’s conjecture that consumer forward looking behavior may impede effi-
ciency. In addition, we identify a condition under which the efficient outcome is
always achieved.

Our work is also related to the large literature that applies non-linear pricing
techniques to congestion problems (Wilson 1993). This literarture has considered
many pricing schemes (e.g. peak load pricing and priority pricing among others5)
but we argue that the dynamic nature of the congestion problem we study rules
out these solutions for our class of problems, and justifies considering responsive
pricing, as recommended by Vickrey. This point will become clear at the end of the
next section, after we have presented the model and situated it within the literature.

The paper is organized as follows. The next section presents the model.
Section 3 analyses the steady-state version of the model and introduces the main
themes of the paper. Section 4 analyzes the dynamic version of the model and
presents the main results. Section 5 discusses an important extension. Section 6
concludes.

2 Model

We consider a congestible resource and we denote the resource’s capacity Q . We
treat Q as exogenously given and we assume that all costs are fixed. The marginal
cost of serving an additional consumer is zero up to capacity Q and infinite once
capacity is reached.

The aim of the model is to capture a class of applications where consumers
have some discretion over the amount they consume which could be measured
in units of time (Internet access, telephone) or number of rides (theme park, ski
resorts). Formally, we make two assumptions: (a) consumers have decreasing mar-
ginal valuation for the service and (b) consumers can terminate the service at any
time. These assumptions are realistic in the applications just mentioned.

4 Vickrey focused on consumers’ decision to strategically postpone the start of consumption
while our model focuses on the decision to strategically postpone the decision to end consump-
tion. In both cases, the issue is whether a single instantaneous price, computed under responsive
pricing, is enough to give efficient consumption incentives.

5 See the seminal work of Boiteux (1956, 1960), and for a recent review, Crew et al. (1995).
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There are I types of consumers. A consumer of type i who has already con-
sumed n units gets utility vi (n) > 0 for the marginal unit where vi is continuous,
differentiable, and d

dn
vi (n) < 0. The assumption vi (n) > 0 implies that it is never

efficient that a consumer terminates consumption if there is capacity available.
We start by assuming that consumers have identical demands (I = 1) and then
discuss how the argument extends to heterogeneous demands (I>1). Consumers
have discount factor 0 < ρ < 1. To simplify, we assume that consumers are risk
neutral.

The arrival process is a vector εt = (εi
t )i=1...I . εi

t (ω)dt is an integrable contin-
uous stochastic process on some probability space with increments distributed over
� = [ε1

l , ε1
h ] × · · · × [ε I

l , ε I
h ] such that 0 < εi

l < εi
h < ∞.6 Sample path ω ∈ �

captures an entire history of arrival realizations εi
t (ω) for t ≥ 0.

∫ t
0 εi

x (ω)dx con-
sumers of type i arrive between 0 and t in sample path ω. In the steady state analysis
(Sect. 3) we impose the additional assumption εt (ω) = ε(ω). In the dynamic anal-
ysis (Sect. 4) we do not make any further assumption on εt (ω). There could be a
seasonal component (distribution of εt depends on t) and also a random component
that could be correlated over time.

To simplify the exposition, the core of the analysis presented in Sect. 4 focuses
on the simplest possible formulation of the problem where consumers only decide
when to stop consumption. This assumption rules out the possibility to temporarily
delay consumption. Section 5 discusses more general consumption rules.

The level of capacity utilization is denoted by qt (ω). We normalize q0(ω) = 0
without loss of generality. The instantaneous price when the level of capacity uti-
lization is q is r(q) where r(.) is an exogenously given, non-negative, continuous,
function with support [0, Q] that is differentiable and increasing on the set {x s.t.
r(x) > 0} . This captures the spirit of Vickrey’s proposition that “ it seems entirely
satisfactory to base rates on levels of activity.” Finally, we assume that r(0) < vi (0)
for some i ≤ I to warranty that consumption takes place.

Throughout the paper, we use subscript to denote the time when a variable is
measured and superscript to denote the time when a consumer arrives. A consump-
tion rule is a set of indicator functions di,s

t (ω) defined for s ≤ t where di,s
t (ω) = 1 if

the consumer of type i who arrived at time s is consuming at time t and di,s
t (ω) = 0

otherwise. Consumption rule di,s
t (ω) is feasible if it is non-increasing in t (to rule

out interruptions). The level of capacity utilization at time t is

qt (ω) =
t∫

0

∑

i

di,x
t (ω)εi

x (ω)dx . (1)

Finally, Jt (ω) = {εx (ω) ∈ E, x ∈ [0, t]} denotes the realization of the arrival pro-
cess up to time t in sample path ω. Jt (ω) ∈ �t where �t represents the set of
possible realizations up to t .

Perfect Bayesian equilibrium Consumers play a continuous game of incomplete
information. Although we present the game in its full generality, it is important to

6 The assumption that the increments of εt (ω)dt are positive and bounded greatly simplifies
the derivations because it guarantees that all equilibrium outcomes are bounded and continuous
functions of time.
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keep in mind that matters will greatly simplify in the cases we consider. In particu-
lar, consumers will not be able to strategically use their private information, and as
a consequence the optimal consumption strategies will follow simple rules. Con-
sumers are privately informed about their arrival time and about their types but they
may not know Jt (ω). In contrast with standard games of incomplete information,
consumers do not observe directly other consumers’ actions di,s

t (ω). This assump-
tion is realistic for the applications we have in mind. Consumers observe only the
realized price. We define pt (ω) the equilibrium price at time t in sample path ω.
A consumer who arrives at s and has consumed till t ≥ s observes price history
Hs

t (ω) = {px (ω), x ∈ [s, t]} ∈ ℵs
t where ℵs

t is the set of non-negative functions
defined on [s, t]. We denote µ

i,s
t (Jt ; ω, Hs

t ) the belief held at t by a type i consumer
(who arrived at s in sample path ω and has observed information Hs

t ∈ ℵs
t ) that

the arrival history is Jt ∈ �t . We leave the initial belief µ
i,s
s (Js;ω) unspecified

beyond the assumption that µ
i,s
s (Js(ω);ω) > 0 and we restrict to beliefs that are

computed according to Bayes rule where possible:

µ
i,s
t (Jt ; ω, Hs

t ) = Pr
(

Jt | µi,s
s (Js;ω), Hs

t

)
. (2)

Utility maximization implies that di,s
t maximizes for any t ≥ s and for any ω

Ui,s
t (ω, Hs

t ) = E

⎛

⎝
∞∫

t

ρx−sdi,s
x (ω)

(
vi (x − s) − px (ω)

)
dx | µ

i,s
t

⎞

⎠

subject to feasibility and to the condition that di,s
t (ω) depends only on Hs

t (ω). The
equilibrium price at time t is

pt (ω) = r(qt (ω)). (3)

We say that equilibrium capacity utilization is implementable if qt (ω) ≤ Q and
we restrict to equilibria that satisfy this constraint. If qt (ω) > Q then demand is
greater than capacity at time t in sample path ω. In such events, one would have to
supplement the pricing rule r(.) with a rule to determine how capacity is rationed.
In contrast, the implementability constraint narrows down the analysis to equilib-
rium allocations that are solely defined by responsive pricing. We acknowledge
that modeling rationing under responsive pricing is interesting in itself, but we
leave this for further work since the issue can be investigated independently of the
question of whether responsive pricing can approximate the efficient allocation.

