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Abstract
We provide a methodology for eliciting utility midpoints from preferences, assuming
that payoffs are consumption plans and that preferences satisfy a minimal form of
additive separability. The methodology does not require any subjective or objective
uncertainty. Thus, this construction of utility midpoints allows us to define mixtures
of acts in a purely subjective fashion, without making any assumptions as to the
decision maker’s reaction to the uncertainty that may be present. This approach makes
it possible to provide a simple and fully subjective characterization of the second-
order subjective expected utility model, allowing a clear distinction of such model
from subjective expected utility.

Keywords Subjective mixture space · Ambiguity · Second-order subjective expected
utility

JEL Classification D81

1 Introduction

The success of the Anscombe–Aumann (1963) setting for decision models is due
to the objective “mixture-space” structure on the choice set, which makes it easy
to formulate axioms with a direct mathematical counterpart and to employ functional
analysis. More precisely, letting X denote a convex set of consequences, αx+(1−α)y
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denotes a mixture of the payoffs x, y ∈ X with weight α ∈ [0, 1], which also belongs
to X . The preferences are assumed, via a property called Risk Independence,1 to be
consistent to such mixture. That is, given a preference representationU , its restriction
to X satisfies the affinity property

U (αx + (1 − α)y) = αU (x) + (1 − α)U (y). (1)

Under these conditions every choice option f (a function from a set S of states of
the world to payoffs) can be transformed into a utility profile U ◦ f , and the set of
utility profiles inherits from X themixture-space structure. As a consequence, standard
functional-analytic techniques can be applied to model behavioral traits; for example,
ambiguity sensitivity (see e.g. Schmeidler 1989; Gilboa and Schmeidler 1989).

On the other hand, the existence of the objective mixture-space structure and Risk
Independence limit the scope of preferences that can be capturedwithin anAnscombe-
Aumann setting. For instance, Risk Independence rules out the possibility that, when
the mixtures represent objective randomizations over payoffs, the decision maker
has non-expected utility preferences. For this reason, Ghirardato and Pennesi (2020),
extending Ghirardato et al. (2003), advocate using bets on a suitably chosen event
E ⊆ S to construct a subjectivemixture-space structure for which the affinity property
in Eq. (1) is automatically satisfied. Though more general, this approach still imposes
restrictions on the decision maker’s preferences; in particular, with respect to how she
reacts to the uncertainty entailed by the event E .2

In this paper, we follow a different route. We show that when payoffs are con-
sumption plans and preferences satisfy a separability requirement over such plans, it
is possible to develop an alternative subjectivemixture-space structure which is totally
independent of the uncertainty in the problem (and thus of the decisionmaker’s attitude
towards such uncertainty). The separability requirement is mild; indeed, our analysis
applies to the case in which the decision maker discounts future utilities geometrically
or hyperbolically, as well as to more general forms of discounting and nonseparabil-
ity (e.g. Uzawa 1968). We develop a procedure for eliciting “utility midpoints” from
preferences: for any two consumption plans a and b, we show how to find a third
consumption plan c, the utility of which is halfway between the utility of a and the
utility of b.3 This procedure requires only finitelymany preference statements. Utility
midpoints are then used recursively to super-impose a mixture-space structure on the
set of consumption plans, which is clearly subjective.

As in Ghirardato and Pennesi (2020), the subjective mixture structure can be used
to provide a general framework for preference models.4 However, an advantage of

1 The Risk Independence axiom posits that if x, y ∈ X then, x � y if and only if αx + (1 − α)z �
αy + (1 − α)z, for all z ∈ X and all α ∈ [0, 1].
2 Loosely, the decision maker’s preferences over bets on the event E must have a Choquet-like (locally
biseparable) representation; see Ghirardato and Pennesi (2020) for details. A similar comment can be made
about alternative approaches to the fully subjective axiomatizations presented by Gul (1992), Nau (2006)
and Ergin and Gul (2009). See the discussion in Sect. 1.1.
3 Ourmild separability requirement implies the cardinal uniqueness of the utility function,which guarantees
that utility midpoints are meaningfully defined.
4 Subjective mixtures could be also of use beyond axiomatic endeavors, see e.g. Webb (2013).
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Randomizing without randomness 1011

the alternative route taken here is that by dispensing with uncertainty and with the
restrictions of the decision maker’s reaction to such uncertainty, we are able to capture
differences between preference models that cannot be captured with the previous
“subjective” constructions. For example, in our context it is possible to provide a
simple axiomatic characterization of the Second-Order Subjective Expected Utility
(SOSEU) model, as distinct from Subjective Expected Utility (SEU). In other settings
this is impossible without ancillary assumptions (see Strzalecki 2011).

To provide intuition on our analysis, consider the case in which there are only two
periods, preferences are additively separable and there is no discounting: U (d) =
u(x0) + u(x1) for all d = (x0, x1) ∈ X × X and for some u : X → R. Consider
two constant consumption plans a = (x, x) and b = (y, y). In this case, the plan
c = (x, y) provides an intuitive “mixture” of the plans a = (x, x) and b = (y, y).
And indeed:

U (c) = u(x) + u(y) =
(
1

2
u(x) + 1

2
u(x)

)
+

(
1

2
u(y) + 1

2
u(y)

)

= 1

2
U (a) + 1

2
U (b) (2)

So c = (x, y) is also a “midpoint” in terms of utility of the plans a and b. Notice that a
similar property is satisfied by the mirror-image plan c′ = (y, x), so that c = (x, y) ∼
(y, x) = c′. So, in this case, the utility midpoint of a = (x, x) and b = (y, y), though
not unique, can be directly observed from preferences.

Consider now two non-constant consumption plans a = (z0, z1) and b = (y0, y1),
and the left panel of Fig. 1 which depicts indifference curves on X × X for a given
U . Neither (z0, y1) nor (y0, z1) provide a “midpoint” of a and b. The reason is that
(z0, y1) � (y0, z1), and indifference has to hold when either pair is a midpoint of a
and b.5 However, this does not mean that we cannot find a midpoint of a and b. We
can do so by moving along the indifference curves A and B that respectively include
a and b. Consider the right panel of Fig. 1, where we keep the plan b fixed and find
a plan a′ = (x0, x1) belonging to A such that (y0, x1) ∼ (x0, y1), which implies
U (y0, x1) = 1

2U (y0, y1) + 1
2U (x0, x1). That is, (y0, x1) is a midpoint of a′ and b,

and therefore also a midpoint of a and b. Thus, “mixing” payoffs may work also for
non-constant consumption plans in X × X .6

This approach extends to more general preference models that satisfy our sepa-
rability condition over discrete (but not necessarily finite) time. Once midpoints are
defined for a generic pair of plans a and b, a recursive application of midpoints allows
us to define the γ : (1 − γ ) mixture of a and b for any dyadic rational γ ∈ [0, 1].
As in Ghirardato et al. (2003), we then use this mixture notion to provide a subjective
structure on the set of consumption plans which allows, à la Anscombe-Aumann, to
define “subjective mixtures” over the set of state-contingent consumption plans in
problems of choice under uncertainty.

5 Indeed, because of additive separability and analogously to Eq. (2) above, U (y0, z1) = 1
2U (y0, y1) +

1
2U (z0, z1) if and only if U (z0, y1) = 1

2U (y0, y1) + 1
2U (z0, z1) implying U (y0, z1) = U (z0, y1).

6 As we discuss in detail in Sect. 3, there might be still pairs of plans for which the “mixing” technique
does not yield a specific midpoint. However, in those cases, an appropriate (finite) iteration of the procedure
just sketched can be used to elicit midpoints.
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Fig. 1 Looking for preference midpoints

Asmentioned above, the notion of subjectivemixture allows us to offer fully subjec-
tive axiomatizations of very general preference models. For instance, we characterize
the Monotone, Bernoullian and Archimedean (MBA) preferences of Cerreia-Vioglio
et al. (2011), which include as special cases most of the (static) models of choice under
uncertainty. We are also able to characterize the SOSEU model without imposing any
restriction on the DM’s attitudes toward ambiguity (as described by the second-order
utility function φ, see Definition 4) or “risk” (as described by the utility function U ).
Indeed, in our most general characterization the function φ is increasing but not nec-
essarily concave or convex. Analogously, the function U is arbitrary and it does not
have to reflect any structure on the space of consequences, as would be entailed by
properties such as by Risk Independence. We also show that a number of interesting
special cases of SOSEU, including for instance Multiplier Preferences (Hansen and
Sargent 2001), follow by adding the natural counterpart in our setting of well-known
preference axioms; e.g., Weak Certainty Independence.

The paper is structured as follows: Sect. 2 spells out the basic assumptions on
preferences, the definition of utility and preference midpoint, and it also contains
our main characterization result. Section 3 provides intuition for the existence and
elicitation of utility midpoints. Section 4 concludes by providing the main decision-
theoretic applicationswith the axiomatizations ofMBApreferences and of the SOSEU
model. The appendix contains a few additional results and all the proofs of the results
in the paper.

