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Abstract

The objective of this paper is to show how ambiguity, and a decision maker (DM)’s
response to it, can be modelled formally in the context of a general decision model.

We introduce a relation derived from the DM’s preferences, called “unambiguous pref-
erence”, and show that it can be represented by a set of probabilities. We provide such set
with a simple differential characterization, and argue that it is a behavioral representation
of the “ambiguity” that the DM may perceive. Given such revealed ambiguity, we pro-
vide a representation of ambiguity attitudes. We also characterize axiomatically a special
case of our decision model, the “a-maxmin” expected utility model. Journal of Economic
Literature Classification Number: D80, D81

Keywords: Ambiguity, Unambiguous Preference, Clarke Differentials, a-Maxmin Expected
Utility

Introduction

When requested to state their maximum willingness to pay for two pairs of complementary bets
involving future temperature in San Francisco and Istanbul (and identical prize of $ 100 in case
of a win) 90 pedestrians on the University of California at Berkeley campus were on average
willing to pay about $ 41 for the two bets on San Francisco temperature, and $ 25 for the two

bets on Istanbul temperature. That is, on average they would have paid almost $ 16 more to
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bet on the (familiar) San Francisco temperature than on the (unfamiliar) Istanbul temperature
(Fox and Tversky [15, Study 4]).

This striking pattern of preferences is by no means peculiar to the inhabitants of the Bay
Area. Ever since the seminal thought experiment of Ellsberg [11], it has been acknowledged that
the awareness of missing information, “ambiguity” in Ellsberg’s terminology, affects subjects’
willingness to bet. And several experimental papers, the cited [15] being just one of the most
recent ones, have found significant evidence of ambiguity affecting decision making (see Luce
[25] for a survey). Though Ellsberg emphasized the relevance of aversion to ambiguity, later
work has shown that the reaction to ambiguity is not systematically negative. Examples have
been produced in which subjects tend to be ambiguity loving, rather than averse (e.g., Heath
and Tversky [23]’s “competence hypothesis” experiments). However, the available evidence
does show unequivocally that ambiguity matters for choice.

The benchmark decision model of subjective expected utility (SEU) maximization is not
equipped to deal with this phenomenon: An agent who maximizes SEU exhibits no care about
ambiguity. Therefore, theory has followed experiment. Several decision models have been
proposed which extend SEU in order to allow a role for ambiguity in decision making. Most
notable are the “maxmin expected utility with multiple priors” (MEU) model of Gilboa and
Schmeidler [22], which allows the agent’s beliefs to be represented by a set of probabilities, and
the “Choquet expected utility” (CEU) model of Schmeidler [34], which allows the agent’s beliefs
to be represented by a unique but nonadditive probability. These models have been employed
with success in understanding and predicting behavior in activities as diverse as investment
(e.g., Epstein and Wang [13]), labor search (Nishimura and Ozaki [32]) or voting (Ghirardato
and Katz [16]).

The objective of this paper is to show how to model formally ambiguity, and a decision
maker (DM)’s response to it, in the context of a general decision model (that, for instance,
encompasses MEU and CEU). It is an objective that in our view has not yet been fully achieved.
In fact, as we discuss below, the existing literature has either focused on narrower models, or
has not —within the limits of a traditional decision-theoretic setting— produced a description
of ambiguity as complete as the one offered here.

The intuition behind our approach can be explained in the context of the “3-color” experi-
ment of Ellsberg. Suppose that a DM is faced with an urn containing 90 balls which are either
red, blue or yellow. The DM is told that exactly 30 of the balls are red. If we offer him the
choice between a bet r that pays $ 10 if a red ball is extracted, and the bet b that pays $ 10 if

a blue ball is extracted, he may display the preference
r > b.

On the other hand, let y denote the bet that pays $ 10 if a yellow ball is extracted, and suppose
that we offer him the choice between the “mixed” act (1/2)r 4+ (1/2)y and the “mixed” act
(1/2)b+ (1/2)y . Then, we might observe
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a violation of the independence axiom (Anscombe and Aumann [1]). The well known rationale
is the following: the bet y allows the DM to “hedge” the ambiguity connected with the bet
b, but not that connected with r. The DM responds to the ambiguity he perceives in this
decision problem by opting for the “ambiguity hedged” positions represented by the acts r
and (1/2)b+ (1/2)y. Needless to say, we could observe a DM who displays exactly opposite
preferences: she prefers b to r and (1/2)r + (1/2)y to (1/2)b + (1/2)y because she likes to
“speculate” on the ambiguity she perceives, rather than to hedge against it.

In both cases, the presence of ambiguity in the decision problem a DM is facing is revealed
to an external observer (who may ignore the information that was given to the DM about the
urn composition) in the form of violations of the independence axiom. By comparison, consider
a DM who does not violate independence when comparing a given pair of acts f and g. That

is, f %= g and for every act h and weight A,
A4+ (1 =XNh =g+ (1= Nh. (1)

This DM does not appear to find any possibility of hedging against or speculating on the
ambiguity that he may perceive in the problem at hand. Such ambiguity, if at all perceived,
does not affect the comparison of f and ¢g: the DM “unambiguously prefers” f to g, which we
denote by f =* g.

The derived relation =* is the cornerstone of this paper. As we now argue, it enables us
to obtain an intuitive representation of ambiguity, which in turn yields a simple description
of ambiguity attitude. And this without imposing strong restrictions on the DM’s primitive
preference . On the other hand, it should be stressed from the outset that such representation
is, as every representation of preferences in decision theory, attributed to the DM. That is, it is
possible that what is going on in the DM’s mind may be quite unlike what our mathematical
model (and the interpretation that we give to it) suggests —a point to which we shall come

back after briefly reviewing our findings.

The Revelation of Ambiguity and Ambiguity Attitude

Using the traditional setting of Anscombe and Aumann [1], we consider an arbitrary state space
S and a conver set of outcomes X.! We assume that the DM’s preference 3= satisfies all the
axioms that characterize Gilboa and Schmeidler [22]’s MEU model, with the exception of the
key axiom that entails a preference for ambiguity hedging, that they call “uncertainty aversion.”
By avoiding constraints on the DM’s attitude with respect to hedging, we thus obtain a much
less restrictive model than MEU. (For instance, every CEU preference satisfies our axioms,
while those compatible with the MEU model are a strict subclass.) Indeed, one of the novel
contributions of this paper is precisely showing that the preferences satisfying the mentioned

axioms have a meaningful representation.

!Therefore, an “act” is a map f : S — X assigning an outcome f(s) € X to every state s € S. A “mixed”
act Af + (1 — A)h assigns to s the outcome Af(s) + (1 — A)h(s) € X.



Given such 3=, we derive from it the unambiguous preference relation >=* as described in
Eq. (1), and show that »=* has a “unanimity” representation in the style of Bewley [3]: there is
a utility v on X and a set of probabilities C (nonempty, compact and convex) on .S such that

f =" g if and only if /Su(f(s)) dP(s) > /Su(g(s)) dP(s) for all P eC.

That is, the DM deems f to be unambiguously better than g whenever the expected utility of
f is higher than the expected utility of ¢ in every probabilistic scenario P in C. The set C of
probabilistic scenarios represents, as we shall argue presently, the DM’s revealed “(perception
of) ambiguity.” (While we do not carry it around for brevity’s sake, the term “perception”
serves as a reminder to the reader that no objective meaning is attached to C. That is, nothing
precludes two DMs from perceiving different ambiguity in the same decision problem.)

A key motivation for our interpretation of C as revealed ambiguity is the following analogy.
It is simple to see that if a DM’s preference = has a SEU representation, the DM’s probabilistic
beliefs P correspond to the Gateaux differential of the functional I that represents his pref-
erences.? Intuitively, the probability P(s) is the shadow price for (ceteris paribus) changes in
the DM’s utility in state s. Therefore, in the SEU case we can learn the DM’s understanding
of the stochastic nature of his decision problem — his subjective probabilistic scenario — by
calculating the derivative of his preference functional.

If = does not have a SEU representation but satisfies our axioms, the preference functional
I is not necessarily Gateaux differentiable. However, it does have a generalized differential
—a collection of probabilites— in every point. Such differential is the “Clarke differential,”
developed by Clarke [9] as an extension of the concept of superdifferential (e.g., Rockafellar
[33]) to non-concave functionals. We show that the set C obtained as the representation of =*
is the Clarke differential of I, analogously to what happens for SEU preferences. Thanks to
this differential characterization, we also find that in a finite state space C is (the closed convex
hull of) the family of the Gateaux derivatives of I where they exist. That is, if we collect all
the probabilistic scenarios that could rationalize the DM’s evaluation of acts, we find C.