A perfect Bayesian equilibrium is a pair
(

di,s
t (ω), µ

i,s
t (Jt ;ω, Hs

t )
)

such that

the consumption strategy profile di,s
t (ω) maximizes consumer utility, prices pt (ω)

are given by pricing rule (3), and the level of capacity utilization is implementable
qt (ω) ≤ Q.

Efficient consumption rule The social planner discounts the utility of a consumer
who arrives at time s by ρs . This implies that all consumption that takes place at
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time t is discounted by ρt . The social planner maximizes

W (di,s
t (ω)) = E

⎛

⎝
∞∫

0

ρt

t∫

0

∑

i

di,s
t (ω)v(t − s)εi

s(ω)dsdt

⎞

⎠

subject to the constraint that di,s
t (ω) depends only on Jt (ω) and is non-increasing

in t , and subject to the implementability constraint.

Literature The problem we consider falls within the literature studying how a
social planner should price a congestible resource in the presence of consumer
heterogeneity and demand uncertainty. Two solutions have been proposed to deal
with such problems. The first and standard approach uses mechanism design tools.
Nature picks a random draw of consumers who are privately informed about their
demands. The designer takes the distribution of possible demand realizations as
given, and uses this knowledge to establish the menu of contracts that maximizes
efficiency subject to information constraints. Priority pricing takes a short-term
view and proposes to ration capacity by pricing differently different levels of ser-
vice priority (see Harris and Raviv 1981; Mendelson and Whang 1990 for an
application related to our problem). Peak load pricing takes a long-term view and
prices separately capacity requirements and actual utilization (Oren et al. 1985).
See also chaps. 10 and 11 respectively in Wilson (1993) for a detailed review of
these two pricing schemes as well as others.

Our problem does not fall within the standard mechanism design approach for
two reasons. First, our problem is intrinsically dynamic. Consumers must be han-
dled as they arrive and congestion has to be managed in real time. The designer
cannot offer a grand menu of contracts ex-ante and request all consumers to select a
contract as is assumed under a mechanism design approach.7 Second, the designer
and users in our setup may know very little about the demand environment. In par-
ticular, the designer does not need to know the arrival process. In contrast, under
a mechanism design approach, the planner uses this information to compute the
optimal pricing scheme. 8 We focus on a specific indirect mechanism and we ana-
lyze the welfare properties of this mechanism for any arrival process. A limitation
that follows is that our efficiency results hold only in a limit sense.

The second approach proposes to use spot markets to solve the capacity con-
gestion problem (Wilson 1993, p. 260). One possibility could be to open contingent
markets in all possible state of the world.9 More realistically, several rules have

7 One way to generalize a mechanism design approach to our problem that we do not pursue
in this work, would be to assume that the designer offers a dynamic and sequential menu of
contracts where the set of contracts offered at a given time depends on the contracts that have
been selected by previous consumers.

8 An extension of mechanism design would consider the possibility that the demand environ-
ment (arrival process and distribution of types) is not common knowledge.

9 To clarify this point, consider a slightly different version of the model that can be interpreted
in terms of inter-temporal general equilibrium theory. To start, assume that the arrival history is
public information and assume that one can define state contingent claims for future consumption
where states are conditional on the realization of Jt (ω). If state contingent markets were open for
consumption in all future dates, or if consumers could continuously trade in a sufficiently large
set of intermediate markets, then one could investigate whether the first welfare theorem would
apply.
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been proposed in the applied literature to set and update the spot prices. See for
example the concept of ‘smart market’ (MacKie-Mason and Varian 1995), appli-
cations to electrical network pricing (Bohn et al. 1984), as well as the review of
the literature on pricing in telecommunication networks by Falkner et al. (2000).
Consistent with this second approach, we focus on an indirect mechanism that
proposes a pre-determined rule to compute the spot prices. While the literature has
focused on static or stationary environments, we explicitly model strategic con-
sumer behavior in a dynamic framework. Consistent with the mechanism design
approach, we model demand at the individual decision maker level and we use
perfect Bayesian equilibrium concept. In contrast with this approach, however, we
study a dynamic model and we exclude menus of contracts.

Our focus on responsive pricing is motivated by the observation that the solu-
tions that have been proposed in the literature are not realistic for the applica-
tions we have in mind. Opening future markets in the absence of those consumers
who have not yet requested access would be meaningless, or would require the
intervention of intermediaries which again is not realistic, at least in some of the
applications considered. Similarly, assuming that a designer knows the distribution
of demand types and can offer a grand menu of contracts, as under a mechanism
design approach, is unrealistic.

3 Steady-state example

In the simplest version of the model, the arrival rate does not vary over time. This
benchmark case introduces the different steps we will again follow to solve the
dynamic version of the model, and reveals some basic properties of responsive
pricing that can be illustrated graphically. To further simplify the analysis, we also
assume homogeneous consumer demand (I = 1). We later generalize the argu-
ment to heterogenous demands. In terms of our notations, this means that we ignore
the time subscript as well as the type superscript. The number of consumers who
request access per unit of time is ε(ω)dt . We refer to ε(ω) as the state of the world.

To start, we derive the efficient allocation. Let dx (ω) = 1 if consumers are still
consuming x units of time after arriving. The social planner sets dx (ω) to maximize
expected steady-state surplus:

W (dx (ω)) = E

∞∫

0

dx (ω)v(x)ε(ω)dx,

subject to the constraint that dx (ω) is non-increasing and that the level of capac-
ity utilization is implementable

∫ ∞
0 dx (ω)ε(ω)dx ≤ Q. Let n(ω) = ∫ ∞

0 dx (ω)dx
represent the number of units consumed in steady state. The efficient consumption
rule specifies that consumers should equally share the resource

n(ω) = Q

ε(ω)
.

Under that consumption rule no capacity is wasted and it is not possible to reallocate
capacity to increase welfare.
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Next, we derive the equilibrium under responsive pricing. Consumers observe
the steady state price p(ω) and decide how long to consume. They maximize∫ ∞

0 ρx dx (ω) (v(x) − p(ω)) dx where dx (ω) ∈ {0, 1} and is non-increasing in x .
Consumers consume n units of time such that v(n) = p(ω). The level of capac-
ity utilization is given by (1), q(ω) = nε(ω), and the price is determined by the
pricing function (3), p(ω) = r(q(ω)). After replacement, equilibrium consump-
tion in state ε(ω) must satisfy

v(n) = r(nε(ω)).

There exists a unique solution, n(ω), to the above equation. If n(ω) is such that
q(ω) = n(ω)ε(ω) ≤ Q for all ω then the equilibrium is well defined. This will

hold if and only if r(Q)≥v
(

Q
εh

)
. Under this condition, consumers demand at most

Q
εh

and capacity is sufficient to meet demand even for the highest possible arrival

rate since q(εh)≤εh
Q
εh

=Q. If this condition does not hold, then the demand in
state εh is higher than capacity, and the equilibrium is not well defined. Note that
consumers’ initial beliefs about the state do not play a role because once consumers
have observed the price they automatically know the true state.

Higher arrival rates imply that consumers consume less (dn/dε < 0), the level
of capacity utilization is higher (dq/dε > 0), and the price is higher (dp/dε > 0).
Figure 1 illustrates these properties.

To simplify, the figure assumes that the arrival rate is either high or low. The
equilibrium level of capacity utilization is located at the point where the aggre-
gate inverse demand (v(q/ε)) and the pricing curve intersect. The realized price is
higher in the high state when capacity is scarcer, and consumers respond by sharing
the capacity available more (lower n).