1.1 Related literature

The three works that are most directly related to this paper are: Kochov (2015), Bas-
tianello and Faro (2020) and Vind and Grodal (2003). The works of Kochov (2015)
and Bastianello and Faro (2020) use separability of preferences over state-contingent
consumption plans to provide a fully subjective axiomatization of some preference
models. In particular, Kochov (2015) axiomatizes theMaxMin ExpectedUtilitymodel
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Randomizing without randomness 1013

of Gilboa and Schmeidler (1989) and the Variational Preference model of Maccheroni
et al. (2006) in a context in which acts are functions from states of the world to infinite-
horizon consumption plans. Bastianello and Faro (2020) analogously axiomatize the
Choquet Expected utility. Like us, these papers do not require the existence of an objec-
tive randomization device, but differently from us their approach crucially depends
on the infinity of the time horizon and on geometric discounting of future utilities.
Instead, we derive our results for a possibly finite horizon (more generally, we allow
for a finite or infinite product of potentially non-homogeneous sets, see Remark 1),
and we dispense with the stationarity assumption implied by geometric discounting.7

The work of Vind and Grodal (2003) is directly related to our main theoretical
contribution (Theorem 1). We adopt their notion of preference midpoint and show that
it can be used to provide a foundation to the notion of utility midpoints. As we explain
in detail in Sect. 3, preference midpoints may not always exist. In contrast, we prove
the general existence of utility midpoints and we present a finite algorithm for their
elicitation. Another difference is that Vind and Grodal (2003) do not define midpoints
with the objective of building a mixture-space structure, but only as a tool to provide
conditions under which preferences have an additively separable representation.

Finally, as mentioned earlier, our construction of subjective mixtures is comple-
mentary to those that propose subjective mixture operators using bets on “special”
events; see Footnote 2 and the related discussion. As the title of this paper suggests,
we are able to elicit utility midpoints even in the absence of any randomness.

2 Midpoints

In this section, we present our main definition and its behavioral characterization. We
consider the case in which the consequences are consumption plans, hence elements
of a homogeneous product space V = XT+1, with T ∈ N ∪ {∞}. We denote by a a
generic consumption plan in V .

2.1 Minimal additive separability

The following basic assumption on preferences, which is necessary to obtain a well-
defined notion of midpoint in terms of utility in our setting, is crucial for our analysis:

Definition 1 (MAS) We say that U : V → R is a Minimally Additively Separable
(MAS) utility function over the set of consumption plans V := XT+1 where T ∈
{1, 2, . . .} ∪ ∞, if U : V → R is a convex-ranged mapping for which there exist
a proper partition {I0, I1} of {0, 1, . . . , T } and two functions8 u0 : X I0 → R and
u1 : X I1 → R such that for all a ∈ V

U (a) = u0(aI0) + u1(aI1) (3)

7 Another difference is that Kochov (2015) provides an extension of his model to an explicitly dynamic
setting, which we do not attempt in this paper.
8 It is shown by standard arguments that the range convexity of a U satisfying Eq. (3) is equivalent to the
range convexity of u0 and u1 separately.
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1014 P. Ghirardato, D. Pennesi

where aK ∈ ∏
k∈K X , K ∈ {I0, I1}.

The axioms characterizing preferences with a MAS utility representation are standard
(see Appendix A). Notice that a MAS representation is necessarily cardinally unique.

Any additively separable representation, U (a0, . . . , aT ) = ∑T
t=0 ut (at ) is MAS.

This includes the case of discounted utility representations, U (a0, . . . , aT ) =∑T
t=0 D(t)u(at ), regardless of the shape of the discount function (e.g. geometric,

hyperbolic, quasi-hyperbolic).
On the other hand, requiring just the existence of a MAS representation is much

weaker than requiring additive separability. This is illustrated by the following exam-
ples.

Example 1 Consider the preference for increasing consumption profiles of De Wae-
genaere and Wakker (2001) (see also Gilboa 1989) represented by

U (a) = λ0a0 +
T∑
t=1

[λt at − τt (at−1 − at )
+]

where X ⊆ R, T ∈ N ∪ {∞} and for a vector of non-negative τt , and where (r)+ =
max {r , 0}. If there is at least one t such that τt = 0,U is a MAS utility representation
with I0 = {t − 1}.
Example 2 A classical example of non-separable discounted utility model is Uzawa’s
consumption-dependent discounting (Uzawa1968):U (a) = u(a0)+∑T

t=1
∏t−1

s=0 δ(as)
u(at ), where T ∈ N ∪ {∞}. However, if δ(a0) = δ for all a0 ∈ X , so that

U (a) = u(a0) + δu(c1) +
T∑
t=2

t−1∏
s=1

δ(as)u(at )

then U is a MAS utility representation with I0 = {0}. More generally, consider a
preference represented by an “initial additive” utility, such as

U (a) = u0(a0) + f (a1, . . . , aT )

for a finite T or U (a) = u0(a0) + f (a1, . . .) for an infinite T . Then, U is a MAS
utility representation with I0 = {0}.

We conclude this section with two observations on the scope and characterization
of the MAS assumption.

Remark 1 It will be seen that all our results are independent of the dimensionality
of V and the interpretation that we give to its product structure (e.g., consumption
plans). The driving force is the existence of a MAS utility. Precisely, all our results
apply to the case in which V = X × Y and that � is represented by U : X × Y → R

convex-ranged and such that U (x, y) = uX (x) + uY (y) where uX : X → R and
uY : Y → R.
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Randomizing without randomness 1015

Remark 2 Taking advantage of Remark 1, the following is a simple characterization
of MAS utilities.9 Suppose that X and Y are non-empty sets; say that U satisfies the
rectangle condition if for any rectangle with vertices

{(x0, x1), (y0, y1), (x0, y1), (y0, x1)} ⊆ X × Y

it follows that the sum of the values at the diagonally opposite corners are equal. That
is:

U (x0, x1) +U (y0, y1) = U (y0, x1) +U (x0, y1)

A utility U is MAS if and only if it satisfies the rectangle condition. To see the non-
trivial implication, suppose that U satisfies the rectangle condition and fix x̄ ∈ X and
ȳ ∈ Y . Define u0(x0) = U (x0, ȳ) and u1(x1) = U (x̄, x1) −U (x̄, ȳ). It follows that

U (x0, x1) = U (x̄, x1) +U (x0, ȳ) −U (x̄, ȳ) = u0(x0) + u1(x1)

2.2 Utility midpoints

Let � be a preference with a MAS utility representation on V , with ∼ denoting
indifference.We consider the quotient space [V ] = V /∼ andwe denote by A, B ∈ [V ]
generic indifference classes. With a slight abuse of notation, U : [V ] → R denotes
the restriction of U to the indifference sets in [V ]. As informally explained in the
introduction, midpoints can be directly defined in terms of pairs of indifference sets,
as follows:

Definition 2 For any A, B ∈ [V ], C ∈ [V ] is a utility midpoint of A and B, denoted
C = A 
 B, if and only if U (C) = 1

2U (A) + 1
2U (B).

Clearly, the definition of utility midpoint is based on the representation U . The main
contribution of our paper is the following result, which shows that there is a finite
preference-based procedure to elicit utility midpoints.

Theorem 1 If � has a MAS representation then, for all A, B ∈ [V ] a utility midpoint
C = A 
 B (exists and it) can be elicited from preferences via a finite procedure.

Notice that, because of the MAS assumption, the existence of utility midpoints is
guaranteed. The novelty of the result is proving how to use behavioral data to elicit
the utility midpoint of an arbitrary pair of consumption plans. More precisely, given a
pair of plans a, b ∈ V and their associated indifference sets A, B ∈ [V ], we provide
an algorithm which explicitly identifies an indifference set C ∈ [V ], the elements of
which have utility equal to the average of the utilities of a and b.

Our algorithm departs from the behavioral definition of midpoint introduced by
Vind andGrodal (2003), where each a ∈ V is expressed as a = (x0, x1)with x0 ∈ X I0

and x1 ∈ X I1 (see also Fig. 2).10

9 We thank an anonymous referee for suggesting this alternative characterization.
10 The notation (x0, x1)with x0 ∈ X I0 and x1 ∈ X I1 is a little loose, as (x0, x1) does not strictly represent
the concatenation of two sub-vectors x0, x1 but rather their combination. For example, take (a0, a1, a2, a3)
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1016 P. Ghirardato, D. Pennesi

Definition 3 For any A, B ∈ [V ], C ∈ [V ] is a preference midpoint of A and B if and
only if there exist (x0, x1) ∈ A and (y0, y1) ∈ B such that (x0, y1) ∼ (y0, x1) ∈ C .

A problem with this definition is that preference midpoints may not exist for arbi-
trary A, B ∈ [V ]. For instance, consider Fig. 3. The indifference curves A′, B ′, passing
through the points (x0, y1) and (y0, x1) respectively, do not have a preferencemidpoint
(Def. 3)—of course, they do have a utilitymidpoint (Def. 2).11 In Sect. 3, we intuitively
describe the procedure that allows us to elicit utility midpoints for all A, B ∈ [V ],
which lies at the core of the proof of Theorem 1.