Besides its conceptual interest, the differential characterization of C is useful from a purely
operational standpoint. By giving access to the large literature on the Clarke differential, it
provides a different route for assessing the DM’s revealed ambiguity and some very useful results
on its mathematical properties.

Armed with the representation of ambiguity, we turn to the issue of formally describing
the DM’s reaction to the presence of such ambiguity. In our main representation theorem, we
show that the DM’s preference functional I can be written so as to associate to each act f an
ambiguity aversion coefficient a(f) between 0 and 1. The ambiguity aversion function a(-) thus
obtained displays significantly less variation than we might expect it to. In fact, it turns out
that the DM must have identical ambiguity attitude for acts that agree on their ranking of the
possible scenarios in C. However, this restriction does not constrain overall ambiguity attitude,

which can continuously range from strong attraction to strong aversion.

2That is, I such that f 3= g if and only if I(u(f)) > I(u(g)).



When the DM’s preference »= satisfies MEU, the set C is shown to be equal to the set of
priors that Gilboa and Schmeidler derive in their representation [22], and the corresponding
a(-) is uniformly equal to 1. The opposite —i.e., a(-) uniformly equal to 0— happens in the case
of a “maxmax EU” preference. We also present the axiomatic characterization of the natural
generalization of these two decision rules —a decision rule akin to Hurwicz’s a-pessimism rule,
known in the literature as the “a-MEU” decision rule (e.g., [27]).

A companion paper [18] analyzes some extensions and applications of the ideas and results
in this paper. In particular, we look at a simple dynamic choice setting and show that the
unambiguous preference relation allows us to characterize the updating rule that revises every

prior in the set C by Bayes’s rule —the so-called “generalized Bayesian updating” rule.

Discussion

It is important to comment on some limitations and peculiarities of our analysis and terminol-
ogy. We follow decision-theoretic practice in assuming that only the decision problem (states,
outcomes and acts) and the DM’s preference over acts are observable to an external observer
(e.g., the modeller). We do not know whether other ancillary information may be available to
the external observer. Hence, we do not use such information in our analysis.

This methodological assumption entails some limitations in the accuracy of the terminology
we use. First, we attribute no perception of ambiguity to a DM who disregards ambiguity.
Indeed, it follows from our definition of unambiguous preference that if the DM never violates
the independence axiom, by definition he reveals no ambiguity in our sense. Such DM behaves
as if he considers only one scenario P to be possible (i.e., his C = {P}), maximizing his
subjective expected utility with respect to P. Of course, he may just not be reacting to
the ambiguity he perceives, but we cannot discriminate between these conditions given our
observability assumptions. As we are ultimately interested in modelling the ambiguity as it
affects behavior, we do not believe this to be a serious problem from an economic viewpoint.

Second, we attribute every departure from the independence axiom to the presence of am-
biguity. That is, following Ghirardato and Marinacci [21] we implicitly assume that behavior
in the absence of ambiguity will be consistent with the SEU model. However, it is well-known
that observed behavior in the absence of ambiguity —that is, in experiments with “objective”
probabilities— is often at spite with the independence axiom (again, see Luce [25] for a sur-
vey). As a result, the relation =* we associate with a DM displaying such systematic violations
overestimates the DM’s possible perception of ambiguity. His set C describes behavioral traits
that may not be related to ambiguity per se.

As extensively discussed in [21], this overestimation of the role of ambiguity could be avoided
by careful filtering of the effects of the behavioral traits unrelated to ambiguity. But such
filtering requires an external device (e.g., a rich set of events) whose non-ambiguity is primitively
assumed, in violation of our observability premise. For conceptual reasons outlined in [21], in

the absence of such device we prefer to attribute all departures from independence to the



presence of ambiguity. However, the reader may prefer to use a different name for what we call
“ambiguity.” We hope that it will be deemed to be an object of interest regardless of its name.

An aspect of our analysis which may appear to be a limitation is our heavy reliance on
the concept of mixed acts. Indeed, the existence of a mixture operation is key to identify-
ing the unambiguous preference relation. As the traditional interpretation of mixtures in the
Anscombe-Aumann [1] framework is in terms of “lotteries over acts”, it may be believed that
our model also relies on an external notion of ambiguity. However, this is not the case, for
it has been shown by Ghirardato, Maccheroni, Marinacci and Siniscalchi [19] that, if the set
of outcomes is sufficiently rich, any mixture of state-contingent utility profiles can obtained
subjectively. Our analysis can be fully reformulated in terms of such “subjective mixtures,”

and hence requires no external device.

The Related Literature

In addition to the mentioned paper of Gilboa and Schmeidler [22], there are several papers that
share features, objectives, or methods with this paper.

Our approach to modelling ambiguity is closely related to that of Klaus Nehring. In particu-
lar, Nehring was the first to suggest using the maximal independent restriction of the primitive
preference relation, which turns out to be equivalent to our >=*, to model the ambiguity that a
DM appears to perceive in a problem. He spelled out this proposal in an unpublished conference
presentation of 1996, in which he also presented the characterization of the perceived ambiguity
set C for MEU and CEU preferences when the state space is finite and utility is linear.?

In the recent [31], Nehring develops some of the ideas of the 1996 talk. The first part of that
paper moves in a different direction than this paper, as it employs an incomplete relation that
reflects probabilistic information exogenously available to the DM. The second part is closer
to our work. In a setting with infinite states and consequences, Nehring defines a DM’s un-
ambiguous preference by the maximal independent restriction of the primitive preferences over
bets. He characterizes such definition and shows that under certain conditions it is equivalent
to the one discussed here. His analysis mainly differs from ours in two main respects. The first
is that his preferences induce an underlying set C satisfying a range convexity property. The
second is that he also investigates preferences that do not satisfy an assumption that he calls
“utility sophistication”, which is satisfied automatically by the preferences discussed here. A
consequence of the range convexity of C is that CEU preferences can be utility sophisticated
only if they maximize SEU, a remarkable result that does not generalize to the preferences we
study (whose C may not be convex-ranged).

A final major difference between Nehring’s mentioned contributions and the present paper
is that he does not envision any differential interpretation for the set of probabilities that

represents the DM’s revealed ambiguity. To the best of our knowledge, the only papers that

3«Preference and Belief without the Independence Axiom”, presented at the LOFT2 conference in Torino
(Italy), December 1996.



employ differentials of preference functionals in studying ambiguity averse preferences are the
recent Carlier and Dana [4] and Marinacci and Montrucchio [28].* Both papers focus on Choquet
preference functionals, and they look at the Gateaux derivatives of Choquet integrals as a device
for characterizing the core of the underlying capacities [28], or for obtaining a more direct
computation of Choquet integrals in optimization problems [4].

In a recent paper, Siniscalchi [36] characterizes axiomatically a special case of our preference
model —to be later called “piecewise linear” preferences— whose representation also involves
a set of probabilities. The relation between his set P and our C are clarified in subsection 5.2.
He does not explicitly focus on the distinction between ambiguity and ambiguity attitude. On
the other hand, unlike us he emphasizes the requirement that each prior in the set yield the
unique SEU representation of the DM’s preferences over a convex subset of acts.

There exist several papers that propose behavioral notions of unambiguous events or acts
(e.g., Nehring [30] and Epstein and Zhang [14]), but do not address the distinction between
ambiguity and the DM’s reaction to it. We refer the reader to [18] for a more detailed comparison
of our notion of unambiguous events and acts with the ones proposed in these papers. Here, we
limit ourselves to underscoring an important difference between our “relation-based” approach
to modelling ambiguity and the “event-based” approach of these papers. Suppose that f and g
are ambiguous acts such that f dominates g statewise. Then, we find that f is unambiguously
preferred to g, while the “event-based” papers do not. In general, there are aspects of ambiguity
that a “relation-based” theory can describe, but the “event-based” theories cannot. We are not
aware of any instance in which the converse is true.

As to the papers that discuss ambiguity aversion, the closest to our work is Ghirardato
and Marinacci [21]. They do not obtain a separation of ambiguity and ambiguity attitude,
but we show that once that separation is achieved by the technique we propose, their notion
of ambiguity attitude is consistent with ours. In light of this, we refer the reader to the
introduction of [21] for discussion of the relation of what we do with other works that address

the characterization of ambiguity attitude.