To understand what is specific to responsive pricing, we contrast the outcome
under responsive pricing with the outcome under fixed pricing. Under fixed price
(r(q)=r ) consumers consume n units such that v(n)=r. Length of use does not

p(q)

Inverse Aggregate Demand Price

Q0

Occupancy

v(q/εh)

ql

v(q/εl)

qh

p
l

p
h

Fig. 1 The 2-states steady state case
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Inverse Aggregate Demand Price

Q
0

Occupancy

v(q/εh)

ql

v(q/εl)

qh

rα1(q)

rα2(q)

Fig. 2 Increase in responsiveness (α2 < α1)

depend on the state of the world, ε(ω) , because consumers do not have any incen-
tive to vary consumption as a function of congestion.

To conclude, we investigate the efficiency properties of responsive pricing. To
start, note that there does not exist a function r(.) that implements the efficient
allocation if there are two states with different arrival rates ε′ > ε′′. The only

prices that decentralize the efficient allocation are p′ = v
(

Q
ε′

)
and p′′ = v

(
Q
ε′′

)

but the efficient allocation is such that q ′′ = q ′ = Q. It is not possible to set r such

that r(Q) = v
(

Q
ε′

)
= v

(
Q
ε′′

)
.

Next, we show that responsive pricing can implement the efficient outcome in
a limit sense. Consider the class of pricing functions r̃α such that r̃α(q) = 0 for
q ≤ Q − α and r̃α(q) = v(Q/εh)(1 − Q−q

α
) otherwise. These functions are equal

to zero up to Q −α and then linear with r̃α(Q) = v(Q/εh). Since r̃α(Q) ≥ v
(

Q
εh

)

the equilibrium is always well defined. The equilibrium level of capacity utilization
is given by r̃α(q(ω)) = v(q(ω)/ε(ω)) > 0. An upper bound for unused capacity is

Q − q(ω) < α.

More responsive schemes (lower α) increase capacity utilization and therefore
efficiency (see Fig. 2).

Capacity utilization converges to full utilization as α converges to zero. This
limit case corresponds to the consumption rule that maximizes social welfare.10

10 Although there are several ways to define the limit of pricing scheme r̃α , the limit does not
implement the efficient allocation independently of the concept used. One can define the limit as a

correspondence such that r̃(Q) ∈
[
0, v

(
Q
εh

)]
. This pricing scheme, however, has little practical

interest because it does not identify a unique price when occupancy reaches capacity. Another
way to define the limit is r̃(q) = 0 for q < Q and r̃(Q) = v(Q/εh). There is no equilibrium for
this pricing rule.
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The analysis generalizes to the case of heterogeneous consumers. Denote
ni (p, ω) the number of units consumed by type i when price is p , vi (ni (p, ω)) =
p. The equilibrium price in state ε(ω) is uniquely defined by

p(ω) = r

(
∑

i

εi (ω)ni (p(ω), ω)

)

and the equilibrium level of capacity utilization is given by q(ω) = ∑
i εi (ω)ni (p

(ω) , ω). The analysis of efficiency carries through.
The analysis of the steady state version of the model shows that responsive

pricing endogenously sets prices in response to demand realizations and imple-
ments an outcome that both achieves full capacity utilization and is efficient in the
limit. In this version of the model, prices do not vary over time and consumers
face a simple decision problem. When the arrival rate changes over time, however,
prices continuously change and consumers face a more complex decision problem
because they have to anticipate future prices to decide whether to retain access or
quit. The rest of this paper generalizes the analysis to non-stationary arrival pro-
cesses and asks whether the results on efficiency carry through. As we will see, the
efficiency analysis carries through for homogeneous consumer demands but not
always for heterogeneous demands.

4 Dynamic analysis

We start by focusing on the case where consumers have identical demands (I = 1).
The analysis mirrors the steady state presentation. We first characterize the first-best
consumption rule and then the perfect Bayesian equilibrium. Then, we investigate
whether responsive pricing can approach the efficient allocation. We conclude by
considering the case of heterogeneous demands (I > 1).

4.1 Efficient consumption rule

We reintroduce the time subscript but we ignore type superscript since we
assume in this subsection that consumers are homogeneous. Define t̂(ω) as the
first point in time when capacity is reached if consumers do not terminate con-

sumption
∫ t̂(ω)

0 εx (ω)dx = Q and b̂t (ω) as the solution to

b̂t (ω) =
{

y such that
∫ t

y εx (ω)dx = Q if t > t̂(ω)

0 if t ≤ t̂(ω)
,

b̂t (ω) is increasing in t . It corresponds to the ‘oldest’ consumer (where consumer
a is ‘older’ than consumer b if a has arrived before b) who can consume at time
t if all consumers who have arrived after that consumer are also consuming and
capacity utilization is implementable.

Proposition 1 The efficient consumption rule is

d̂s
t (ω) =

{
1 if b̂t (ω) ≤ s ≤ t
0 if s < b̂t (ω)

.
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Proof d̂s
t (ω) is feasible and implementable by construction. The proof that d̂s

t (ω)
is the only consumption rule that achieves the efficient outcome goes by contradic-
tion. Assume that there exist an alternative consumption rule d̃s

t (ω) different from
d̂s

t (ω) such that W (d̃s
t (ω)) ≥ W (d̂s

t (ω)).

Claim There does not exists a sample path ω and a t0 such that

(S)

{∫ t0
0 d̃s

t0(ω)v(t0 − s)εs(ω)ds >
∫ t0

0 d̂s
t0(ω)v(t0 − s)εs(ω)ds∫ t0

0 d̃s
t0(ω)εs(ω)ds ≤ Q

.

Since
∫ t0

b̂t0 (ω)
εs(ω)ds = Q, the capacity constraint condition (second inequality in

S) implies that

t0∫

0

d̃s
t0(ω)εs(ω)ds ≤

t0∫

b̂t0 (ω)

εs(ω)ds

b̂t0 (ω)∫

0

d̃s
t0(ω)εs(ω)ds ≤

t0∫

b̂t0 (ω)

(
1 − d̃s

t0(ω)
)
εs(ω)ds

v(t0 − b̂t0(ω))

b̂t0 (ω)∫

0

d̃s
t0(ω)εs(ω)ds ≤ v(t0 − b̂t0(ω))

t0∫

b̂t0 (ω)

(
1 − d̃s

t0(ω)
)
εs(ω)ds

b̂t0 (ω)∫

0

d̃s
t0(ω)v(t0 − s)εs(ω)ds ≤

t0∫

b̂t0 (ω)

(
1 − d̃s

t0(ω)
)
v(t0 − s)εs(ω)ds

t0∫

0

d̃s
t0(ω)v(t0 − s)εs(ω)ds ≤

t0∫

b̂t0 (ω)

v(t0 − s)εs(ω)ds. (4)

A contradiction with S’s first inequality.