Remark 3 It can be seen that, if � is suitably unbounded, so that both u0 and u1 have
unbounded range (above and below), preference midpoints exist for all A, B ∈ [V ]
and they can then be directly employed to obtain utility midpoints. In this case, there
is no need to use the algorithm discussed in Sect. 3.

Given �, it is possible that there are multiple partitions of {0, . . . , T } on which the
representation U of � is MAS. For instance, if V = X3 and U (a) = ∑2

t=0 δt u(at ),
we could have I0 = {0} or I ′

0 = {0, 1}. The preference midpoints associated with each
partition are different, as the vectors may have different dimensionality. However, the
following result shows that the utilitymidpoints obtained in Theorem 1 are not affected
by this multiplicity.

Proposition 1 Suppose that� has a MAS representation with respect to the partitions
I0, I1 and I ′

0, I
′
1 of {0, . . . , T }, then C ∈ [V ] is a utility midpoint of A, B ∈ [V ] under

I0, I1 if and only if it is a utility midpoint of A, B ∈ [V ] under I ′
0, I

′
1.

3 From preferencemidpoints to utility midpoints. An algorithm

In this section, we provide intuition about the finite procedure behind Theorem 1, as
well as a numerical example. The detailed proof is found in Appendix C.1.

We start by observing that, whenever a preference midpoint exists, it is also a utility
midpoint in any MAS utility representation. Consider the indifference curves A, B in
Fig. 2. The indifference curveC satisfies the definition of preferencemidpoint of A and
B: given the points (x0, x1) ∈ A and (y0, y1) ∈ B, we have (x0, y1) ∼ (y0, x1) ∈ C .
By the MAS assumption, the indifference is mathematically equivalent to

U (C) = u0(x0) + u1(y1) = u0(y0) + u1(x1) (4)

which implies 2U (C) = u0(x0) + u1(y1) + u0(y0) + u1(x1), and hence

U (C) = 1

2
[u0(x0) + u1(x1)] + 1

2
[u0(y0) + u1(y1)] = 1

2
U (A) + 1

2
U (B)

and I0 = {0, 2} so that I1 = {1, 3}, by writing (x0, x1) we mean (x0, x1) = (a0, a1, a2, a3) (and not
(a0, a2, a1, a3)).
11 In contrast, the indifference curves A, B in Fig. 3 have a preferencemidpointwhich, under the assumption
of Theorem 1, coincides with the utility midpoint.
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y1
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Fig. 2 The preference midpoint of A and B

(y0, x1) ∈ B

(x0, y1) ∈ A

(x0, x1)

(y0, y1)

(y0, x1)

(x1, y1)(y0, y1)

(x0, x1)

C ABB A

z0

z1

Fig. 3 Elicitation of utility midpoints

The previous argument only works for pairs (x0, x1) ∈ A and (y0, y1) ∈ B for
which we can establish the indifference (x0, y1) ∼ (y0, x1). This will not be the case
for arbitrary choices of pairs of points in A and B. However, when A and B are
sufficiently “close,” a preference (hence utility) midpoint of A and B always exists
(Lemma 2), in the sense that there will be (x ′

0, x
′
1) ∈ A and (y′

0, y
′
1) ∈ B for which

the indifference (x ′
0, y

′
1) ∼ (y′

0, x
′
1) holds. By “closeness” of the indifference sets A

and B we mean the following: there is a pair of payoffs (z0, z1) and points in the sets
A and B which feature z0 or z1 as coordinates. For illustration refer to Fig. 3.

The indifference sets A and B in the center of the rectangle are “close” (see the
payoffs z0 and z1 and the intersections of the blue-dotted lines with the sets A and B).
In contrast, the indifference sets A′ and B ′ are not “close,” as it is impossible to find
an analogous pair (z0, z1) (precisely there is no z0 that works).

When pairs of indifference classes are not “close,” utility midpoints can still be
elicited by exploiting a consequence of the MAS representation, called the Diagonal
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1018 P. Ghirardato, D. Pennesi

property (Lemma 3): If (x0, x1) ∈ A and (y0, y1) ∈ B and C is the utility midpoint of
A and B, thenC is also the utility midpoint of the classes A′ and B ′ which respectively
contain the vectors (x0, y1) and (y0, x1)derived from (x0, x1) and (y0, y1)by switching
the second coordinate. Referring again to Fig. 3, the Diagonal property then implies
that the indifference setC is also the utility midpoint of A′ and B ′. Another application
of the Diagonal property and another coordinate switch allow us to conclude that C
is also the utility midpoint of A′′ and B ′′.

Reversing this procedure yields the algorithm to elicit the utility midpoint of two
arbitrary indifference sets A′′, B ′′ ∈ [V ]. Suppose without loss of generality that
A′′ � B ′′. First, we find vectors belonging to A′′ and B ′′ that are Pareto ranked,
such as (y′

0, x1) ∈ B ′′ and (x ′
0, y1) ∈ A′′. This allows us to restrict attention to

the closed and bounded (in terms of utility values) rectangle defined by the vertices
(y′

0, x1), (y
′
0, y1), (x

′
0, x1), (x

′
0, y1) as in Fig. 3. Next, we use coordinate switches to

construct a finite sequence of pairs of indifference sets {(An, Bn)} ∈ [V ] × [V ] such
that, eventually, An and Bn are “close,” and hence have a utility midpoint C (see
Lemma 4). The Diagonal property then ensures that C is the utility midpoint of An

and Bn for all n, and hence of the initial A′′ and B ′′. The fact that the sequence is finite
follows from the observation that the rectangle defined above is compact (in terms of
utilities), and that at every step, the utility difference U (An) −U (Bn) is reduced by a
constant amount.

For concreteness, consider X = R × R with U (x0, x1) = x0 + x1, and assume
U (A′′) = 10 and U (B ′′) = 0. We can find two Pareto-ranked vectors (y′

0, x1) ∈ B ′′
and (x ′

0, y1) ∈ A′′; for example, (y′
0, x1) = (0, 0) and (x ′

0, y1) = (8, 2). Using a coor-
dinate switch, we obtain (0, 2) ∈ B ′ and (8, 0) ∈ A′. Moving along the indifference
curves of (0, 2) and (8, 0), we find the vectors (2, 0) ∈ B ′ and (6, 2) ∈ A′, which
are again Pareto-ranked. A second coordinate switch yields the vectors (2, 2) ∈ B
and (6, 0) ∈ A. These two vectors are “close” since there are vectors (3.5, 0.5) ∈ B
and (4.5, 1.5) ∈ A such that (3.5, 1.5) ∼ (4.5, 0.5). Therefore, the procedure termi-
nates in n = 2 steps, identifying the preference midpoint of A′′ and B ′′ to be C with
U (C) = 5.

In general, in the proof of Theorem 1 we prove that the number of steps required to
find a midpoint of A and B, starting from two Pareto-ranked vectors A � (x ′

0, y1) �
(y′

0, x1) ∈ B, is the smallest integer n such that n ≥ 1
2
u0(x ′

0)−u0(y′
0)

u1(y1)−u1(x1)
(with the example

above, n ≥ 1
2
8−0
2−0 = 2, as we showed).

4 Applications to choice under uncertainty

This section contains some applications of utility midpoints. Having defined the oper-
ator 
, we use it to obtain a subjective mixture operation in a standard setting for
decision making under uncertainty. Precisely, the decision maker has a binary relation
� defined on the set F of all simple Σ-measurable functions f : S → V , where S is
a state space endowed with an algebra of events Σ and the set of consequences V is
a finite or infinite product space XT+1.
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We first provide a fully subjective axiomatic characterization of the Monotone,
Bernoullian and Archimedean (MBA) preferences (Cerreia-Vioglio et al. 2011), and
then of the Second-Order Subjective Expected Utility (SOSEU) model.

4.1 Monotone, Bernoullian and Archimedean preferences

We assume the following basic axioms:

Axiom 1 (Preference Order—P) � is a complete, nontrivial and transitive binary
relation on F .

Axiom 2 (Monotonicity—M) If f (s) � g(s) for all s ∈ S, then f � g.

Axiom 3 (Minimally Additive Separability on Consequences—MASC) The restric-
tion of � to V has a MAS representation U : V → R.