Outline of the Paper

The paper is organized as follows. After introducing some basic notation and terminology
in Section 1, we present the basic axiomatic model in Section 2. Sections 3 and 4 form the
decision-theoretic core of the paper. First, we discuss the unambiguous preference relation and
its characterization by a set of possible scenarios. Then, we present a general representation
theorem and the characterization of ambiguity attitude. The differential interpretation of the
set of possible scenarios and related results are presented in Section 5. Section 6 presents the
axiomatization of the a-MEU model. Section 7 concludes and briefly reviews the extensions

that are presented in detail in [18].

“The works of Epstein [12] and Machina [26] are more distant from ours, as they take derivatives “with respect

to events”, rather than “with respect to utility profiles”, as we do.



The paper has two appendices. Appendix A presents some functional-analytic results that
are employed in most arguments, along with some detail on Clarke differentials, their properties

and representation. Appendix B contains proofs for the results in the main body of the paper.

1 Preliminaries and Notation

Consider a set S of states of the world, an algebra X of subsets of S called events, and
a set X of consequences. We denote by F the set of all the simple acts: finite-valued
Y-measurable functions f : S — X. Given any z € X, we abuse notation by denoting x € F
the constant act such that z(s) = x for all s € S, thus identifying X with the subset of the
constant acts in F. Finally, for f,g € F and A € ¥, f A g denotes the act which yields f(s) for
s€ Aand g(s) for s € A°= S\ A.

For convenience (see the discussion in the next section), we also assume that X is a convex
subset of a vector space. For instance, this is the case if X is the set of all the lotteries on a set of
prizes, as in the classical setting of Anscombe and Aumann [1]. In view of the vector structure
of X, for every f,g € F and X € [0,1], we can thus define the mixed act Af + (1 — \)g € F as
in Footnote 1. We model the DM’s preferences on F by a binary relation ’=. As usual, > and
~ respectively denote the asymmetric and symmetric parts of »=.

We let By(X) denote the set of all real-valued ¥-measurable simple functions, or equivalently
the vector space generated by the indicator functions 14 of the events A € X. If f € F and
u: X — R, u(f) is the element of By(X) defined by u(f)(s) = u(f(s)) for all s € S. We
denote by ba(X) the set of all finitely additive and bounded set-functions on X. If ¢ € By(X)
and m € ba(X), we write indifferently [ ¢ dm or m(p). A nonnegative element of ba(X) that
assigns value 1 to S is called a probability, and it is typically denoted by P or Q. Since ba(X)
is (isometrically isomorphic to) the norm dual of By(X),% all of its subsets inherit a weak*
topology, for example, a net P, of probabilities weak™® converges to a probability P if and only
if P,(A) — P(A) for all A€ 3.

Given a functional I : By(X) — R, we say that I is: monotonic if I(¢) > I(¢) for all
v, € By(X) such that ¢(s) > 1(s) for all s € S; constant additive if I(p +a) = I(p) +a
for all ¢ € Byp(X) and a € R; positively homogeneous if I(ay) = al(p) for all ¢ € By(X)

and a > 0; constant linear if it is constant additive and positively homogeneous.

2 Invariant Biseparable Preferences

In this section, we introduce the basic preference model that is used throughout the paper, and
show that it generalizes all the popular models of ambiguity-sensitive preferences.

The model is characterized by the following five axioms:

SProvided ba(X) is endowed with the total variation norm, and Bo(X) with the sup-norm.



Axiom 1 (Weak Order) For all f,g,h € F: (1) either f = g or g = f, (2)if f = g and
g = h, then f = h.

Axiom 2 (Certainty Independence) If f,g € F, x € X, and X € (0, 1], then
frg<=A+0-Nzx=Ig+(1—-Nz.

Axiom 3 (Archimedean Axiom) If f,g,h € F, f = g, and g > h, then there exist \,u €
(0,1) such that
AM+Q—=Nh>=gandg>pf+(1—ph.

Axiom 4 (Monotonicity) If f,g € F and f(s) = g(s) for all s € S, then f = g.
Axiom 5 (Non-degeneracy) There are f,g € F such that f > g.

With the exception of axiom 2, all the axioms are standard and well understood. Axiom 2
was introduced by Gilboa and Schmeidler [22] in their characterization of MEU preferences. It
requires that independence hold whenever acts are mixed with a constant act x.

The following representation result is easily proved by mimicking the arguments of Gilboa
and Schmeidler [22, Lemmas 3.1-3.3].

Lemma 1 A binary relation = on F satisfies axioms 1-5 if and only if there exists a monotonic,
constant linear functional I : By(X) — R and a nonconstant affine function u : X — R such
that

[z g I(u(f)) = I(u(g)) (2)

Moreover, I is unique and u unique up to a positive affine transformation.

Axiom 2 is responsible for the constant linearity of the functional I. As we show in [17], it is
also necessary for the independence of the preference functional I from the chosen normalization
of u. While the axiom may restrict ambiguity attitude in some fashion, such separation of utility
and beliefs is key to the analysis in this paper.

We call a preference = satisfying axioms 1-5 an invariant biseparable preference. The
adjective biseparable (originating from Ghirardato and Marinacci [21, 20]) is due to the fact
that the representation on binary acts of such preferences satisfies the following separability
condition: Let p : ¥ — R be defined by p(A) = I(14). Then, p is a normalized and monotone
set-function (a capacity) and for all x,y € X such that z = y and all A € ¥,

I(u(z Ay)) = u(x) p(A) + u(y) (1 = p(A)). 3)

The adjective invariant refers to the mentioned invariance of I to utility normalization, which
is not necessarily true of the more general preferences in [20] (see [17] for details).

Some of the best known models of decision making in the presence of ambiguity employ
invariant biseparable preferences. However, these models incorporate additional assumptions
on how the DM reacts to ambiguity; i.e., whether he exploits hedging opportunities or not.

These assumptions are summarized in the following axiom:



Axiom 6 For all f,g € F such that f ~ g:

(a) (Ambiguity Neutrality) (1/2)f + (1/2)g ~ g.

(b) (Comonotonic Ambiguity Neutrality) (1/2)f + (1/2)g ~ g if f and g are comono-

tonic.b

(c) (Ambiguity Hedging) (1/2)f + (1/2)g = g.

Axiom 6(c) is due to Schmeidler [34], and it says that the DM will in general prefer the
mixture, possibly a hedge, to its components.” The other two are simple variations on that
property.

It is a matter of modifying known results in the literature to show the consequences of these

three properties on the structure of the functional I in Lemma 1 (and its restriction p).®
Proposition 2 Let = be a preference satisfying axioms 1-5. Then

e = satisfies aziom 6(a) if and only if p is a probability on (S,X) and I(¢) = [ pdp for all
¢ € By(2).

e = satisfies aziom 6(b) if and only if I(p) = [@dp for all ¢ € By(X), where the integral

is taken in the sense of Choquet.

e = satisfies axiom 6(c) if and only if there is a nonempty, weak® compact and convex set D
of probabilities on (S,X) such that I(p) = minpep [ @ dP for all ¢ € By(X). Moreover,

D is unique.

Thus, a DM who satisfies axioms 1-5 and is indifferent to hedging opportunities satisfies the
SEU model. A DM who is indifferent to hedging opportunities when they involve comonotonic
acts (but may care otherwise) satisfies the CEU model of Schmeidler [34], with beliefs given
by the capacity p.

On the other hand, a DM who uniformly likes ambiguity hedging opportunities chooses
according to a “maxmin EU” decision rule. Indeed, axioms 1-5 and 6(c) are the axioms proposed
by Gilboa and Schmeidler [22] to characterize MEU preferences —that for reasons to be made
clear below are henceforth referred to as 1-MEU. It is natural to interpret the size of D as
representing the ambiguity that the DM may perceive in the decision problem, but a problem
with such interpretation is the fact that the set D appears in Gilboa and Schmeidler’s analysis
only as a result of the assumption of ambiguity hedging.

It therefore seems that the DM’s revealed ambiguity cannot be disentangled from his be-

havioral response to such ambiguity.