The above claim rules out the possibility that W (d̃s
t (ω)) > W (d̂s

t (ω). The only
possibility is W (d̃s

t (ω)) = W (d̂s
t (ω)) but this implies that

∫ t0
0 d̃s

t0(ω)v(t0 − s)εs

(ω)ds = ∫ t0
0 d̂s

t0(ω)v(t0 − s)εs(ω)ds for any sample path ω and t0. Therefore,
d̃s

t (ω) = d̂s
t (ω). A contradiction. ��

Efficiency occurs if all consumers who arrive up to t̂(ω) consume and for t > t̂(ω)
only those consumers who arrive between b̂t (ω) and t consume. The intuition for
the first best consumption rule in the case of homogeneous demands is simple.
Once full capacity utilization is reached, it is efficient to share the capacity so that
for every new consumer who arrives, the consumer who has been using the service
the longest terminates consumption. Under that allocation, new consumers replace
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older consumers, who value the service less. Define p̂t (ω) = v(t − b̂t (ω)) as the
valuation of the consumer who has been using the service for the longest length
of time at time t . p̂t (ω) is the marginal social value of capacity for t ≥ t̂(ω) (the
marginal social value of capacity is 0 for t < t̂(ω)). As we will soon see, p̂t (ω) cor-
responds to the capacity clearing price, and in the case where consumer demands
satisfy the no-crossing condition it also corresponds to the efficient spot price. The
issue we investigate next is whether responsive pricing can approximate that price.

4.2 Perfect Bayesian equilibrium

We show that in any equilibrium consumers terminate consumption as soon as their
willingness to pay for a unit of consumption falls below the price.

Lemma 1 In any equilibrium, ds
t (ω) = 1 if and only if v(̃t − s) ≥ p̃t (ω) for

t̃ ∈ [s, t].
Proof The ‘if ’ part is obvious. The proof of the ‘only if ’ part goes by contradiction.
Assume there exists a pair s < t and a sample path ω such that s receives negative
instantaneous net utility at time t , that is, ds

t (ω) = 1 and v(t − s) < pt (ω). Let
s0 denote the consumer that first experiences negative instantaneous net utility (∃t
s.t. v(t − s0) < pt (ω) and ds0

t (ω) = 1 and �(̃s, t̃) s.t. t̃ < t , v(̃t − s̃) < p̃t (ω) ,
and ds̃

t̃ (ω) = 1).

Claim 1 There exist ∞ ≥ t1 > t0 > s0 and ω such that
⎧
⎨

⎩

v(t0 − s0) = pt0(ω)
v(t − s0) ≥ pt (ω) for t ∈ [s0, t0)
v(t − s0) < pt (ω) for t ∈ (t0, t1)

.

We only need to show that there exists t0>s0 such that the top two conditions hold
since the existence of t1 then follows from the definition of s0. Assume that there
does not exist a t0 > s0 such that the top two conditions hold. This implies two
claims (a) v(0) ≤ ps0(ω) and (b) ds0

s (ω) = 0 for s < s0. Claim (b) follows by
contradiction. If (b) does not hold, then there exists a consumer who arrived before
s0 and receives negative instantaneous net utility at s0; a contradiction with the
definition of s0. Claim (b) implies that s0 is the only consumer consuming at time
s0. The price is ps0(ω) = r(0). A contradiction with claim (a) since r(0) < v(0).

Claim 2 ds
t0(ω) = 0 for s < s0 and ds

t0(ω) = 1 for s0 < s < t0.
For s < s0, v(t0 − s) < v(t0 − s0) = pt0(ω). Since s0 is by definition the first con-
sumer who experience negative instantaneous net utility, we must have ds

t0(ω) = 0.
For s0 < s < t0, v(t − s) ≥ pt (ω) for t ∈ [s, t0] (Claim 1). Consumer s should
keep consuming until t0, that is, ds

t0(ω) = 1.

Claim 3 For any t > t0, v(t − s0) − pt (ω) < 0.
We distinguish two cases. If no consumer has stopped consumption in [s0, t], that
is, ds

t (ω) = 1 for s ∈ [s0, t], then v(t − s0) < v(t0 − s0) = pt0(ω) < pt (ω)
and v(t − s0) − pt (ω) < 0. If not, denote s̃ the last consumer who has stopped
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consumption since t , and denote t̃ the time when s̃ has stopped consumption. We
have v(t − s0) < v(t − s̃) < v(̃t − s̃) ≤ p̃t (ω) < pt (ω) where the first inequality
holds because s̃ has arrived after s0 (Claim 2), the second inequality holds because
t < t̃ , and the last inequality holds because no consumer has left between t and t̃ .
Again, we have v(t − s0) − pt (ω) < 0.
Claim 3 implies that

U s0
t0 (ω, Hs0

t0 (ω)) = E

⎛

⎝
∞∫

t0

ρx−s0 ds0
x (ω) (v(x − s0) − px (ω)) dx | µ

s0
t0

⎞

⎠ < 0

Consumer s0 is better off setting ds0
t (ω) = 0 for t > t0 in history Hs0

t0 (ω). A con-
tradiction. ��

Lemma 1 implies that consumers leave in a first-in first-out fashion in any
equilibrium. Formally, ds

t (ω) is non-decreasing in s. The reason is simply that
consumer s consumes at time t only if v(̃t − s) − p̃t (ω) > 0 for t̃ ∈ [s, t]. But
this implies that any consumer who arrived after s should also consume since
v(̃t − s̃) − p̃t (ω) > 0 for t̃ ∈ [̃s, t] if s̃ > s. The ‘oldest’ consumer consuming at
time t arrived at Inf

{
s ≥ 0, s.t. ds

t (ω) = 1
}
.11 Lemma 1 implies that the level of

capacity utilization at time t is equal to the mass of consumers who have arrived
after the oldest consumer,

qt (ω) =
t∫

Inf{s, s.t. ds
t (ω)=1}

εs(ω)ds.

The equilibrium does not exist if qt (ω) > Q. Next we identify the minimum
condition that the pricing rule must satisfy to assure that the equilibrium always
exists.

Lemma 2 qt (ω) ≤ Q for any arrival process if and only if r(Q) ≥ v
(

Q
εh

)
.

Proof To start we show that r(Q) ≥ v
(

Q
εh

)
is a necessary condition. The proof

goes by contradiction. Assume r(Q) < v
(

Q
εh

)
and consider the arrival process

εt (ω) = εh . Consumers consume at least v−1 (r(Q)) >
Q
εh

. The equilibrium level

of capacity utilization is at least εhv−1 (r(Q)) > Q. A contradiction.

Next, we show that r(Q) ≥ v
(

Q
εh

)
is a sufficient condition. The proof again

goes by contradiction. Assume there exist ω and t0 such that qt0(ω)>Q. Let s0 =
Inf

{
s s.t. ds

t0(ω) = 1
}
. The level of capacity utilization at time t0 can be expressed

as qt0(ω) = ∫ t0
s0

εs(ω)ds ≤ (t0 − s0)εh . This implies that t0 − s0 >
Q
εh

. The con-
sumer who arrived at s0 gets negative instantaneous utility at t0 since v(t0 − s0) <

v
(

Q
εh

)
≤ r(Q). A contradiction with Lemma 1. ��

11 We assume without loss of generality that the Inf
{
s, s.t. ds

t (ω) = 1
}

exists.
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In the rest of this section, we focus on pricing functions that satisfy

r(Q) ≥ v
(

Q
εh

)
. The functions t (ω) and bt (ω) are introduced to characterize

the equilibrium consumption strategy profile. Define t (ω) such that v(t (ω)) =
r
(∫ t (ω)

0 εs(ω)ds
)

and define the function bt (ω) such that

bt (ω) =
{

x such that v(t − x) = r
(∫ t

x εs(ω)ds
)

if t > t (ω)

0 if t ≤ t (ω)
. (5)

By the implicit function theorem, the identity v(t − bt (ω)) = r
(∫ t

bt (ω)
εs(ω)ds

)

defines a continuously differentiable function for t>t (ω). In addition bt (ω) is
increasing since

d

dt
bt (ω) =

r ′
(∫ t

bt (ω)
εs(ω)ds

)
εt (ω) − v′(t − bt (ω))

r ′
(∫ t

bt (ω)
εs(ω)ds

)
εbt (ω)(ω) − v′(t − bt (ω))

> 0.