By Theorem 1, the MAS assumption allows us to elicit utility midpoints for every
pair of consequences a, b ∈ V . Given f : S → V and �, the act f induces the
correspondence F : S ⇒ V , F(s) = {a ∈ V : a ∼ f (s)} ∈ [V ]. We denote by F the
family of correspondences that are generated by F . It follows from axioms P and M
that the binary relation � can be extended to F.12 We can then use the operator 
 to
define the quotient-act mixture 1/2F ⊕ 1/2G for any F,G ∈ F as follows: for any
s ∈ S,

(
1

2
F ⊕ 1

2
G

)
(s) ≡ F(s) 
 G(s). (5)

Thus, suitably restricting the MAS representation U of � to [V ], we obtain

U

[(
1

2
F ⊕ 1

2
G

)
(s)

]
= 1

2
U (F(s)) + 1

2
U (G(s))

We then consider iterated quotient-act mixtures such as 1
2 F ⊕ ( 1

2 F ⊕ 1
2G

)
, which

corresponds to a 3
4 : 1

4 mixture of F and G. By standard continuity arguments (see
Appendix C in Ghirardato et al. 2002) iterated quotient-act mixtures can then be used
to define αF ⊕ (1 − α)G for any α ∈ [0, 1], so that for any s ∈ S,

U [(αF ⊕ (1 − α)G)(s)] = αU (F(s)) + (1 − α)U (G(s)) (6)

These mixtures allow us to state the next axiom, which is familiar from traditional
Anscombe-Aumann treatments:

Axiom 4 (Full Continuity—FC) For all F,G, H ∈ F, the sets

{α ∈ [0, 1] : αF ⊕ (1 − α)G � H} and {α ∈ [0, 1] : H � αF ⊕ (1 − α)G}
12 That is, given f , f ′ ∈ F such that f �→ F and f ′ �→ F , it follows from axiom P and M and the
definition of F that f ∼ f ′.

123



1020 P. Ghirardato, D. Pennesi

are closed.

Notice that it follows from axioms P, M, MASC and FC that for every f ∈ F there is
A f ∈ [V ] such that A f ∼ F . That is, every act has a certainty equivalent in quotient
space (notice that, for any a ∈ A f , a ∼ f ). Adapting the argument in Cerreia-Vioglio
et al. (2011), we show that the axioms stated so far are necessary and sufficient to
provide � with an MBA representation:13

Proposition 2 Axioms P, M, MASC, and FC hold if and only if there exist a non-
constant MAS representation U : V → R, and a monotonic, continuous and
normalized functional I : B0(Σ,U (V )) → R such that

f � g ⇐⇒ I (U ( f )) ≥ I (U (g))

Notice that we do not need to assume Risk Independence, since ourU is, by construc-
tion, affine with respect to the mixture operator ⊕ (see Eq. 6).

The class of MBA preferences includes as special cases most of the models of
ambiguity-sensitive preferences: the Maxmin EU model of Gilboa and Schmeidler
(1989), the Variational Preferences model of Maccheroni et al. (2006), the Confidence
Preferences model of Chateauneuf and Faro (2009), the Smooth Ambiguity model of
Klibanoff et al. (2005), theVector EUmodel of Siniscalchi (2009), and theUncertainty
Averse Preferences model of Cerreia-Vioglio et al. (2011).

4.2 Second-order subjective expected utility

As noted in Strzalecki (2011), in a pure Savage-style setting SOSEU is observationally
equivalent to SEU, as we lack a method to cardinally identify the Bernoulli utility U .
Two tools have been employed to solve this identification problem. The first is the
assumption of the availability of an objective randomization device (Grant et al. 2009;
Cerreia-Vioglio et al. 2012), thus providing the set of consequences with an objective
mixture-space structure. The second is the assumption of the existence of multiple
sources of uncertainty (Nau 2006; Ergin and Gul 2009), such that the decision maker
has SEU preferences with respect to at least one source.

We now show that when consequences are consumption plans and preferences
satisfy the MASC axiom, our notion of utility midpoint provides a third tool. Building
on the axiomatization ofMBA preferences given above and assuming that S is finite,14

we characterize the following version of SOSEU:

Definition 4 A binary relation � has a SOSEU* representation if there exist a non-
constant MAS representation U : V → R, a continuous and strictly increasing φ :
13 As customary, we denote by B0(Σ, Γ ) the set of simple Σ-measurable functions on S with values in
the interval Γ ⊆ R and we say that I : B0(Σ, Γ ) → R is: monotonic, if I (φ) ≥ I (ψ) when φ ≥ ψ ;
continuous, if it is sup-norm continuous; normalized, if I (γ 1S) = γ for all γ ∈ Γ . In Proposition 2, we
omit the uniqueness statement, which is analogous to that in Cerreia-Vioglio et al. (2011).
14 Finite S is an assumption which is common to most previous axiomatizations of SOSEU (e.g. Nau 2006;
Grant et al. 2009).
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U (V ) → R and a probability distribution p on S, such that � is represented by
J : F → R defined by:

J ( f ) =
∑
s∈S

φ (U ( f (s))) p(s)

We use SOSEU* in place of SOSEU to underscore two main differences between our
representation and the traditional model. First, our U necessarily satisfies the MAS
assumption. Second, the separate identification of φ and U builds just on the vector
structure of the set of consequences, and it is not necessarily tied to the availability of
an additional source of uncertainty (see also Remark 8).

In what follows, we provide an axiomatic characterization of the SOSEU* rep-
resentation, as well as some interesting special cases. In particular, we obtain the
Exponential SOSEU* representation, which is defined for θ ∈ (−∞, 0) ∪ (0,∞] as
follows:

φθ (U ) =
{

−exp
(−U

θ

)
θ ∈ (−∞, 0) ∪ (0,∞)

U θ = ∞

We also characterize the popularMultiplier Preferences of Hansen and Sargent (2001)
(which corresponds to an Exponential SOSEU* with θ ∈ (0,∞]). Finally, we discuss
the Power SOSEU* representation, which is defined for θ ∈ (0,∞) as follows:

φθ (U ) = U θ

and the particular case of Concave Power SOSEU*, corresponding to θ ∈ (0, 1].
Remark 4 The functional form of SOSEU* is related to the Generalized Expected
DiscountedUtilitymodel of DeJarnette et al. (2020) which, in a setting of choice under
risk, is designed to capture aversion towards time lotteries—lotteries inwhich the prize
is fixed but the award date is random. As they observe, such aversion has significant
experimental support, but it is at oddswith geometric discounted expected utility. In our
setting, assume that X = [w, b] ⊂ R and thatU (a) = ∑

t≥0 δt u(xt )with u(0) = 0. A
time lottery corresponds to a binary act at−k Eat+k , where as = (0, 0, . . . , x, . . . , 0, 0)
is a consumption plan that pays x at time s and 0 otherwise. If p(E) = 1

2 , a SOSEU*
with a φ which is a concave transformation of ln (see Proposition 2 in DeJarnette
et al. 2020) will prefer the constant act at to the act at−k Eat+k , thus displaying “risk
aversion” towards time acts.

4.2.1 An axiomatic characterization of SOSEU*

To characterize SOSEU*, we need three additional axioms. First of all, we have Sav-
age’s Sure-Thing Principle (P2), restated below.15

15 For f , g ∈ F and E ∈ Σ , fE g denotes the act which follows f on E and g on Ec . In particular, given
a ∈ V and f ∈ F , as f denotes the act which pays a in state s and follows f otherwise.
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1022 P. Ghirardato, D. Pennesi

Axiom 5 (P2) For all E ∈ Σ and acts f , g, h, h′ ∈ F , if fEh � gEh then fEh′ �
gEh′.

Next, we impose an additional monotonicity property in which we define a state s ∈ S
to be null if for all f ∈ F and a, b ∈ V , as f ∼ bs f .

Axiom 6 (Statewise Monotonicity—M+) For all non-null s ∈ S and all a, b, c ∈ V ,
if a � b then asc � bsc.

The axioms introduced so far allow us to obtain a “state-dependent” version of
SOSEU*:

Lemma 1 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, and P2 if and only if there exists a non-constant MAS
representation U : V → R and continuous functions φs : U (V ) → R, strictly
increasing (resp. constant) for any non-null state s (resp. for any null state s), such
that � is represented by:

J ( f ) =
∑
s∈S

φs(U ( f (s)))

If
{
φ′
s

}
s∈S also represent �, there are α > 0 and βs ∈ R such that φs = αφ′

s + βs .

Grant et al. (2009, Theorem 1) provide a similar representation result. The main differ-
ence is that they require Risk Independence, which presumes the presence of objective
mixtures (see Footnote 1). Instead, we only rely on vector-valued consequences and
the MAS assumption.

In the full-fledged SOSEU* representation, the “second-order utility φ” is indepen-
dent of s. We obtain this result by leveraging on the results in the previous sections.
Specifically, we derive a mixture space structure conditional on each state s, and we
require consistency of mixtures across states.