SRecall that f and g are comonotonic if there are no states s and s’ such that f(s) = f(s’) and g(s) < g(s).
"He calls this property “uncertainty aversion.” See Ghirardato and Marinacci [21] for an explanation of our

departure from that terminology.
8We refer the reader to [20] and [17] for additional examples and properties of invariant biseparable preferences.
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In the next section, we show that it is possible to separate a representation of ambiguity
from the DM’s behavioral reaction to it. For the sake of better assessing such separation, it
is important to notice here that axioms 1-5 do not impose ex ante constraints on the DM’s
reaction to ambiguity (as, say, ambiguity hedging does).

We reiterate that the choice to retain the classical Anscombe-Aumann setting used by Gilboa
and Schmeidler [22] is only motivated by the intention of putting our contribution in sharper
focus. The “subjective mixtures” of Ghirardato et al. [19] can then be employed to extend the
analysis in this paper to the case in which X does not have an “objective” vector structure
(i.e., it is not convex), as long as it is sufficiently rich.

Unless otherwise indicated, for the remainder of this paper = is tacitly assumed to be an
invariant biseparable preference (i.e., to satisfy axioms 1-5), and I and w are the monotonic,

constant linear functional and utility index that represent 5= in the sense of Lemma 1.

3 Priors and Revealed Ambiguity

3.1 Unambiguous Preference

As explained in the introduction, our point of departure is a relation derived from 3= that
formalizes the idea that hedging/speculation considerations do not affect the ranking of acts f

and g.

Definition 3 Let f,g € F. Then, f is unambiguously preferred to g, denoted f =* g, if
AMAHA=Nh=dg+ (1 —=Nh

for all X € (0,1] and all h € F.

The unambiguous preference relation is clearly incomplete in most cases. We collect some

of its other properties in the following result.
Proposition 4 The following statements hold:
1. If f =" g then f = g.
2. For every x,y € X, x ="y iff ¢ = y. In particular, =* is nontrivial.
3. =% is a preorder.
4. =" is monotonic: if f(s) = g(s) for all s € S, then f =* g.
5. =" satisfies independence: for all f,g,h € F and X € (0,1],

Frtge= M+ 1 =Mhe* Ag+ (1—Mh.

11



6. =* satisfies the sure-thing principle: for all f,g,h,h' € F and A€ X,
fAR =*gAh << fAR =" gAN.

7. %=* is the mazimal restriction of = satisfying independence.”

Thus, unambiguous preference satisfies both the classical independence conditions. It is a
refinement of the state-wise dominance relation, and the maximal restriction of the primitive
preference relation satisfying independence.

The last point of the proposition shows that if we turned our perspective around and defined
unambiguous preference as the maximal restriction of %= that satisfies the independence axiom,
we would find exactly our »=*. As mentioned earlier, this second approach was suggested by
Nehring in a 1996 talk (see footnote 3).!° While eventually the approaches reach the same
conclusions, we prefer the approach taken in this paper as it is directly linked to more basic

behavioral considerations about hedging and speculation.

3.2 Revealed Ambiguity

We now show that the unambiguous preference relation =* can be represented by a set of
probabilities, in the spirit of a well-known result of Bewley [3]. (An analogous result is found
in [31].)

Proposition 5 There exists a unique nonempty, weak™ compact and convex set C of probabil-
ities on X such that for all f,g € F,

f%*g<:>/su(f)dP2/Su(g)dP for all P €C. (4)

In words, f is unambiguously preferred to g if and only if every probability P € C assigns
a higher expected utility to f in terms of the function u obtained in Lemma 1. It is natural to
refer to each prior P € C as a “possible scenario” that the DM envisions, so that unambiguous
preference corresponds to preference in every scenario. Given an act f € F, we will refer to
the mapping {P(u(f)) : P € C} that associates to every probability P € C the expected utility
of f as the expected utility mapping of f (on C).

Remark 1 A natural question that arises in applications is under which conditions the prob-
abilities in the set C are all countably additive, provided % is a o-algebra. It turns out that
the following extension of the monotone continuity property of Villegas [38] and Arrow [2] is

necessary and sufficient (see also [6]).1!

9That is, if =**C = and ="* satisfies independence then =**Cx=*.
1ONehring [31] independently introduces =" and observes, in a setting with infinite states, its equivalence to
the approach taken in his 1996 talk. He also provides further motivation for his approach.

" The proof of this claim appears in subsection B.3 of the Appendix.
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Monotone Continuity For all x,y,z € X, if A, | 0 and y = z, then y =* v A, z for some n.

The interpretation is analogous to that given by Villegas and Arrow. For any vanishing sequence

of events, there is an event which is so small that it is close to being unambiguously impossible.

In our view, the set C of probabilities represents formally the ambiguity that the DM
displays in the decision problem. Hereafter we offer a remark in support of this interpretation.
In Section 5 we provide further argument by showing the differential nature of C.

Consider two DMs with respective preference relations =1 and =5 (whose derived relations
are subscripted accordingly). Given our interpretation of »=*, it is natural to posit that if a DM
has a richer unambiguous preference, it is because he behaves as if he is better informed about

the decision problem. Formally, =1 reveals more ambiguity than =4 if for all f, g € F:
fFRl9=f*#9

It turns out that this comparative definition of revealed ambiguity is equivalent to the inclusion

of the sets of priors C;’s.
Proposition 6 The following statements are equivalent:
(i) =1 reveals more ambiguity than =5.
(13) wy is a positive affine transformation of ug and C1 2 Ca.

In words, the size of the set C measures the perception of ambiguity we attribute to a DM.
The larger C is, the more ambiguity the DM appears to perceive in the decision problem. In
particular, no DM reveals less ambiguity than one who reveals a singleton set C = {P}. In
such case, =* is complete. It follows that »=*=3=; that is, the DM is a SEU maximizer with
subjective probability P.

Summarizing the results obtained so far, we have shown that C represents what we call the
DM’s revealed ambiguity, and we have concluded that the DM reveals some ambiguity in
a decision problem if C is not a singleton. Such characterization of revealed ambiguity does not
rely on any assumption on the DM’s reaction to it. We now turn our attention to the latter,
which is the force that drives the relation between the expected utility mapping and the DM’s

evaluation of an act.

4 Enter Ambiguity Attitude: The Representation

We begin our discussion of ambiguity attitude with the following observation.

Proposition 7 Let I and u be respectively the functional and utility obtained in Lemma 1, and

C the set obtained in Proposition 5. Then

min P(u(f)) < I(u(f)) < max P(u(f))- ()

pPeC peC
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That is, the functionals on F defined by minpec P(u(-)) and maxpec P(u(-)) —that re-
spectively correspond to the “worst-” and “best-case” scenario evaluations within the set C—
provide bounds to the DM’s evaluation of every act. We now use this sandwiching property to
obtain a nontrivial formal description of the ambiguity attitude of the DM, via a decomposition

of the functional I.

4.1 Crisp Acts

It is first of all important to illustrate that revealed ambiguity already partitions F into sets
of acts with “similar ambiguity.” The following relation on the set F is key: For any f,g € F,
write f < g if there exist a pair of consequences z,2’ € X and weights X\, \ € (0, 1] such that

Af+(L—Na~Ng+(1-N)e, (6)

where ~* denotes the symmetric component of the unambiguous preference relation. Such

relation =< can be simply characterized in terms of the expected utility mappings of the acts:

Lemma 8 For every f,g € F, the following statements are equivalent:

(1) f=g

(i) The expected utility mappings {P(u(f)) : P € C} and {P(u(g)) : P € C} are a positive
affine transformation of each other: there exist a > 0 and b € R such that

P(u(f)) =aP(u(g)) +b forall P eC. (7)

(tit) The expected utility mappings {P(u(f)) : P € C} and {P(u(g)) : P € C} are isotonic: for
Wl P.QeC,
Pu(f)) = Qu(f)) <= P(u(g)) = Q(u(g))-

Statement (i7) of the lemma implies that < is an equivalence. Statement (iii) is helpful
in interpreting <. Two functions are isotonic on a set if they order its elements identically.
Therefore, f < g is tantamount to saying that f and g order possible scenarios identically: the
best scenario for f is best for g, the worst for ¢ is worst for f, etc. That is, f and g have
identical dependence on the ambiguity the DM displays.

As it will be seen presently, the equivalence classes of < play a key role in our representation.
Given f € F, denote by [f] the equivalence class of =< that contains f and by F /= the quotient
of F with respect to x; i.e., the collection of all equivalence classes. Clearly, [f] contains all
acts that are unambiguously indifferent to f (take A =1 in Eq. (6)), but it may contain many
more acts.