The next proposition characterizes the equilibrium.

Proposition 2 In any perfect Bayesian equilibrium, the consumption strategy pro-
file is

ds
t (ω) =

{
1 if v(t − s) ≥ pt (ω)
0 if v(t − s) < pt (ω)

where pt (ω) = v(t − bt (ω)).

Proof We first show that ds
t (ω) is an equilibrium. The level of capacity utili-

zation implied by the consumption strategy profile is qt (ω) = ∫ t
bt (ω)

εs(ω)ds.
Lemma 2 implies that qt (ω) is implementable. The equilibrium price satisfies (3)
since pt (ω) = v(t − bt (ω)) = r(qt (ω)). The consumption strategy profile is opti-
mal since any consumer s ∈ [bt (ω), t] weakly prefers to consume (v(t − s) ≥
v(t − bt (ω)) = pt (ω)) and any consumer s ∈ [0, bt (ω)] weakly prefers not to
consume (v(t − s) ≤ v(t − bt (ω)) = pt (ω)).

Next, we show that ds
t (ω) is the unique equilibrium consumption strategy pro-

file. Consider an alternative equilibrium with consumption strategy profile d̃s
t (ω)

and let p̃t (ω) be the associated price. Define b̃t (ω) = Inf
{
s, s.t. d̃s

t (ω) = 1
}
.

Case a b̃t (ω) < bt (ω). But Lemma 1 implies that ds
t (ω) is non-decreasing in s.

Therefore, p̃t (ω) > pt (ω), and

v(t − b̃t (ω)) − p̃t (ω) < v(t − bt (ω)) − pt (ω) = 0.

A contradiction with Lemma 1.

Case b b̃t (ω) > bt (ω) then p̃t (ω) < pt (ω), and

v(t − b̃t (ω)) − p̃t (ω) > v(t − bt (ω)) − pt (ω) = 0

for t ∈ [̃bt (ω), t]. The consumer who arrived at b̃t (ω) − η, where η is a small
positive number, should not have terminated consumption. A contradiction. ��
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For any t > t (ω), the price is equal to the marginal valuation of the consumer
who arrived at bt (ω). This consumer, call it consumer bt (ω), is the oldest con-
sumer consuming at time t and is indifferent between continuing and terminating
consumption. The equilibrium dynamic consumption strategy profile simplifies to
a simple rule specifying that consumers terminate consumption as soon as their
instantaneous utility falls below the instantaneous price. Equilibrium strategies are
independent of consumers’ initial belief µ

i,s
s (ω). One could generalize the setup

by assuming that some consumers receive signals about the arrival process and
show that no consumer can benefit from this information although this information
could help to predict future prices more accurately.

One may argue that consumers should keep consuming, even if they get nega-
tive instantaneous utility, if they expect that prices will decline fast enough so that
expected future surpluses eventually outweigh short-term losses. This, however,
cannot happen in equilibrium. A consumer may initially believe that she has arrived
in a sample path where prices are likely to decrease. But as her net instantaneous
utility gets close to zero, that consumer’s beliefs have to adjust. In any deviation,
a consumer cannot believe that expected future utility could be non negative if net
instantaneous utility is negative.

4.3 Pricing responsiveness, capacity utilization, and efficiency

As in Sect. 3, no responsive pricing can implement the efficient allocation. We show,
however, that efficiency can be achieved in a limit sense. Let

{
rβ(q), β > 0

}
be a

class of pricing functions indexed by parameter β. Many classes of pricing schemes
implement the efficient outcome in the limit. Since our goal is to show only that this
is possible, we focus on a very simple subset of such classes. We say that scheme
r is α-responsive if Max {q s.t. r(q) = 0} ≥ Q − α. For example, scheme r̃α(q)
defined earlier is α-responsive.

Consider a class of α-responsive schemes. We ask whether the equilibrium
consumption strategy profile under scheme rα(q) converges to the efficient con-
sumption rule as α converges to 0. We use the notation qt (ω;α) to define the
equilibrium level of capacity utilization for scheme α and we use the same nota-
tions for other equilibrium variables.

Proposition 3 As α converges to 0, t (ω;α) converges to t̂(ω) and qt (ω;α) con-
verges to Q for t > t̂(ω).

Proof t (ω;α) is defined by v(t (ω;α)) = rα

(∫ t (ω;α)

0 εs(ω)ds
)

. Since v(.) > 0,

Q ≥ ∫ t (ω;α)

0 εs(ω)ds > Q − α, and t (ω;α) converges to t̂(ω) as α converges to
0. For t>̂t(ω), v(t − bt (ω;α)) = rt (qt (ω;α))>0 and this implies that qt (ω;α) >
Q − α. The claim follows from the observation that qt (ω;α) ≤ Q in any
equilibrium. ��
This proposition says that responsive pricing achieves full capacity utilization in
the limit. Next, we show that efficiency is achieved in a limit sense.

Proposition 4 As α converges to 0, bt (ω;α) converges to b̂t (ω).

Proof For t > t̂(ω;α),
∫ t

bt (ω;α)
εs(ω)ds > Q−α. Subtracting

∫ t
b̂t (ω)

εx (ω)dx = Q
on each side gives
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α >

bt (ω;α)∫

b̂t (ω)

εs(ω)ds

α >
(
bt (ω;α) − b̂t (ω)

)
εl

In addition,
∫ t

b̂t (ω)
εx (ω)dx = Q ≥ qt (ω;α) = ∫ t

bt (ω;α)
εs(ω)ds, which implies

bt (ω;α) − b̂t (ω) ≥ 0. Therefore α > bt (ω;α) − b̂t (ω) ≥ 0 and bt (ω;α) con-
verges to b̂t (ω). ��
In the limit, there is no wasted capacity and responsive pricing approaches the
efficient outcome. The price at date t converges to p̂t (ω) = v(t − b̂t (ω)) which
corresponds to the marginal social value of capacity under the efficient outcome.

The result on efficiency holds for a general class of arrival processes, since we
have not made any assumption on εt besides the support of the increments. Our
results apply equally for arrival processes with unexpected demand shocks and for
processes with predictable demand shocks. Stated differently, we have shown that
responsive pricing could approach the efficient allocation when consumers were
only privately informed about their arrival times.

Although responsive pricing approaches the first best allocation, a ‘first-in
first-out’ (FIFO) mechanism that replaces new users with the oldest users imple-
ments the first best outcome. All the information the designer needs to implement
this alternative mechanism is to be able to keep track of users’ arrival times. This
equivalence between responsive pricing and FIFO, however, does not hold any-
more when consumers are privately informed about their demand types. We show
next that for a large class of consumer demands, FIFO does not implement the
efficient allocation while responsive pricing does.

4.4 Heterogeneous demands

We turn to the full version of the model. We show that the results presented in
the previous section generalize to the case of heterogeneous demands under a
‘no-crossing’ condition on consumer demands. This condition is important because
we show that when it does not hold, inefficiencies can occur.