In order to construct themixture space structure in state s,webegin byobserving that
the functional J ( f ) = ∑

s∈S φs(U ( f (s))) is an additively separable representation of
�, hence J is a MAS representation on F . Therefore, there exists a (utility) midpoint
operator ⊕̂ on [F], the quotient of F with respect to �, identified as follows: for any
pair of indifference classes [ f ], [g] ∈ [F], we let

[ f ]⊕̂[g] = [h] ∈ [F] ⇐⇒ J ([h]) = 1

2
J ([ f ]) + 1

2
J ([g])

where, analogously to what we did for U , we denote by J ([ f ]) the restriction of J to
[F]. The argument of Theorem 1 can be adapted to the present setting to show that ⊕̂
can be elicited from preferences. Given ⊕̂, we can define, for each s ∈ S, an operator
⊕s on the space [V ] as follows:
Definition 5 For any A, B,C ∈ [V ], C = A ⊕s B if and only if there are a ∈ A, b ∈
B, c ∈ C and h ∈ F such that [ash]⊕̂[bsh] = [csh].
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That is, C = A⊕s B if, conditional on state s, for some h ∈ F ,16 c can be substituted
to either a or b so that the act csh corresponds to a utility midpoint of the acts ash and
bsh. By construction,C = A⊕s B if and only ifC is a midpoint of A and B according
to the state-dependent utility function φs ◦ U . To see this, notice that C = A ⊕s B if
and only if

1

2
J (ash) + 1

2
J (bsh) = J (csh)

which is equivalent to

1

2

⎛
⎝φs(U (a)) +

∑
s′∈S\s

φs′(U (h(s)))

⎞
⎠ + 1

2

⎛
⎝φs(U (b)) +

∑
s′∈S\s

φs′(U (h(s)))

⎞
⎠

= φs(U (c)) +
∑

s′∈S\s
φs′(U (h(s)))

which, in turn, is equivalent to φs(U (c)) = 1
2φs(U (a)) + 1

2φs(U (b)).

Remark 5 It is important to understand that the operators
 and⊕s , while both defined
on [V ], are not necessarily isomorphic. For an example, consider the case V = R++×
R++ andU (x, y) = x+y.Given twovectorsa = (x, x) andb = (y, y), theirmidpoint
C (such that C = A 
 B) is such that, for every c ∈ C , U (c) = x + y. However, if

for example φs = ln then c′ ∈ A ⊕s B is such that U (c′) = e
1
2 ln(2x)+ 1

2 ln(2y) �= U (c).
Notice that this is still true even if φs = ln for all s ∈ S; that is, if the ⊕s operator is
state-independent.

Remark 6 The mixture operator ⊕̂ can be used to state the following version of the
independence axiom: for all f , g, h ∈ F , [ f ] � [g] implies [ f ]⊕̂[h] � [g]⊕̂[h]. It is
simple to prove that SOSEU satisfies such axiom, since J is affine with respect to ⊕̂:
J ([ f ]⊕̂[g]) = 1

2 J ([ f ]) + 1
2 J ([g]). On the other hand, imposing the independence

axiom with respect to the objective mixture+ of Anscombe-Aumann, implies that the
preference satisfies SEU. This shows that themixture structure given by ⊕̂ is “weaker”
than the objective mixture + of Anscombe-Aumann.

Since U is cardinally unique by the MASC axiom, the mixture ⊕s allows us to
cardinally identify the state-dependent function φs (without cardinally identifying U ,
it would only be possible to cardinally identify φs ◦ U ).17 It also enables us to state
the desired restriction on preferences:

Axiom 7 (State-wise Cardinal Symmetry—SCS) For all non-null s′, s′′ ∈ S and for
all a, b ∈ V , if c′ ∈ A ⊕s′ B and c′′ ∈ A ⊕s′′ B, then c′

sd ∼ c′′
s d for some d ∈ V and

all s ∈ S.

16 Under axiom P2 this is true for any h ∈ F .
17 To clarify further, without the MASC axiom—hence without cardinally identifying U—the uniqueness
part of Lemma 1 would say that if

{
(φs ◦U )′

}
s∈S also represent �, there are α > 0, βs ∈ R such that

φs ◦U = a(φs ◦U )′ + βs .
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The role of this axiom is quite transparent. The act c′
sd is equal to d in all states

different from s ∈ S and equal to c′ in state s. The indifference with c′′
s d means

that the decision maker is indifferent (by Monotonicity) between the constants c′ and
c′′. Therefore, since c′, c′′ are the state-dependent utility midpoints of a, b in state s′
and s′′ respectively, c′

sd ∼ c′′
s d implies that such midpoints are state-independent. It

follows that, in the representation of Lemma 1, φs′ and φs′′ are cardinally equivalent
for any s′, s′′ ∈ S.

We can finally state the main result of this section:

Theorem 2 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, P2 and SCS if and only if � has a SOSEU* representa-
tion. If (U ′, φ′, p′) also represents �, there are α, κ > 0, β, ζ ∈ R such that p = p′,
U ′ = αU + β and φ′(αr + β) = κφ(r) + ζ for all r ∈ U (V ).

Remark 7 Following the discussion in Remark 5, it can be seen that imposing A 

B = A ⊕s B for all A, B ∈ [V ], on top of the axioms of Theorem 2, implies that
φ = φs = αid + β, for some α > 0 and β ∈ R. That is, the preference is SEU. Thus,
we see that SEU intuitively corresponds to the case in which the utility midpoint of A
and B under certainty A 
 B, is indifferent to the utility midpoint under uncertainty
A ⊕s B for every s ∈ S (thus implying Axiom SCS).

4.2.2 Some special cases

With respect to the existing literature, Theorem 2 has two advantages: first, it does
not require the existence of an objective randomization device or multiple sources of
uncertainty. Second, it does not constrain the ambiguity attitude of the decision maker,
since φ is a general monotone function.18 Additional properties of φ can be obtained
by imposing additional restrictions on preferences over act mixtures. To begin, the
concavity of φ can be obtained by adding the following axiom:

Axiom 8 (Ambiguity Hedging—AH) If F ∼ G then αF ⊕ (1 − α)G � F for all
α ∈ [0, 1].
Corollary 1 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, P2, SCS and AH if and only if � has a SOSEU*
representation with concave φ.

This result is analogous to Theorem 3 in Grant et al. (2009), who assume Uncertainty
Aversion (i.e., a version of AH with objective act mixtures) and a condition called
“Translation Invariance at Certainty” (TIC).19

Next, we characterize Exponential SOSEU* by a subjective version of the Weak
Certainty Independence axiom of Maccheroni et al. (2006). With a standard abuse of

18 For example, Grant et al. (2009) only obtain a SOSEU representation with concave φ.
19 Translation Invariance at Certainty holds if: � is locally EU at a with respect to pa and locally EU at b
with respect to pb , then pa = pb . Where, � is locally EU at a ∈ A w.r.t. a probability p on S if, for all
f ∈ F and Epa [U ( f )] > U (a), there exists an ᾱ ∈ (0, 1] such that, for all α ∈ (0, ᾱ], α f ⊕ (1−α)a � a
and U (a) > Epa [U ( f )] implies there exists ᾱ ∈ (0, 1] such that, for all α ∈ (0, ᾱ], a � α f ⊕ (1 − α)a.
TIC is weaker than SCS, since it does not imply the state-independence of φs without ancillary assumptions.
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notation, we identify A ∈ [V ] with the constant correspondence that delivers A for
every s ∈ S.

Axiom 9 (Weak Certainty Independence—WCI) For all F,G ∈ F and A, B ∈ [V ],
and α ∈ (0, 1),

αF ⊕ (1 − α)A � αG ⊕ (1 − α)A ⇒ αF ⊕ (1 − α)B � αG ⊕ (1 − α)B

Corollary 2 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, P2, SCS and WCI if and only if � has an Exponential
SOSEU* representation.

The argument is similar to that given by Strzalecki (2011, Theorem 1) in his charac-
terization of Multiplier Preferences. However, our SCS and WCI do not characterize
Multiplier Preferences. The reason for this is that our derivation of SOSEU* does not
entail restrictions on the curvature of φ. To obtain the characterization of Multiplier
Preferences, we need to add axiom AH:

Corollary 3 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, P2, SCS, WCI and AH if and only if � has a Multiplier
Preference representation.

Our final axiom is based on the work of Chateauneuf and Faro (2009), and requires
independence only with respect to mixtures with the “worst” payoff:

Axiom 10 (Worst Independence—WI) There exists Z∗ ∈ [V ] such that F � Z∗ for
all F ∈ F and, for all F,G ∈ F and all α ∈ (0, 1),

F ∼ G �⇒ αF ⊕ (1 − α)Z∗ ∼ αG ⊕ (1 − α)Z∗.

ByAxiomWI, the functionφ is positively homogeneous. Therefore, the only SOSEU*
model that satisfies WI is the Power SOSEU*:

Corollary 4 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, P2, SCS, and WI if and only if � has a Power SOSEU*
representation.

This result is similar to Proposition 6 of Gumen and Savochkin (2012), with the
difference that we do not require risk independence. The last corollary, which proof is
immediate, shows that Concave Power SOSEU* (i.e. θ ∈ (0, 1]) is characterized by
adding axiom AH to those of Power SOSEU*:

Corollary 5 Suppose there are at least 3 non-null states. A binary relation � satisfies
axioms P, M, M+, MASC, FC, P2, SCS, WI and AH if and only if � has a Concave
Power SOSEU* representation.

Figure 4 summarizes the above results with a graphical illustration of the relations
between axioms and representations within the SOSEU* model.