It follows immediately from the lemma above that all constants are =<-equivalent; that is,
for all z,y € X, we have y € [z]. However, the class [z] contains also acts which are not
constants. The following behavioral property of acts, inspired by a property that Kopylov [24]
calls “transparency” (as his terminology suggests, he interprets it differently from us), is key in

understanding the structure of [z].
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Definition 9 The act k € F is called crisp if for all f,g € F and X\ € (0,1),
frg=Af+Q-Nk~Ag+(1-NE.
The set of crisp acts is denoted by K.

That is, an act is crisp if it cannot be used for hedging other acts. Intuitively, this suggests
that a crisp act’s evaluation is not affected by the ambiguity the DM displays in the decision

problem. The following characterization validates this intuition:
Proposition 10 For every k € F, the following statements are equivalent:
(1) k is crisp.
(13) k=< x for somex € X.
(iii) For every P,Q € C, [u(k)dP = [u(k)dQ.
(iv) For every f € F and X € [0,1],

TuAk+ (1= A) f)l = A (u(k)) + (1= A) I(u(f))-

Statement (ii) shows that K = [z]. Moreover, notice that it follows from statement (iv)
of this proposition and the observation after Proposition 6 that if every act is crisp, the DM

displays no ambiguity (i.e., he satisfies SEU).

4.2 The Representation Theorem

We now have all the necessary elements to formulate our main representation theorem, wherein
we achieve the formal separation of revealed ambiguity and the DM’s reaction to it. Interest-
ingly, it turns out to be a generalized Hurwicz a-pessimism representation in which the set of

priors is generated endogenously.

Theorem 11 Let = be a binary relation on F satisfying axioms 1-5. Then there exist a
nonempty, weak™ compact and convex set C of probabilities on X, a nonconstant affine function
u: X — R, and a function a : F/= — [0,1] such that = is represented by the functional
I: By(X) — R defined by

PeC PpPeC

I(u(f)) = a([f]) min / u(f)dP + (1 - a([f])) max / u(f) dP. (8)

and u and C represent =* in the sense of Eq. (4). Moreover, C is unique, u is unique up to a

positive affine transformation, and the restriction of the function a to F,- \ K is unique.

15



Clearly, the 1-MEU preference model and more generally the a-MEU preference model in
which a is a constant « € [0,1] (that is characterized axiomatically in Section 6), are special
cases of the representation above. Also, observe that when C = {P} every act is crisp. Hence,
the function a disappears from the representation, which reduces to SEU.

Two analytical observations on this representation are in order. First, notice that if f and
g are noncrisp acts and f =< g, then a([f]) = a([g]): If f and g have identical dependence on
ambiguity, the DM’s reaction to the ambiguity of f is identical to his reaction to the ambiguity
of g. Second, observe that for any f € F \ K, the coefficient a([f]) only depends on the
expected utility mapping {P(u(f)) : P € C} of f on C. As a result, the same is true of DM’s
evaluation I(u(f)) of any act f € F: The profile of expected utilities of f (as a function over C)
completely determines the DM’s preference. This is a key feature of our representation, which

is also enjoyed by the model studied by Siniscalchi in [36].

Remark 2 It is routine to obtain the following converse to Theorem 11. Take a monempty,
weak® compact and convex set C of probabilities, an affine function u and define, via Eq. (7),
an equivalence < on F. Then, given a : F)= — R, if the functional I defined by Eq. (8) is

monotonic it induces a relation = which satisfies axioms 1-5.

4.3 An Index of Ambiguity Aversion

It is intuitive to interpret the function a as an index of the ambiguity aversion of the DM: The
larger a([f]), the bigger the weight the DM gives to the “pessimistic” evaluation of f given
by minpec P(u(f)). The following simple result verifies this intuition in terms of the relative
ambiguity aversion ranking of Ghirardato and Marinacci [21]. In our setting, the latter is
formulated as follows: =1 is more ambiguity averse than =, if for all f € F and all x € X,

f =1 x implies f =5 x.

Proposition 12 Let =1 and =5 be invariant biseparable preferences, and suppose that =1 and

=9 reveal identical ambiguity.'> Then, =1 is more ambiguity averse than =9 if and only if

ar([f]) = ax([f]) for every f € F\ K.

We conclude that the function « is a complete description of the DM’s ambiguity attitude
in relation to the revealed ambiguity described by C.

In closing this section, we observe that it follows from Proposition 12 that there are always
DMs which are more and less ambiguity averse than the DM whose preference is »=. In fact, the
best- and worst-case scenario evaluations define invariant biseparable preferences that satisfy
these descriptions, since they correspond to a constantly equal to 0 and 1 respectively. In a
sense, they describe the DM’s “ambiguity averse side” and his “ambiguity loving side.” However,
as these DMs do not necessarily satisfy the SEU model, they may not make the preference

ambiguity averse in the sense of Ghirardato and Marinacci [21].

12Recall from Proposition 6 that =1 and =2 reveal identical ambiguity if and only if C; = C2 and w1 and wus

are equivalent.
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5 Revealed Ambiguity is a Differential

In this section we turn back to the set C derived in Proposition 5, showing that it is equal to
the Clarke differential at 0 of the functional I obtained in Lemma 1. This provides further
support to our interpretation of C, and at the same time yields a separate, operational, route
for constructing a preference’s set of possible scenarios.

Suppose first that the DM’s preferences satisfy axioms 1-5 and 6(a); i.e., there is a prob-
ability P on X such that I(u(f)) = P(u(f)). Being linear, I is Gateaux differentiable with
derivative everywhere equal to P.'> The DM’s beliefs can thus be obtained by calculating the
Gateaux derivative of I at any ¢ € By(X), for instance at ¢ = 0. Using economic terminology
(and assuming that S is finite) this is restated as follows: the probability P(s) of state s gives
the shadow price for increases of the DM’s utility in state s.!4

In contrast, if the DM’s preferences do not satisfy axiom 6(a), the functional I may not
be Gateaux differentiable everywhere, and even where it is, the Gateaux derivatives may differ
from one point to another. Intuitively, because of the presence of ambiguity the shadow price
for state s could depend on the structure of the act being evaluated. There are many different
shadow prices.

A natural theoretical solution to this nondifferentiability problem is to allow for a more gen-
eral notion of differentiability. For instance, suppose that the DM’s preferences satisfy axioms
1-5 and 6(c), so that as shown in Proposition 2 they can be represented by maxmin expected
utility with a set of priors D. Then, the functional I is monotonic, constant linear and concave,
so that, while not necessarily Gateaux differentiable, it does have a nonempty superdifferential
(see, e.g., Rockafellar [33]). One could therefore think of using the superdifferential 01(y) of I
at ¢ = 0 (which contains 01 (y) for every ¢ € By(X)) as a possible description of the collection
of shadow prices compatible with the DM’s preferences.

Interestingly, calculating the superdifferential 9I(0) of such I yields exactly the set of priors
D. That is, the set of probabilities D of Gilboa and Schmeidler [22] can be obtained as derivative
of the preference representation I. In this perspective, as the superdifferential of such an [
coincides with its Gateaux derivative when the latter exists, SEU corresponds to the special
case in which 0I(0) = {P}.

For a preference = that only satisfies axioms 1-5 —and therefore does not necessarily induce
a concave I— we can use a generalization of the superdifferential due to Clarke [9], which is

widely used in the literature on nonsmooth optimization.

Definition 13 Given a locally Lipschitz functional I : Bo(X) — R, its Clarke (lower) di-

1311 this dicussion, we abuse terminology and identify the linear functional P(-) —which is the real Gateaux

derivative of I— with the probability P that induces it.
11 the case of monetary payoffs, looking at derivatives gurarantees that we can ignore the shape of the utility

function: The range of payoffs is infinitesimal.
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rectional derivative in o in the direction £ is defined by

L(:€) liminf 1& 10 = 1),

h—p t
t10

The Clarke differential of I at o is the set of linear functionals that dominate the Clarke
derivative I(p;-). That is,

Al(p) = {m € ba(X) : m(§) = L(p;§), V& € Bo(X)}.