4.4.1 No-crossing residual demands

We introduce the type superscript to capture heterogeneous demands. We say that
the set of demands {vi (.)}i=1...I satisfies the no-crossing condition if for any pair
of types (i, ĩ) there do not exist n, n′, δ ≥ 0 such that

v ĩ (δ + n) > vi (n) and v ĩ (δ + n′) < vi (n′).12

The no-crossing condition has a clear economic interpretation. Define the residual
demand of a consumer who has already used the service for some time as the

12 An example of a class of demands that satisfies the no-crossing condition is the class vi (n) =
ai − bn where ai and b are positive numbers.
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consumer’s willingness to pay for future units. The no-crossing condition says that
no two consumers who arrive at different points in time can have residual demands
that cross. This condition imposes a fairly strong restriction on the set of demands
vi . In fact, we will see that it is equivalent to say that demands are horizontal shift
of one another.

The efficiency analysis generalizes when the vi satisfy the no-crossing con-
dition. To show that, assume without loss of generality that v1(0) ≥ v2(0) ≥
· · · ≥ v I (0) and define ai such that vi (ai ) = vi+1(0) and Ai = a1 + · · · + ai

with A0 = 0. For δ ≥ 0, define the function τ(δ) as the highest type who values
the first unit at least as much as v1(δ), τ(δ) = Max

{
i such that vi (0) ≥ v1(δ)

}
.

Define qt (s, ω) as the mass of consumers who have arrived before t and value the
service more than v1(t − s), qt (s, ω) = ∑τ(t−s)

j=1

∫ t
s+A j−1 ε

j
x (ω)dx . To characterize

the efficient consumption rule, we define the pair of functions t̂(ω) and b̂1
t (ω) such

that q̂t(ω)(0, ω) = Q and qt (̂b1
t (ω), ω) = Q for t > t̂(ω).

Proposition 5 The efficient consumption rule is

d̂i,s
t (ω) =

{
1 if b̂1

t (ω) + Ai−1 < s ≤ t
0 if s < b̂1

t (ω) + Ai−1 or if b̂1
t (ω) + Ai−1 > t

.

Proof Before proceeding, we need to establish a preliminary result. The no-
crossing condition implies that vi (n) = v1(Ai−1 + n) for i = 1 . . . I . The
proof goes by contradiction. Assume that there exist (i, n) such that i 
= 1 and
vi (n) 
= v1(Ai−1 +n). Assume for example that vi (n) > v1(Ai−1 +n). (The proof
is similar if the inequality if reversed.) Then, by continuity vi (n) > v1(Ai−1+n−ε)
for ε small. But v1(Ai−1) = vi (0) implies that v1(Ai−1 − ε) > vi (0). These two
inequalities contradict the assumption that v1 and vi satisfy the no-crossing con-
dition.

The rest of the proof follows the steps of the proof of Proposition 1. The proof
of the claim that there does not exists a sample path ω and a t0 such that

(S)

⎧
⎨

⎩

∫ t0
0

∑

i
d̃ i,s

t0 (ω)v(t0 − s)εi
s(ω)ds >

∫ t0
0

∑

i
d̂ i,s

t0 (ω)v(t0 − s)εi
s(ω)ds

∫ t0
0 d̃s

t0(ω)εs(ω)ds ≤ Q

is established by multiplying the equivalent of (4) by v1(t − b̂1
t (ω)). No consumer

values consumption at time t less than v1(t − b̂1
t (ω)) since a consumer of type i

who is still consuming in t had to arrive at b̂1
t (ω) + Ai−1 or after and the lowest

valuation among those type i consumers is vi (t−(̂b1
t (ω)+ Ai−1)) = v1(t−b̂1

t (ω)).
��

Under the no-crossing condition, the efficient consumption rule changes slightly.
For any t ≥ t̂(ω), the consumers with the lowest demands are replaced by new
consumers, starting with those consumers with highest demands up to the point
where no new consumer values consumption more than the marginal consumer.
As a result, no consumer terminating consumption ever values consumption more
than any consumer retaining consumption.
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Similarly, the derivation of the perfect Bayesian equilibrium still holds after
straightforward generalizations. Proposition 2 characterizing the equilibrium must
take into account the fact that the rule defining the oldest consumer of type 1
consuming at time t , call it b1

t (ω), will determine the oldest consumer of type
i 
= 1 consuming at time t according to,

bi
t (ω) = Min(t, b1

t (ω) + Ai−1).

Although consumers of a same type terminate consumption in a FIFO fashion,
consumers of different types may not do so. For example, a consumer of type
i 
= 1 who arrived at t will terminate consumption before a consumer of type i − 1
who arrived between t −ai−1 and t . In the perfect Bayesian equilibrium, the oldest
consumer of type one is defined by

v1(t − b1
t (ω)) = r

(
qt (b

1
t (ω), ω)

)
.

The equilibrium price is pt (ω) = r
(
qt (b1

t (ω), ω)
)

and the equilibrium level of
capacity utilization is qt (ω) = qt (b1

t (ω), ω). Lemma 2 extends to heterogeneous
demands under the condition that r(Q) ≥ r where r is the lowest level of price
that rules out excess demand.13 Propositions 3 and 4 extend, and the equilibrium
responsive price at time t converges to v1(t − b̂1

t (ω)) as α converges to 0, so that
efficiency can be achieved in a limit sense.

The extension to no-crossing demand is important for the following reason.
As mentioned in the previous subsection, a social planner can implement the first
best with a FIFO mechanism in the homogeneous demand case if it is possible to
keep track of consumers. Alternatively, if the social planner can record the real-
izations of the arrival rate εt (ω), then the social planner can directly compute the
marginal social value of capacity since it is then possible to compute b̂t (ω) and
p̂t (ω) = v(t − b̂t (ω)). There is no need for responsive pricing. In the heteroge-
neous demand case, however, consumers have private information about their types
(a FIFO mechanism is not efficient anymore), and the history of aggregate arrival
rate is not sufficient to compute the marginal social value of capacity. The social
planner cannot compute p̂t (ω) without the consumers’ private information about
their types.

The no-crossing condition is restrictive. This condition is necessary because
we have made no restriction on the arrival process εt . The results would still hold
under more general demands if one is willing to impose some restrictions on the
arrival process. Stated loosely, the main message of this section is that the results
generalize as long as no two consumers who can overlap have residual demands
that cross over the length of time over which they overlap. For example, the demand
of two consumers who never overlap could cross. Similarly, the demand of two
consumers could cross after one terminates consumption. This more general inter-
pretation of the no-crossing condition is important because the analysis does not
always hold when this condition is not met, as we show in the next section.

13 Formally, r is uniquely defined by
∑

i εi
hni (r) = Q where ni (x) is defined as vi (ni (x)) = x

if vi (0) > x and 0 otherwise.
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4.4.2 An example of inefficiency

The analysis does not follow when the no-crossing condition does not hold. To
start, one cannot show anymore that the consumer with the lowest marginal val-
uation should leave first in the efficient allocation (Proposition 5 does not hold).
Similarly, we cannot characterize the equilibrium by focusing on the behavior of
the consumer with the lowest marginal valuation. Specifically, the proof of Claim 2
in Lemma 1 does not hold.

We show that when the no-crossing condition does not hold, it is possible that
responsive pricing cannot approximate the efficient allocation in the sense defined
by Proposition 4. An example is sufficient to establish this claim. For tractability
concerns, we present an example with discrete arrival process and step-function
demands. It is important to recognize that these features violate some of the con-
tinuity assumptions of the model. As we argue later, however, this is not with
complete loss of generality.