We conclude with two observations on the relation of our results with previous
characterizations of SOSEU.
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State-dependent Second-Order Utility (Lemma 4)

SOSEU* (Th. 2)

SOSEU*
with concave φ (Cor. 1)

Exponential SOSEU*
(Cor. 2)

Multiplier Preferences (Cor. 3)

Power SOSEU*

Power SOSEU*
with θ ∈ (0, 1]

+ AH

+ WCI

+ WI

+ WCI

+ AH

+ SCS

+ AH

Fig. 4 Axioms and SOSEU*

Remark 8 Our characterization of SOSEU can be compared to Nau (2006) and Ergin
and Gul (2009), who identify ambiguity attitude by using multiple sources of uncer-
tainty in lieu of an objective randomization device. In their setting, the states of the
world are pairs (s1, s2) ∈ S1 × S2 and acts are functions from the states to conse-
quences f : S1 × S2 → X . By assuming |S2| < ∞ one can interpret one such act
as a “compound act”: a map from S1 to a homogeneous product space with finitely
many coordinates V = XS2 . A SEU evaluation for acts that depend only on the
source of uncertainty S2 is a MAS representation of the restriction of � to XS2 :
U ( f (s1)) = ∑

s2∈S2 u( f (s1, s2))q(s2). Then, assuming moreover that |S1| < ∞, the
axioms of Theorem 2 can be adapted to obtain the following representation of �:

J ( f ) =
∫
S1

φ

⎛
⎝ ∑

s2∈S2
u( f (s1, s2))q(s2)

⎞
⎠ dp(s1)
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Our result actually requires a weaker condition than SEU over V = XS2 . Indeed,
it would be sufficient to have a MAS representation (not necessarily EU) of � on
V = XS2 : U ( f (s1)) = ∑

s2∈S2 us2( f (s1, s2)). Such U allows us to define 
 and ⊕s

and to reproduce the proof of Theorem 2 to obtain:

J ( f ) =
∫
S1

φ

⎛
⎝ ∑

s2∈S2
us2( f (s1, s2))

⎞
⎠ dp(s1)

Remark 9 Another axiomatization of SOSEU without restrictions on the function φ

is that provided by Cerreia-Vioglio et al. (2012). They assume a rich state space
as in Savage (1954) and the existence of an objective randomization device. Our
technique can be applied to substitute the assumption of the presence of an objective
randomization with the assumption that the set of consequences is a (finite or infinite)
product space V = XT+1. The advantage of this extension is that we do not need to
assume Risk Independence, as the utility function is automatically affine with respect
to ⊕. We can then prove:

Corollary 6 A binary relation � satisfies axioms P1-P6 of Savage, MASC and FC if
and only if there exist a non-constant MAS representation U : V → R, a continuous
increasing φ : U (V ) → R, and a non-atomic and finitely additive probability p on S
such that � is represented by J : F → R defined by:

J ( f ) =
∫
S
(φ ◦U )( f )dp.
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A Axioms for a MAS representation

The following definitions and results are taken from Krantz et al. (1971) Section 6.2
(pp. 250–261) to which we refer the reader for the definitions of (strictly bounded)
standard sequence and essential component. Suppose that X0, X1 are nonempty sets
and � is a binary relation on X0 × X1. Consider the following axioms:

Axiom 11 (Weak Ordering) � is a weak order.
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Axiom 12 (Independence) For x0, y0 ∈ X0, (x0, w1) � (y0, w1) for some w1 ∈ X1
implies (x0, z1) � (y0, z1) for all z1 ∈ X1; and, for x1, y1 ∈ X1, (w0, x1) � (w0, y1)
for some w0 ∈ X0 implies (z0, x1) � (z0, y1) for all z0 ∈ X0.

Axiom 13 (Thomsen) For every x0, y0, z0 ∈ X0 and x1, y1, z1 ∈ X1, if (x0, z1) ∼
(z0, y1) and (z0, x1) ∼ (y0, z1), then (x0, x1) ∼ (y0, y1).

Axiom 14 (Restricted Solvability) Whenever there exist x0, x ′, x ′′ ∈ X0 and x1, y1 ∈
X1 for which (x ′, y1) � (x0, x1) � (x ′′, y1), then there exists z0 ∈ X0 such that
(z0, y1) ∼ (x0, x1). A similar condition holds for X1.

Axiom 15 (Archimedean) Every strictly bounded standard sequence is finite.

Axiom 16 (Essentiality) Each component is essential.

The following result is Theorem 2 p. 257 in Krantz et al. (1971):

Theorem 3 Suppose that a binary relation� on X1×X2 satisfies axiomsWeakOrder-
ing, Independence, Thomsen, Restricted Solvability, Archimedean and Essentiality
then there exist functions ui : Xi → R i = 0, 1 such that for all (x0, x1), (y0, y1) ∈
X0 × X1,

(x0, x1) � (y0, y1) ⇐⇒ u0(x0) + u1(x1) ≥ u0(y0) + u1(y1).

If u′
0, u

′
1 are two functions with the same property, then there are α > 0 and β0, β1 ∈ R

such that u′
0 = αu0 + β0 and u′

1 = αu1 + β1.

Under suitable topological assumptions on the sets X0 and X1, the Archimedean and
Restricted Solvability axioms can be dispensed with (see Th. 20 in Vind and Grodal
2003).

B A simple sufficient condition for existence

As we observed earlier, while utility midpoints exist for any pair A and B of indif-
ference sets when � has a MAS representation, this is not the case for preference
midpoints. That is, given two arbitrary vectors (x0, x1) ∈ A and (y0, y1) ∈ B, a
preference midpoint of (x0, x1) and (y0, y1) may not exist. Here, we introduce a suf-
ficient condition for the existence of preference midpoints, which is a particular case
of the informal notion of “closeness” we introduced in Sect. 3 (formally defined in
Definition 7). An advantage of this definition is that it is entirely formulated in terms
of vectors, rather than indifference sets. Thus, it is in principle easier to verify and
implement.

Definition 6 � satisfies the Triangle condition at (y0, y1) ∈ V and (x0, x1) ∈ V if
and only if there exist z ∈ X I0 and z1 ∈ X I1 such that (y0, z1) ∼ (z0, y1) ∼ (x0, x1).

Figure 5 graphically illustrates the condition, making it also clear that the indiffer-
ence sets A and B are “close.”
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(x0, x1)

(y0, y1)

(x0, x1)
C

A

B

(y0, z1)

(z0, y1)

Fig. 5 Triangle condition at (y0, y1) and (x0, x1)

Proposition 3 Suppose that � has a MAS representation. For arbitrary (y0, y1) and
(x0, x1), if the Triangle condition holds at (y0, y1) and (x0, x1), then there exists
(x ′

0, x
′
1) ∼ (x0, x1) such that (y0, x ′

1) ∼ (x ′
0, y1).

Proof First consider the case u0(y0) + u1(y1) = k′ = U (B) < U (A) = k. Define
f : X I0 → R as follows f (x) = u0(y0) + k − 2u0(x) − u1(y1). By the Triangle
condition, take x = y0, then f (y0) = u0(y0)+k−2u0(y0)−u1(y1) = k− (u0(y0)+
u1(y1)) = k − k′ > 0. Again by the Triangle condition, take x = z0, then f (z0) =
u0(y0) + u0(z0) + u1(y1) − 2u0(z0) − u1(y1) = u0(y0) − u0(z0) < 0, because
k′ = u0(y0) + u1(y1) < u0(z0) + u0(y0) = k. By continuity of u0, there exists
f (x∗) = 0. The case u0(y0) + u0(y0) = U (B) > U (A) is symmetric. ��
Notice that the indifference (y0, x ′

1) ∼ (x ′
0, y1), as in Eq. (4), guarantees that

(y′
0, x1) is a preference midpoint of (x0, x1) and (y0, y1).20

C Proofs

C.1 Proof of Theorem 1

The proof of the theorem builds on several lemmas.
We begin by showing that a midpoint of A, B ∈ [V ] exists when A and B satisfy

the following preference condition:

20 More precisely, (x ′
0, y1) ∼ (y0, x

′
1) ∈ C and C is a preference midpoint of A � (x0, x1) and B �

(y0, y1).
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x∗
0 y0x0

x∗
1

y1

x1

A

C

B

Fig. 6 Crossing property and midpoints

Definition 7 A MAS utility satisfies Crossing at A, B ∈ [V ] if and only if there are
x∗
0 ∈ X I0 , x∗

1 ∈ X I1 such that (x∗
0 , x1) ∈ A and (x∗

0 , y1) ∈ B for some x1, y1 ∈ X I1

and (w0, x∗
1 ) ∈ A and (z0, x∗

1 ) ∈ B for some w0, z0 ∈ X I0 with u0(z0) ≥ u0(x∗
0 ) ≥

u0(w0) and u1(y1) ≥ u1(x∗
1 ) ≥ u1(x1).

Figure 6 provides a graphical representation of the Crossing property.

Lemma 2 Given A, B ∈ [V ], if � has a MAS representation and Crossing holds at
A, B, then there exist (x0, x1) ∈ A and (y0, y1) ∈ B such that (x0, y1) ∼ (y0, x1)
(hence, there exists C ∈ [V ] such that C = A 
 B).