A monotonic and constant linear functional I, such as that obtained in Lemma 1, is Lipschitz
and hence has a nonempty Clarke differential. Indeed, for an I with such properties Clarke
differentials are sets of probabilities; that is, all the m € 0I(y) are normalized and positive.
If I is also concave, then its Clarke differentials and its superdifferentials coincide (see Clarke
[9]). This justifies our usage of the same symbol 9I to denote both sets.!5

We now show that the set C is equal to the Clarke differential of I at 0 (which, again,
contains 01(p) for every ¢ € By(X)). Thus, the set of possible scenarios coincides with the
appropriately generalized notion of derivative of the preference functional. That is, analogously
to what happens in the SEU and 1-MEU case, our generalized “beliefs” can be obtained from

the functional I by differentiation.

Theorem 14 Let = be a binary relation satisfying axioms 1-5, and I and C the functional and

set of probabilities obtained in Lemma 1 and Proposition 5 respectively. Then
C = 0I(0).

Clearly, this calculus characterization is useful in providing an operational method for as-
sessing a DM’s revealed ambiguity C, based on the computation of the Clarke differential at
0. However, it proves enlightening also for purely theoretical reasons. We next discuss these

aspects in more detail.

5.1 Some Theoretical Consequences

First of all, from the mentioned equivalence of the Clarke differential and the superdifferential
for concave I it follows immediately that C = D whenever = satisfies axiom 6(c). In other
words, for a 1-MEU preference the set of priors corresponds to the set of possible scenarios. (A
result that was proved for finite S by Nehring, as reported in his 1996 talk; see footnote 3, and
cf. his different generalization in [31]).

We can also use the differential characterization to draw some conclusions on the relation
between the comparatively-based notion of ambiguity aversion of Ghirardato and Marinacci

[21] and the ideas in this paper. Begin by considering the following two subsets of priors.

15 Appendix A further discusses Clarke differentials and their properties.
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Definition 15 Given a functional I : Bo(X) — R, the core of I is the set
Core(I) = {m € ba(X) : m(§) > 1(€), Y& € Bp(2)}.
The anti-core of I is the set
Eroc(I) ={m € ba(X) : m(§) < I(§), V€ € Bo(2)}.

As our choice of terminology suggests,'® when I is a Choquet integral with respect to a

capacity p, we have [21, Corollary 13] that
Core(I) = Core(p) and Eroc(I) = Eroc(p).

However, these notions apply also to preferences which are not CEU. Indeed, if = is a 1-MEU
preference, then [21, Corollary 14] Core(I) = D. Clearly, both Core(I) and Eroc(I) could be
empty, and they are simultaneously nonempty if and only if I is linear.

The elements of Core(I) (resp. Eroc(I)) are the possible beliefs of SEU preferences > which
are less (resp. more) ambiguity averse than > in the sense of Ghirardato and Marinacci [21]:
forall fe Fandx e X, f=2 = f >z (resp. f > x = f > z). The next result shows that

they also describe possible scenarios in the sense of this paper.

Proposition 16 Let I be a monotonic, constant linear functional. Then
Core(I) U Eroc(I) C 0I(0).

Moreover, Core(I) = 0I(0) if and only if I is concave, while Eroc(I) = 01(0) if and only if [

1S convex.

The second statement of the proposition shows that Core(I) contains all the possible scenar-
ios if and only if I is concave; that is, = is a I-MEU preference with set of priors D = Core([).
Differently put, while Ghirardato and Marinacci’s “benchmark measures” of = (the elements
of Core(I)) are possible scenarios, they exhaust the set C only when = has extreme aversion to

revealed ambiguity.

5.2 An Operational Consequence

A useful operational consequence of the characterization of C as a Clarke differential can be
obtained the special case in which the state space S is finite; i.e., S = {s1, s2,...,8,}. (This
is mainly for expositional purposes. The result can be extended to an S which is a compact
metric space; see Appendix A for the details.)

In such a case, the Clarke differential at 0 can be given the following sharp representation

in terms of the standard gradients of I (see Corollary 25 in Appendix A):

0I(0) =co{VI(p): ¢ € O}, (9)

'5Tn Ghirardato and Marinacci [21] these sets are denoted D(3=) and £(3=) respectively.
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where 2 is any subset of R™ such that I is differentiable on © and Q¢ has Lebesgue measure
zero. (By Rademacher’s Theorem it can simply be the domain of differentiability of I.)

We mention in passing that Eq. (9) provides further motivation for our interpretation of
the set C as revealed ambiguity. For, given a functional I that has Gateaux derivatives almost
everywhere (possibly different across points), each derivative can be interpreted as a “possible
probabilistic scenario” that is implicitly used when evaluating a certain subset of acts. Thus,
we can look at the collection of the Gateaux derivatives of the preference functional I as a
set-valued “belief” associated with I. Alongside Theorem 14, Eq. (9) shows that the set C also
fits this definition of “belief.”

To see the operational import of Eq. (9), assume that the preference functional I is also

piecewise linear. That is, there exists a countable family {C}};c;, of convex cones such that:
e R" =,
e intC; £ () for each [,
e [ is linear on each Cj.

On finite state spaces, Choquet integrals are piecewise linear functionals; the same is true of

the preference functionals studied by Castagnoli et al. [5] and Siniscalchi [36].17

Given a piecewise linear I, it is simple to describe its 0I(0). As I is linear on each cone (i,
there is a probability vector P corresponding to the unique linear extension of /|, to R™. By
Eq. (9), we then have (see Corollaries 26 and 28 in App. A) that

DI(0) =co{P:leL}. (10)

This equation shows that there exists a simple connection between our C and the collections of
probabilities {P; : [ € L} derived in [5] and [36]. For CEU preferences, Eq. (10) enables us to

retrieve C from the capacity p, as explained in the next example.
Example 17 Let I be a Choquet integral with respect to a capacity p. Set

Co = {p € R": 0(5,(1)) = ¢(50(2)) =+ = 0(55(n))}

for each permutation o of {1,...,n} and observe that I is linear on each convex cone C,. In

fact,
I(@)Z/sodpz/sodP",
s s

where P? is the probability defined by

P7(553)) = P{86(1)s S0(2)s -+ 50(i) }) — P{86(1) 50(2)s -+ Sa(i-1)})

for each i = 1,...,n. Hence, I is piecewise linear with respect to the collection {CG}JEPer(n)f
where Per(n) is the set of all the permutations of {1,...,n}. By Eq. (10), we then have

C = co{P? : 0 € Per(n)}. (11)

'"Notice that in [36] the set L is countable because of the condition int (C; N Cy,) = @ for all I # h.
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In other words, in the Choquet case (with finite states) the set C is simply the convex hull of
the set of all the P7; that is, the convex hull generated by the probabilities used in calculating
the Choquet integral as we vary the monotonicity of the act being evaluated. We thus generalize
a result obtained, in the case of linear utility, by Nehring in a 1996 talk (see footnote 3).

When the functional I is also concave —i.e., when I(p) = [ ¢ dp, with p supermodular'®—
Proposition 16 and Eq. (11) imply that Core(p) = co{P? : o € Per(n)}. Thus, Shapley’s [35]
well-known characterization of the core of a supermodular capacity can also be obtained as a

consequence of Theorem 14.

6 A Special Case: a-MEU preferences

As we observed just after Theorem 11, an interesting class of invariant biseparable preferences
are those whose ambiguity aversion index a is constant, the so-called a-MEU preferences. Here
we show their behavioral characterization.

For any act f € F, denote by C(f) the set of the certainty equivalents of f for =; i.e., the

elements x € X such that x ~ f. It is easy to see that
C(fy={xe X: forallye X, y = f implies y = x, f = y implies = = y}.
We analogously set:
C*'(fy={zeX: forally e X, y =" f implies y =" x, f =" y implies = =" y}.

Intuitively, these are the constants that correspond to “possible” certainty equivalents of f.
(Recall that = »=* y if and only if = = y.)
The following result provides the characterization of C*(f) in terms of the expected utilities

mapping on C:
Proposition 18 For every f € F,

z € C7(f) <= min P(u(f)) < u(z) < max P(u(f)).

Moreover, u(C*(f)) = [minpec P(u(f)), maxpec P(u(f))].

Thus, u(C*(f)) is the image of the expected utility mapping of f: the set of possible expected
utilities of f as we range over the scenarios in C.

We can now present the axiom that characterizes a-MEU preferences.
Axiom 7 For every f,g € F, C*(f) = C*(g) implies f ~ g.

The interpretation of the axiom is straightforward. For a DM who satisfies axiom 7, the set

of certainty equivalents of f with respect to =* contains all the information the DM uses in

18 A capacity p is supermodular if p(A U B) + p(AN B) > p(A) + p(B) for every A,B € .
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evaluating f. Notice that the condition C*(f) = C*(g) in the axiom could also be rewritten as
follows: for every x € X, f =" « if and only if ¢ =" x, and = »=* f if and only if z >* g.