Time is finite, t ∈ [0, 2], and we use the terminology period 1 to mean t ∈ [0, 1],
and period 2 for t ∈ (1, 2]. The capacity is 3. A demand is a pair of numbers (see
also Table 1). A consumer with demand (a, b) who arrives at t , is willing to pay a
from t to t + 1 and b from t + 1 to t + 2 and 0 after t + 2. There are four types
of consumers v1 = (20, 20), v2 = (25, 0), v3 = (30, 30) and v3 = (10, 0) . To
simplify, we assume that consumers do not discount the future.

The arrival process is the following. Consumers arrive only at t = 0 or t = 1 .
At t = 0, there are two possible states of the world, state π and state 1 − π , which
occur with respective probabilities π and 1 − π with π ∈ [0, 1] and π 
= 1/2. In
state π the arrival realization at date 0 is επ

0 = (2, 4, 0, 0) while in state 1 − π

the arrival realization is ε1−π
0 = (2, 3, 1, 0). At date one, the arrival realizations

are επ
1 = (0, 0, 0, 4) and ε1−π

1 = (0, 3, 0, 0) . Arrival realization επ
0 , for example,

means that two consumers of type v1 and four consumers of type v2 arrive at date
0 in state π . We denote by vi

t the consumer of type i who arrive at date t .
The efficient consumption rule maximizes total surplus subject to feasibility

and implementability constraints (see also Table 2). In state π , all consumers v1
0

should consume in both periods, 1 unit of consumers v2
0 should consume in period 1,

and 1 unit of consumers v4
1 should consume in period 2. In state 1 − π , 2 unit of

consumer v2
0 should consume in period 1, all consumers v3

0 should consume in both
periods, and two unit of consumer v2

1 should consume in period 2. The expected
consumer surplus in the first-best consumption rule is 160 − 45π .

Table 1 Consumer preferences

Type State π State 1 − π

t = 0 t = 1 t = 0 t = 1

v1 = (20, 20) 2 0 2 0
v2 = (25, 0) 4 0 3 3
v3 = (30, 30) 0 0 1 0
v4 = (10, 0) 0 4 0 0
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Table 2 Consumption rules and surplus

Consumption Expected

State π State 1 − π surplus

t ∈ [0, 1] t ∈ [1, 2] t ∈ [0, 1] t ∈ [1, 2]
Efficiency 2 × v1

0 + 1 × v2
0 2 × v1

0 + 1 × v4
1 2 × v2

0 + 1 × v3
0 2 × v2

1 + 1 × v3
0 160 − 45π

equilibrium
π > 1/2 2 × v1

0 + 1 × v2
0 2 × v1

0 + 1 × v4
1 2 × v1

0 + 1 × v3
0 1 × v3

0 + 2 × v2
1 150 − 35π

π < 1/2 3 × v2
0 3 × v4

1 2 × v2
0 + 1 × v3

0 2 × v2
1 + 1 × v3

0 160 − 55π

Consider next responsive pricing. Assume that the information structure is
common knowledge but consumers privately know their types. This implies that
at date zero the consumers of type 1 and 2 do not know the state of the world. The
next lemma establishes that responsive pricing cannot approximate the efficient
outcome.

Lemma 3 There does not exist a sequence of state prices (pπ
0 , p1−π

0 , pπ
1 , p1−π

1 )
such that if consumers are announced the realized state prices in each period they
make efficient consumption decisions.

Proof Consumer v2
0 has to be indifferent between consuming and not consuming

in both states:

25 − pπ
0 = 25 − p1−π

0 = 0.

Since pπ
0 = p1−π

0 = 25, the date 0 price cannot reveal the state of the world. Con-
sumer v1

0 uses his prior to compute the expected surplus from starting consumption
in period 1. Consumer v1

0 has to weakly prefer to consume in state π :

20 − pπ
0 + πMax(20 − pπ

1 , 0) + (1 − π)Max(20 − p1−π
1 , 0) ≥ 0

and not to consume in state 1 − π :

20 − p1−π
0 + πMax(20 − pπ

1 , 0) + (1 − π)Max(20 − p1−π
1 , 0) ≤ 0.

Since consumer v4
1 and v2

1 have to be indifferent between consuming and not con-
suming in state π and 1 − π , respectively, the date 1 prices are pπ

1 = 10 and
p1−π

1 = 25. Plugging these values in the above inequalities, we have 10π − 5 ≥
0 ≥ 10π − 5 . A contradiction since π 
= 1/2. ��

Lemma 3 shows that is not possible that consumer v1
0 consumes in state π and

not in state 1 − π . Therefore, the efficient allocation cannot be arbitrarily approx-
imated. To further illustrate, consider the equilibrium under scheme r̃α defined in
Sect. 3 where r̃α(Q) = 35 and α close to 0. To understand the construction of the
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equilibrium, note first that prices will change only at t = 0, 1, and 2 since these
are the only dates when new consumers arrive or terminate consumption. Next,
consider consumers’ consumption decisions. Consumers v3

0 will consume in state
1 − π because their demand (weakly) dominates any other consumer. Consumers
v2

0’s consumption decision is also simple. They are willing to pay 25 and no more
than 25 at date 0. Solving the decision problem of consumers v1

0 is more compli-
cated. How much is a consumer v1

0 willing to pay at date 0? This decision depends
on her expectations about the second period price. In state π (respectively 1 − π),
she expects that the price will be 10 (respectively 25) in period 2. She expects a
period 2 surplus of 20 − 10 with probability π and of 0 with probability 1 − π .
A consumer v1

0 is willing to pay 20 + π10 + (1 − π)0 = 20 + π10 at t = 0.
Since π > 0 consumers v1

0 are willing to pay more than their period 1 valuation.
When 20 + π10 > 25, the equilibrium price is 25 in period 1 and all consumers
v1

0 consume. When 20 + π10 < 25, the price is 20 + π10 in period 1 and no
consumers v1

0 consume. An inefficiency occurs because consumer v1
0’s decision to

consume does not depend on the state of the world as it should under the first best
outcome.

The problem identified in the example is general and can be summarized as
follows. The no-crossing condition does not hold for consumer v1

0 and v2
0. It is

not optimal for consumer v1
0 to terminate consumption when the price is equal to

her instantaneous valuation 20. To achieve efficiency, consumer v1
0 would need to

know whether only consumers v2
0 or also consumers v3

0 have arrived at t = 0. This
information, however, is not revealed by the price. More generally, under crossing
demands a consumer with high long-term demand may prefer to retain consump-
tion and bear negative instantaneous utility if she believes that (a) there are some
consumers with weak long-term demands who are about to terminate consumption,
and (b) few consumers are likely to arrive.

Consumers’ decision problems differ dramatically when the no-crossing con-
dition holds and when it does not. Under no-crossing, consumers need to know
only the current price to decide whether to continue or terminate consumption.
The fact that consumers do not know who is consuming at the time they arrive
(incomplete information about arrival times and types) does not prevent efficiency
from being achieved. When the no-crossing condition does not hold, however,
consumers do not decide when to terminate consumption only on the basis of the
current price. They have to predict future prices. They do so using their prior belief
and the price histories, Hs

t (ω). As a consequence, consumers’ beliefs matter. The
example offers an illustration of this point. The period 1 price and the level of
inefficiency depend on the consumer v1

0’s initial belief about the likelihood that
state π will occur. In the example, we assumed that v1

0’s initial belief was equal to
the true probability (common knowledge assumption) but this does not have to be
the case.