Proof In the space of utilities, given U (A) = k,U (B) = k′, assume w.l.o.g that
U (B) > U (A). By Crossing, there are (x∗

0 , x1) ∈ A and (x∗
0 , y1) ∈ B for some

x1, y1 ∈ X I1 and (w0, x∗
1 ) ∈ A and (z0, x∗

1 ∈ B for some w0, z0 ∈ X I0 , such that
u0(z0) ≥ u0(x∗

0 ) ≥ u0(w0) and u1(y1) ≥ u1(x∗
1 ) ≥ u1(x1). Define a′ = (x ′

0, x
′
1) by

u0(x ′
0) = 0.5u0(x∗

0 ) + 0.5u0(w0) and u1(x ′
1) = 0.5u1(x∗

1 ) + 0.5u1(x1). Notice that
U (a′) = U (A). Similarly, define b′ = (y′

0, y
′
1) by u0(y′

0) = 0.5u0(x∗
0 ) + 0.5u0(z0)

and u1(y′
1) = 0.5u1(x∗

1 ) + 0.5u1(y1). Notice that U (b′) = U (B). Both a′ and b′ are
well-defined because of Crossing at A, B and continuity of the preference. Then, it
follows that (x ′

0, y
′
1) ∼ (y′

0, x
′
1), indeed:

u0(x
′
0) + u1(y

′
1) = 0.5u0(x

∗
0 ) + 0.5u0(w0) + 0.5u1(x

∗
1 ) + 0.5u1(y1)

= 0.5(u0(x
∗
0 ) + u1(y1)) + 0.5(u1(w1) + u0(x

∗
0 ))

= 0.5U (B) + 0.5U (A)
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b = (y0, y1) ∈ B

a = (x0, x1) ∈ A
d = (y0, x1) ∈ D

c = (x0, y1) ∈ C

Fig. 7 Smoothing swap of a and b

and

u0(y
′
0) + u1(x

′
1) = 0.5u0(x

∗
0 ) + 0.5u0(z0) + 0.5u1(x

∗
1 ) + 0.5u1(x1)

= 0.5(u0(x
∗
0 ) + u1(x1)) + 0.5(u0(z0) + u1(x

∗
1 ))

= 0.5U (A) + 0.5U (B)

��
If Crossing does not hold at A and B, we need to take additional steps in order to

identify the midpoint of A and B. The following definition outlines such additional
steps:

Definition 8 An elementary step is:

(SS) A smoothing swap of a = (x0, x1) and b = (y0, y1): The pair c = (x0, y1) and
d = (y0, x1) is substituted to a and b respectively (see Fig. 7).

(II) An indifference substitution of a = (x0, x1): The vector b = (x ′
0, x

′
1) ∼ a is

substituted to a.

Suppose that a = (x0, x1) ∈ A Pareto dominates b = (y0, y1) ∈ B. A smoothing
swap of a and b generates two points c = (x0, y1) ∈ C and d = (y0, x1) ∈ D that
are “interior,” in terms of preferences, to a and b; i.e., a � {c, d} � b. Moreover,
the MAS assumption implies the Diagonal property (see Lemma 15 p. 75 in Vind and
Grodal 2003):

Lemma 3 If � has a MAS representation, (x0, x1) ∈ A and (y0, y1) ∈ B and C =
A 
 B, then C = A′ 
 B ′ where (x0, y1) ∈ A′ and (y0, x1) ∈ B ′.

Given (x0, x1) ∈ A and (y0, y1) ∈ B, if they have a utility midpoint, their midpoint
is the same as that of (x0, y1) ∈ A′ and (y0, x1) ∈ B ′. Therefore, if Crossing holds
at a pair C, D generated by a smoothing swap of a ∈ A and b ∈ B, then Lemma 2
implies the existence of a utility midpoint E of C and D and the Diagonal property
guarantees that E is also the utility midpoint of A and B.

Lemma 4 If, A � B and for some (x0, x1) ∈ A and (y0, y1) ∈ B, u0(x0) > u0(y0)
and u1(x1) > u1(y1) then, there exists C = A 
 B which can be determined in n
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(y0, y1) ∈ B

(x0, x1) ∈ A

(x0, y1) ∈ A1

(y0, x1) ∈ B1

(y1
0 , y1) ∈ B1

(x1
0, x1) ∈ A1(y1

0 , x1) ∈ B2

(x1
0, y1) ∈ A2

Fig. 8 Elementary steps

elementary steps. The number n is the smallest integer such that

n ≥ 1

2
max

{
u0(x0) − u0(y0)

u1(x1) − u1(y1)
,
u1(x1) − u1(y1)

u0(x0) − u0(y0)

}
(7)

Proof If Crossing holds at A, B, by Lemma 2 there exists a midpoint. If not, consider
(x0, x1) ∈ A and (y0, y1) ∈ B and refer to Fig. 8. Assume first that (x0, y1) � (y0, x1)
(or equivalently u0(x0) − u0(y0) > u1(x1) − u1(y1)). Now apply a smoothing swap.
The pairs (x0, y1) and (y0, x1) are such that (x0, x1) � (x0, y1) ∈ A1 and (y0, y1) ≺
(y0, x1) ∈ B1. If Crossing holds at A1, B1 then, by Lemma 2 and by the Diagonal
property there exists a midpoint of A and B. If not, the condition u0(x0) − u0(y0) >

u1(x1) − u1(y1) implies A1 � B1. Now, find y10 ∈ X I0 such that (y10 , y1) ∈ B1. It
exists by continuity and the fact that (x0, y1) ∈ A1 � B1 � (y0, y1) ∈ B. Similarly,
find x10 ∈ X I0 such that (x10 , x1) ∈ A1. Since Crossing does not hold at A1, B1,
then u0(x10) > u0(y10), so (y10 , y1) and (x10 , x1) are strictly Pareto-ranked. Apply a
smoothing swap to (y10 , y1) and (x10 , x1), to find (x10 , y1) ∈ B2 and (y10 , x1) ∈ A2. If
Crossing holds at A2, B2 then by Lemma 2 and the Diagonal property there exists a
midpoint of A1 and B1, by another application of the Diagonal property, there exists a
midpoint of A and B. If Crossing does not hold at A2 and B2, repeat the argument to
find A3, A4, . . . and B3, B4, . . . as before. The following claim shows that Crossing
holds for suitably large (but finite) n:

Claim 1 Crossing holds at An, Bn for n ≥ 1
2
u0(x0)−u0(y0)
u1(x1)−u1(y1)

.

Proof of Claim 1 To prove this claim, first observe that u0(y10) − u0(y0) = u0(y10) +
u1(y1)−u0(y0)−u1(y1) = U (B1)−U (B) = u0(y0)+u1(x1)−u0(y0)−u1(y1) =
u1(x1) − u1(y1) and u0(x0) − u0(x10) = u0(x0) + u1(x1) − u0(x10) − u1(x1) =
U (A) −U (A1) = u0(x0) + u1(x1) − u0(x0) − u1(y1) = u1(x1) − u1(y1).

Crossing holds at An and Bn for given n if u0(yn0 ) ≥ u0(xn0 ) with (yn0 , y1) ∈
Bn and (xn0 , x1) ∈ An , choosing x∗

0 ∈ X I0 such that u0(yn0 ) ≥ u0(x∗
0 ) ≥ u0(xn0 )

(and choosing x∗
1 ∈ X I1 so that (x∗

0 , x
∗
1 ∈ Bn) that exists by continuity). Iterating

the previous calculations, u0(yn0 ) = u0(y0) + n(u1(x1) − u1(y1)) and u0(xn0 ) =
u0(x0) − n(u1(x1) − u(y1)). Therefore, u0(yn0 ) ≥ u0(xn0 ) will hold as soon as n
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satisfies u0(y0) + n(u1(x1) − u1(y1)) ≥ u0(x0) − n(u1(x1) − u(y1)); that is

n ≥ 1

2

u0(x0) − u0(y0)

u1(x1) − u1(y1)
(8)

��
Toconclude the proof of the lemma,we just observe that, in the case inwhich (x0, y1) ≺
(y0, x1) (equivalently u0(x0)−u0(y0) < u1(x1)−u1(y1)), we can adapt the argument
above to derive the symmetric inequality

n ≥ 1

2

u1(x1) − u1(y1)

u0(x0) − u0(y0)

Combining the two cases, we get inequality (7). ��
Proof of Theorem 1 Given arbitrary (x0, x1) ∈ A and (y0, y1) ∈ B, if � satisfies
Crossing at A and B, a midpoint of A and B exists by Lemma 2. Suppose � does
not satisfy Crossing at A, B, and assume w.l.o.g. that A � B. Then for arbitrary
(x0, x1) ∈ A and (y0, y1) ∈ B, there are three possible cases:

1. u0(x0) > u0(y0) and u1(y1) > u1(x1)
2. u0(y0) > u0(x0) and u1(x1) > u1(y1)
3. u0(x0) ≥ u0(y0) and u1(x1) ≥ u1(y1)

For Case 1, we apply a smoothing swap to find c = (x0, y1) ∈ C and d = (y0, x1) ∈ D
for some C, D ∈ [V ]. c � d and they are strictly Pareto-ranked. Hence, we can apply
Lemma 4 (the condition of Lemma 4 is satisfied because A � B). Therefore, there
exists a midpoint E of C, D. By the Diagonal property (Lemma 3), E = A 
 B.