In terms of the representation in Eq. (8), axiom 7 clearly guarantees that the DM’s evaluation
I(u(f)) of act f depends only on the range [minpee P(u(f)), maxpec P(u(f))] of the expected
utility mapping {P(u(f)) : P € C}, rather than on the expected utility mapping itself. More

surprisingly, such dependence must be linear.
Proposition 19 Let = be a binary relation on F. The following statements are equivalent:

(i) = satisfies axioms 1-5 and 7.

(1) There exist a nonempty, weak™ compact and convex set C of probabilities on 3, a noncon-
stant affine function u : X — R and « € [0, 1] such that = is represented by the preference
functional I : By(X) — R defined by

pPeC pPeC

I(u(f)) :amin/u(f)dP-l—(1—a)max/u(f)dP, (12)
S S
and u and C represent =* in the sense of Eq. (4).

Moreover, C is unique, u is unique up to a positive affine transformation, and o is unique if C

s not a singleton.

The interpretation of a as the DM’s coefficient of aversion to ambiguity hinges crucially on
its uniqueness, which follows from the fact that C represents the relation »=*. Such uniqueness
does not rule out the possibility (see, e.g., Marinacci [27]) that the preference = may have a
similar representation with a different coefficient 8 and a different set of priors D. That is,

I(u(f)) zﬂmin/su(f) dP + (1—-p5) max/su(f) dP. (13)

PeD PeD

However, the next result shows that in such a case the set C must be included in the set D.

Proposition 20 Let = be a preference that can be simultaneously represented as in Eqs. (12)
and (13). Then D2 C, a> B if 6> 1/2 and a < [ if B < 1/2.

To understand the relation between o and 3, notice that when we use D O C we are attributing
to the DM an inflated perception of ambiguity. We are thus underestimating the magnitude of
his reaction to the perceived ambiguity.

Summing up, among all the possible representations, the representation obtained in Propo-
sition 19 is made special by two considerations: 1) it is the only one yielding a set C which
represents =*, 2) it yields the smallest set of possible probabilistic scenarios; i.e., it offers the

closest approximation to SEU that can be obtained.
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7 Conclusions

We have introduced the notion of unambiguous preference, and proved that such a notion
can be helpful in separating the DM’s preference representation in “revealed” ambiguity and
“revealed” ambiguity aversion. We have also shown that the DM’s revealed ambiguity can be
seen as the (properly defined) generalized differential of the DM’s preference representation,
analogously to what happens in the SEU case.

It is our hope that such separation —though artificial as any representation of preferences
by mathematical means— will be helpful in analysing the impact of ambiguity and ambiguity
aversion/love in decision making situations of different sorts.

It is worth remarking that some interesting consequences of the results in this paper are
already drawn in a companion paper [18]. For instance, we discuss a natural dynamic extension
of our static choice setting, and show that dynamic consistency of the unambiguous preference
relation —a property arguably more defensible than dynamic consistency of the DM’s prefer-
ences in the presence of ambiguity— characterizes exactly the so-called generalized Bayesian
updating rule, whereby all the probabilities in the set C are revised by Bayes’s rule.

From a more theoretical perspective, in [18] we also consider the issue of defining unam-
biguous events and acts, which was briefly touched upon in our discussion of crisp acts in this
paper. We argue that, while it is natural to define unambiguous events as those which corre-
spond to crisp bets, the same is not necessarily true of general (non-binary) acts. In fact, if
unambiguous acts are those which are measurable with respect to a partition of unambiguous
events, then any act which is obtained by permuting the payoffs of an unambiguous act should
also be unambiguous. This is not in general true for crisp acts.

An important issue that is stimulated by our analysis and awaits further inspection is the
following “integrability” question: Given a set C of priors and the associated relation <, which
functions can be ambiguity aversion indices for an invariant biseparable preference that has C
as its revealed ambiguity? The characterization of the set of such functions is made important
by the (numerous) potential applications in which external considerations dictate the structure
of the set C.
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A Functional Analysis Mini-Kit

In this appendix we provide/review some functional analytic results and notions that are used
to prove the results in the main text, and in some cases are directly mentioned in Section 5.
Some of the proofs are standard, and are thus omitted.

A.1 Conic Preorders

Given a non singleton interval K in the real line, we denote by By(X, K) the subset of the
functions in By(X) taking values in K.
We recall that a binary relation 2 on By(X, K) is:

e a preorder if it is reflexive and transitive;
e continuous if ¢, 2 1, for alln € N, ¢, — ¢ and ©,, — ¥ imply ¢ = ;

e conic if ¢ 2 1 implies ap + (1 — )0 2 ap + (1 — «) 0 for all € By(X, K) and all
a€0,1];%

e monotonic if ¢ > 1 implies ¢ = 1.
e nontrivial if there exists ¢, 9 € By(X, K) such that ¢ 2 1 but not ¢ 2 .

Proposition 21 For i = 1,2, let C; be nonempty sets of probabilities on ¥ and 2; be the
relations defined on By(X, K) by

@Zi¢<:>/<,0dP2/¢dP for all P € C;.
S S

Then
@Zi¢<:>/godP2/¢dP for all P € @™ (),
S S

and the following statements are equivalent:
(1) ¢ 21 =@ 229 for all ¢ and ¢ in By(X, K).
(i) @ (C2) C e (C1).
(#77) [infpec, P(¢p),suppec, P(#)] C [infpec, P(p),suppec, P(p)] for all ¢ € Bo(%, K).

Proposition 22 2 is a nontrivial, continuous, conic, and monotonic preorder on By(X, K) if

and only if there exists a nonempty set C of probabilities such that
goZzb(z)/cdeZ/de for all P € C. (14)
S S

Moreover, @“’*(C) is the unique weak™ compact and convex set of probabilities representing 2,
in the sense of Eq. (14).

9Notice that if K = R or Ry and > is a preorder, then > is conic iff ¢ > ¢ implies oo + 0 > ap + 6 for all
0 € Bo(X,K) and all « € Ry.
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A.2 Clarke Derivatives and Differentials: Preliminary Properties

We denote by B(X) the closure in the supnorm of By(X), whose norm dual is isometrically
isomorphic to ba(X). If S is a compact metric space, we denote by C(S) the set of all continuous
functions on S; in this case, we always assume 3 to be the Borel o-algebra. The norm dual
of C(S) is isometrically isomorphic to the subset ca(S) of ba(X), consisting of all countably
additive set functions.

In what follows, ® denotes either By(X), or B(X), or C(S); ®* denotes ®’s norm dual.

A monotonic constant linear functional I : & — R is Lipschitz of rank 1. In fact, given
0,0 € @, o <+ |l — o implies I(p) < I(¥) + [[¢ — |, hence I(p) — I(¢) < [l — P|;
switching ¢ and 1 yields [I(¢) — ()] < |l¢ — #||. Thus, given a monotonic constant linear
functional I : ® — R, we can study its Clarke derivatives and Clarke differentials (as defined in
Section 5). For easier reference to the existing literature we remind that — instead of the Clarke
lower directional derivative — many authors use the Clarke upper directional derivative,

defined by
10(907 g) —lim sup I(w —+ t€> — I(w)

Yo t
t10

for every ¢, € ® and define the Clarke differential at ¢ by
() ={m € " : m(§) < I°(¢;€), V¢ € }.

The observation that I°(¢; &) = —I,(p; —&) for every ¢,& € ® shows that the two approaches
are completely equivalent.
We refer to Clarke [9] for properties of the Clarke derivative and differential. Among them,

the following are especially important:

L. For every ¢,§ € @ Lo(p;€) :mé%i}(l@ m(§) and I°(¢; ) = e m(§).

2. (Lebourg Mean Value Theorem) For all ¢, € ®, there exist v € (0,1) and m € 9I(yp +
(1 = 7)v) such that I(p) — I(¢) =m(p — ).

Some additional properties of I, and 0I(-) that we use below are stated next.
Proposition 23 Let I : & — R be a locally Lipschitz functional. Then:

1. If I is positively homogenous, Io(p;-) = Io(ap;-) for all a > 0, and 01(p) C 0I1(0) for all

@ € ®. Moreover, 1(0;€) = infyeq I(¢ +&) — 1(¢)) and I°(0;€) = supyeqe [(Y +&) —1(3)
forall £ € ®.