To conclude, we point out that although the example does not satisfy all the
assumptions of the model, it stresses the importance of the no-crossing condition.
To illustrate, assume that the no-crossing condition holds as would be the case for
example if v2 = (25, 25). Lemma 3 does not hold since it is possible to define a
sequence of state prices (pπ

0 , p1−π
0 , pπ

1 , p1−π
1 ) that implements the efficient allo-

cation. Similarly, responsive pricing approaches the efficient allocation.
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5 Consumption interruption

The analysis has assumed so far that consumers never postpone consumption.
This was imposed by the restriction that the consumption rules di,s

t (ω) had to be
non-increasing in t . This section generalizes the analysis in two ways. First, we
assume that consumers can interrupt the service (or delay initial start) but have to
pay a cost each unit of time they do so. We identify a lower bound on the cost of
delaying consumption that rules out interruptions. This formalizes the claim made
earlier that the analysis is valid as long as the cost of delaying consumption is
sufficiently high. Second, we briefly discuss the case where the opportunity cost
of delaying consumption is low.

To simplify the presentation, we return to the case where there is a single
consumer type. Consumers have to pay k per unit of time when they delay con-
sumption. This could be because consumers have to physically wait or because
there is a cost of monitoring prices. Let ds

t (ω) = 0 when the consumer who arrives
at s delays consumption at t and let ls(ω) denote the time when that consumer
terminates consumption definitely. A consumer who arrives at s gets expected
utility

U s
s (ω, Hs

s (ω))

= E

⎛

⎜
⎝

ls(ω)∫

s

ρx−s (
ds

x (ω) (v(x − s) − px (ω)) − (1 − ds
x (ω))k

)
dx | µs

s

⎞

⎟
⎠

under consumption strategy ds
t (ω). Let d̂s

t (ω) represent the efficient consumption
rule.

Proposition 6 The efficient consumption rule, d̂s
t (ω), is non-increasing in t for

t > s if k > v(Q/εh) − v(Q/εl).

Proof Consider the efficient consumption rule under the constraint that interrup-
tions are ruled out. Consumers consume Q/εl when the arrival rate is fixed at εl
and never consume more than that amount. They consume Q/εh when the arrival
rate is fixed at εh and never consume less than that amount. The social opportu-
nity cost of capacity varies between v(Q/εh) and v(Q/εl). The maximum possible
social gain from interrupting consumption is (v(Q/εh) − v(Q/εl)) dt . Interrupting
consumption is never efficient when v(Q/εh) − v(Q/εl) < k. ��
It is never efficient for consumers to wait when v(Q/εh) − v(Q/εl) < k. Con-
sider the equilibrium analysis. The pricing function influences the decision to delay
consumption. Does there exist a responsive pricing function that rules out waiting
and still allocates capacity efficiently? Consider first the conditions that one needs
to impose on the pricing function to rule out waiting. The benefit from waiting
corresponds to the expected savings from lower prices. This amount is bounded
from above by r(Q) − r(0). Consider a pricing rule that sets r(Q) = v(Q/εh)
and r(0) = v(Q/εl). This pricing rule eliminates both excess demand and inter-
ruptions since r(Q) − r(0) < k. The condition r(0) = v(Q/εl) is not restrictive
because prices never go below that level in the equilibrium analysis without inter-
ruptions. The analysis follows and responsive pricing still implements the efficient
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consumption rule in a limit sense. This simple extension demonstrates that the
analysis presented earlier holds when v(Q/εh) − v(Q/εl) < k.

When k < v(Q/εh)−v(Q/εl), on the other hand, consumer waiting may occur
both under responsive pricing and in the first best consumption rule. To make this
point clear, consider the extreme case where the opportunity cost of waiting is
zero. Under responsive pricing, consumers will prefer to delay consumption if
they anticipate that prices are likely to decrease in the future. But it is not efficient
anymore that a consumer terminates consumption for every new consumer who
arrives, since there is no welfare cost associated with consumers waiting. More
generally, even when consumers have a low but positive cost of waiting, it is not
efficient anymore to rule out waiting, since there is a trade-off between the welfare
cost of waiting and the opportunity cost of cutting off some consumers.14 We leave
a full treatment of this problem for future research.

6 Summary and conclusions

This paper investigates the efficiency properties of responsive pricing, a simple and
easily implementable scheme initially proposed by Vickrey to eliminate inefficien-
cies that result from last minute demand shocks. Responsive pricing changes prices
in real time in response to demand realizations, increasing prices when the resource
gets close to congestion and decreasing prices when unused capacity increases, thus
promoting full capacity utilization. Consumers only have to decide whether they
want to consume. The seller, in turn, only needs to be able to measure congestion
and to update prices in real time.

The set of applications we have in mind are characterized (a) by the impossibil-
ity to get users to commit to a contract ahead of time and (b) by highly unpredictable
last-minute demand shocks that prevent the use of schemes that would be sensi-
tive to the designer’s information about the demand environment. As argued by
Vickrey, such environments rule out standard pricing schemes considered in the
literature (e.g. peak load pricing, priority pricing) as a solution to the allocation
problem and justify considering simple indirect mechanisms such as responsive
pricing.

An important contribution of this paper is to establish a condition under which
the strategic complexity of the game that takes place under responsive pricing dra-
matically simplifies. Under the no-crossing condition, consumers stop consuming
as soon as their willingness to pay for a marginal unit falls below the instantaneous
price. Consumers cannot benefit from predicting future prices. When demands can
cross, however, consumers may optimally keep consuming even if they receive neg-
ative net instantaneous utility. As a result, the equilibrium allocation may depend
on consumers’ initial beliefs.

We show that responsive pricing can implement the efficient outcome but only
in a limit sense and when consumer demands satisfy a no-crossing condition.
When this condition is violated the analysis does not follow, and responsive pricing

14 Positive but low cost of waiting may explain why country clubs and ski resorts do not use
prices to allocate capacity although waiting is often observed in equilibrium. In these situations,
consumers may have a low cost of waiting and it would be suboptimal to cut some consumers
short to free up capacity when there is a sudden arrival flow of consumers. This conclusion is
reminiscent of the analysis of ski lifts presented in Barro and Romer (1987).
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sometimes fails to achieve efficiency. The problem with responsive pricing is that
consumers can bid only for the current unit of consumption, and the equilibrium
price does not always aggregate consumers’ private information efficiently. An
implication for policymaking is that responsive pricing will work well when con-
sumer demands satisfy the no-crossing condition, such as among homogenous
populations of consumers.

Undoubtely, this work had to leave several important issues for future work.
Most importantly, one could consider more general consumption rules as suggested
in the introduction and also more sophisticated information revelation schemes
than responsive pricing. We believe, however, that one should focus on simple
schemes, such as the one proposed by Vickrey and considered in this work. If one
accepts this view, a relevant question for future research is to generalize the class of
pricing mechanisms, possibly incorporating more state variables than just current
utilization rates, offering partial advance booking, or introducing the possibility of
rationing.

Another limitation of this work is that we have focused on a welfare analysis.
Our results are relevant to regulated industries considering introducing responsive
pricing. Some of the applications discussed in Sect. 1, however, have to do with
non-regulated firms concerned about firm surplus rather than total surplus. An
important extension would be to derive the profit maximizing pricing scheme and
to contrast it with responsive pricing. Would a private firm find it optimal to vary
prices as a function of occupancy realizations? Under what conditions?
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