Case 2 can be treated as Case 1, up to relabeling of the axes.
Case 3 has three subcases:

a. u0(x0) > u0(y0) and u1(x1) = u1(y1)
b. u0(x0) = u0(y0) and u1(x1) > u1(y1)
c. u0(x0) > u0(y0) and u1(x1) > u1(y1)

For case a, since u1(X I1) is an interval in R, if u1(y1) ∈ u1(X I1)◦ or u1(y1) =
maxw1∈X I1 u1(w1), we can always find ε > 0 such that u0(x0)−u0(y0) > ε, u1(y1)−
ε = u1(z1), and (y0, y1) ∼ (z0, z1) for some z0 ∈ X I0 . By construction, u0(x0) >

u0(z0), because

u0(x0) > u0(y0) + ε

= u0(y0) + u1(y1) − u1(z1)

= u0(z0) + u1(z1) − u1(z1)

= u0(z0)

therefore, (z0, z1) and (x0, x1) are strictly Pareto-ranked. We can thus apply Lemma 4
to prove existence of the midpoint of A and B.
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If u1(y1) = minw1∈X I1 u1(w1), take ε > 0 with u0(x0) − u0(y0) > ε, define
u1(x1) + ε = u1(y1) + ε = u1(z1), and find z0 ∈ X I0 such that (z0, z1) ∈ a. By
construction, u0(z0) > u0(y0), because

u0(y0) < u0(x0) − ε

= u0(x0) + u0(y0) − u0(z0)

= u0(z0) + u1(z1) − u1(z1)

= u0(z0)

Therefore, (z0, z1) strictly Pareto dominates (y0, y1), and Lemma 4 can by applied.
Case b is symmetric to case a. For Case c we can directly apply Lemma 4. ��

Proof of Proposition 1 Suppose that I0, I1 and I ′
0, I

′
1 are two partitions of {0, . . . , T }

associated with a MAS utility U . That is, U (d) = u0(dI0) + u1(dI1) and U (d) =
u′
0(dI ′

0
) + u1(dI ′

1
) for any d ∈ V . Suppose that C ∈ [V ] is a midpoint of A, B ∈ [V ],

then for any a ∈ A, b ∈ B and c ∈ C ,

U (c) = 1

2
U (a) + 1

2
U (b) = 1

2

(
u0(aI0) + u1(aI1)

) + 1

2

(
u0(bI0) + u1(bI1)

)

= 1

2

(
u′
0(aI ′

0
) + u′

1(aI ′
1
)
)

+ 1

2

(
u′
0(bI ′

0
) + u′

1(bI ′
1
)
)

= 1

2
U (a) + 1

2
U (b).

So, C is a utility midpoint of A and B regardless of the partition. ��

C.2 Proofs for Section 4

Proof of Proposition 2 Necessity is straightforward. For sufficiency, if � satisfies
MASC and P, its restriction to V has a non-constant MAS representation U . By
Theorem 1, we can define a mixture operator ⊕, so that axiom FC can be applied. By
P and FC, for each F ∈ F, there exists an A ∈ [V ] such that A ∼ F , so that for any
a ∈ A, f ∼ a, where f �→ F . Then, we can define I (U ( f )) = U (a) for some a ∈ A.
The functional I : B0(Σ,U (V )) → R is monotone, continuous and normalized (see
Prop. 1 in Cerreia-Vioglio et al. 2011). ��

Proof of Lemma 1 Necessity is straightforward. For sufficiency, if � satisfies P, M,
MASC and FC, by Proposition 2, we can define I (U ( f )) = U (a f ). The functional
I induces a preference �U on U (V )S , defined as U ◦ f �U U ◦ g if and only if
I (U ( f )) ≥ I (U (g)). By P2 and Theorem 3 of Debreu (1959), the preference �U

has an additively separable representation: there are continuous, increasing functions
φs : U (V ) → R, three of them non-constant, such that I (U ( f )) ≥ I (U (g)) if and
only if

∑
s∈S φs(U ( f (s))) ≥ ∑

s∈S φs(U (g(s))). The result follows from defining
J ( f ) = ∑

s∈S φs(U ( f (s))). Assume that, for non-null s ∈ S, φs is not strictly
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increasing. Then, there are U (a) �= U (b) such that φs(U (a)) = φs(U (b)). W.l.o.g.
suppose that U (a) > U (b), since U represents the restriction of � on V , it follows
that a � b. By M+, asd � bsd, but φs(U (a)) + ∑

s′∈S\s φs′(U (d)) = φs(U (b)) +∑
s′∈S\s φs′(U (d)), a contradiction. Hence, φs is strictly increasing. The uniqueness

part of the representation follows from Debreu (1959). ��

Proof of Theorem 2 By Lemma 1, axioms P, M, M+, MASC, FC and P2 implies
the existence of continuous and increasing functions (three of them strictly increas-
ing) φs : U (V ) → R such that J ( f ) = ∑

s∈S φs(U ( f (s))) represents �.
By axiom SCS, for all s ∈ S and for non-null s′, s′′ ∈ S (there are at
least three of them) φs(U (c′)) = φs(U (c′′)). If s ∈ S is null the equal-
ity is always true. Take a non-null s ∈ S, then φs is strictly increasing,
hence U (c′) = U (c′′). Therefore, U (c′′) = φ−1

s′′
( 1
2φs′′(U (a)) + 1

2φs′′(U (b))
)
if

and only if U (c′′) = φ−1
s′

( 1
2φs′(U (a)) + 1

2φs′(U (b))
)
. Therefore φs′(U (c′)) =

φs′
(
φ−1
s′′

( 1
2φs′′(U (a)) + 1

2φs′′(U (b))
))
, hence, by defining ψ = φs′ ◦ φ−1

s′′ we

have:

ψ

(
1

2
φs′′(U (a)) + 1

2
φs′′(U (b))

)
= ψ ◦ φs′′

(
U (c′′)

)

= φs′
(
U (c′′)

= φs′
(
U (c′)

)

= 1

2
φs′(U (a)) + 1

2
φs′(U (b))

= 1

2
ψ (φs′′(U (a))) + 1

2
ψ (φs′′(U (b)))

Therefore, ψ is affine, i.e. there is αs > 0, βs′ ∈ R with φs′ ◦U = αs′φs′′ ◦U + βs′ .
By assumptionαs′ > 0 for at least 3 states. Therefore, J ( f ) = ∑

s∈S αsφ(u( f (s)))+
βs where φ � φs . Renormalizing by K = (∑

s∈S αs
)

> 0 gives a SOSEU* with
p(s) = as

K . ��

Proof of Corollary 2 The argument is similar to the one of Theorem 1 in Strzalecki
(2011): WCI implies translation invariance of the functional I : B0(Σ,U (V )) → R

defined by I (U ◦ f ) = φ−1
(∑

s∈S p(s)φ (U ( f (s)))
)
(i.e. I (ξ +k) = I (ξ)+k for all

ξ ∈ B0(Σ,U (V )) and k ∈ R). In turn, translation invariance forces the function φ to
satisfy a generalized Pexider’s functional equations whose solution is the exponential
function φ(r) = γ eαr + β for γ, α �= 0 and arbitrary β (see Aczél 1966, Cor. 1, p.
150). By non-triviality and monotonicity γ > 0. ��

Proof of Corollary 4 The argument is similar to the one in Proposition 6 in Gumen and
Savochkin (2012):Worst Independence implies positive homogeneity of the functional
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I : B0(Σ,U (V )) → R defined by I (U ◦ f ) = φ−1
(∑

s∈S p(s)φ (U ( f (s)))
)
(i.e.

I (γ ξ) = γ I (ξ) for all ξ ∈ B0(Σ,U (V )) and all γ ≥ 0). In turn, the normalization
U (Z∗) = 0, positive homogeneity and the uniqueness of the SOSEU* representation
force the functionφ to satisfy themultiplicative functional equationφ(γ t) = α(γ )φ(t)
for all γ, t ≥ 0. By Theorem 4 (p. 144) in Aczél (1966), there are β, θ ∈ R such that
φ(t) = βtθ .21 By Monotonicity and non-triviality β > 0 and θ > 0. ��

Proof of Corollary 6 The proof is straightforward. By Savage’s result, there exist W :
V → R and a non-atomic and finitely additive p over S such that J ( f ) = ∫

S W ( f )dp
represents �. Therefore � satisfies Axiom M. By P, M and FC, for each f ∈ F there
exists a f ∈ V such that f ∼ a f . Let U : V → R be the MAS representation on
V , which exists by MASC. By defining I (U ◦ f ) = U (a f ), we obtain f � g if and
only I (U ◦ f ) ≥ I (U ◦ g). I is well-defined by M. Since both U and W represents
� on V , there exists a monotone function φ such that W = φ ◦ U . The proof that φ

is continuous is identical to that of Proposition 3 in Cerreia-Vioglio et al. (2012). ��
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