2. If I is monotonic, then for all ¢ € ® the function I,(p;-) is monotonic, and m is positive

for all m € 9I(yp).

3. If I is constant additive, then for all ¢ € ® the functional I,(p;-) is constant linear, and
m(S) =1 for allm € 9I(p).
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Notice that it follows from this proposition that if I is monotonic and constant linear, then
for all p € By(X) we have 0I(¢) C 9I1(0) and 9I(0) consists of probabilities.

A.3 Clarke Differentials: Representation on Compact Metric S

Suppose now that S is a compact metric state space. Notice that, for S finite, we have
By(£) = C(5) = B(%) = RF);

while for S infinite, C'(S) is the only separable Banach space of the four.

A Borel subset NV of C'(S) is Haar-null if there exists a (not necessarily unique) probability
measure 7 on the Borel g-algebra of C'(.5), such that 7 (¢ + N) = 0 for each ¢ € C(S). More
generally, a subset N of C(S) is a Haar-null set if it is contained in a Borel Haar-null set.
Haar-null sets are closed under translation and countable unions; see Christensen [7]. In finite
dimensions (i.e., for finite S), Haar-nulls sets coincide with the sets of Lebesgue measure 0.
Using this terminology, Christensen [8] shows that each real-valued locally Lipschitz function
defined on a non-empty open subset 2 of C'(S) is Gateaux differentiable except on an Haar-null
subset of €. In fact, the following even stronger result is known.?? Here, V denotes a Gateaux

derivative.

Theorem 24 (Thibault [37], Prop. 2.2) Let J be a locally Lipschitz functional defined on
a non-empty open subset Q@ of C(S) and let D = {p € Q : VJ(p) exists}. Then for each
Haar-null set N C C(S) and each ¢ € Q we have that

dJ(p) = o {w* — lim VJ(g¢;) 1 ¢; € D\ N, ¢; — Sp}.

1—00

Corollary 25 Let J be a locally Lipschitz and positively homogeneous functional defined on
C(S) and let D = {p € C(S) : VJ(p) existsy. Then, for each Haar-null set N C C(S), we
have that 0.J(0) =" {VJ(p): o € D\ N}.

Proof. Suppose J is Gateaux differentiable at ¢ € C(S), then Vo € 9J(p) and, by positive
homogeneity, 9.J () C 9.J(0). This proves that 9.J(0) 2 e@” {VJ(¢) : ¢ € D\ N}. Conversely,

by the above theorem we have

dJ(0) =" {w* — lim VJ(¢;) 1 p; € D\'N, ¢, —>0}.

1—00

But, for all p, € D\ N such that ¢; — 0 and w* — lim;_,o, VJ(p;) exists, we have

w' = lim VJ(p;) € {VJ(p) 1o € D\N}" Ceo” {VJ(p):peD\N}.

We conclude that 9.J(0) C @o” {VJ(¢): ¢ € D\ N}. O

20The results of Christensen and Thibault are stated for separable Banach spaces rather than for C(S).
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Notice that the definition of piecewise linear functional of Section 5 can be naturally be
extended to functionals defined on C(S) (or By(X), or B(X)). Obviously, a piecewise linear
functional is positively homogeneous, and if it is also locally Lipschitz, then for all [ € L there
exists a unique m; € ca(X) such that J‘Cl = my. In the sake of brevity, call {C}, m;};c1 a linear

decomposition of J.

Corollary 26 Let J be a locally Lipschitz and piecewise linear function defined on C(S5), and
{C1,mi}ier a linear decomposition of J. Then,

dJ(0) =eo"” {my; : 1 € L}.

Proof. Clearly, J is Gateaux differentiable in int C; for each [, and V.J(p) = m, for each
¢ € int C;. In particular, @ {m; : I € L} C 8.J(0).

For each [, bnd C; is Haar-null (see Matouskova [29], p. 1794), hence N = |J,c; bnd K;
is Haar-null. Let D = {p € C(S) : VJ(y) exists} and observe that D\ N C C(S)\ N C
U,y int Cp. Therefore, {VJ(¢) : 9o € D\ N} C {my:1€ L} and 8J(0) Ceo” {my:1€ L}. O

Lemma 27 Let H : B(X) — R be a monotonic, positively homogeneous and locally Lipschitz
functional. Denote by I (resp. J) the restriction of H to Bo(X) (resp. C(5)), and by OI
(resp. 0J, resp. V.J) the Clarke differential of I (resp. Clarke differential of J, resp. Gateaux
derivative of J) relative to By(X) (resp. relative to C(S)). Then OH(0) = 0I(0).

Moreover, provided 0I(0) C ca(X),

DI(0) = 8J(0) = e {VJ(¢) : ¢ € O}, (15)

where Q is any subset of C(S) on which J is Gateaux differentiable and such that C(S) \
Q is Haar-null, and the closure is with respect to any one of the following weak™ topologies:
o(ca(x),C(S)), o(ca(=), By(X)), olca(S), B(E)).

Notice that, if I is obtained from an invariant biseparable preference = such that »=* is monotone
continuous, then 01(0) C ca(X).

Proof. Just notice that, since By(X) is dense in B(X) and H is continuous, then H°(0;¢) =

supyep(s) H( + &) = H(Y) = supgep,(s) I(@ + &) — I(p) = I°(0;§) for all £ € By(X). Then,
0I(0) = {m € ba(X) : m(§) < H°(0;§), V€ € By(X)}. Continuity of H® and density of By(X)
in B(X) yield

OI(0) = {m € ba(X) : m(¢) < H°(0;€), V¢ € B(X)} = 9H(0).

Next, assume 91(0) C ca(X). Notice that monotonicity of H implies that 0H(0) = 9I(0)
consists of positive countably additive set functions. Therefore, ¢,,¢ € B(X) and ¢,, T ¢ or
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¢n | @ imply H(p,) — H(p) and H®(0;¢,) — H*(0;0).2!

For all £ € C(S),

H°(0;€) = sup H(p+&)—H(p) = sup J(p+&)—J(p)=J°(0;).
VEB(T) 0eC(S)

On the other hand, for all £ € C(S) the set {¢ € B(X): H(¢y + &) — H(¢) < J°(0;€)} contains
C(S) and it is closed under monotone pointwise limits, so that it coincides with B(X). It follows
that H°(0;&) = J°(0;¢) if € € C(5).

As a consequence, 9J(0) = {m € ca(X) : m(§) < H°(0;¢), V& € C(S)}. If m € 9J(0),
{£ € B(X) : m(&) < H°(0;€)} is a set containing C(S) and closed under pointwise limits, so
that it also coincides with B(X). We can conclude that, since 9I(0) C ca(X), 0J(0) = {m €
ca(X) :m(§) < H°(0;€), V¢ € B(X)} = 0H(0) = 91(0).

Finally, 0J(0) = 01(0) = 0H(0) is compact Hausdorff in the topologies o(ca(X), C(S)),
o(ca(X), Bo(X)), and o(ca(X), B(X)). Since o(ca(X), B(X)) is finer than the others, they all
coincide on 0H (0) and Corollary 25 concludes the proof. t

Let H : B(X) — R be a monotonic, locally Lipschitz functional. Say that H is properly

piecewise linear if there exists a countable family {C}};cr of convex cones such that:
e B(X)=U,0C,
e int C; N C(S) # 0 for each I,

e [ is linear on each Cj.

Corollary 28 Let H : B(X) — R be a monotonic, locally Lipschitz, properly piecewise linear
functional such that 0H(0) C ca(X), and {C;,mi}ier a linear decomposition of H. Then

OH(0) =co{m;:l € L}
where the closure is taken with respect to the o(ca(X), B(X)) topology.

Proof. Let J be the restriction of H to C(S) and K; = C;NC(S). Clearly, (K;,m;) is a linear
decomposition of J. Lemma 27 and Corollary 26 yield 0H(0) = 9J(0) = co{m; : | € L} =
E{ml S L} O

*'For all ¢ € B(X), the function (¢,-) : 0H(0) — R defined by (1p,m) = [, dm for all m € 9H(0)
is o(ba(X), B(X))-continuous. If ¢,,¢ € B(X) and ¢, 1 ¢, then (p,,) T (p,-) (Levi’s Monotone Conver-
gence Theorem), therefore (¢, ,-) uniformly converges to (p,-) (Dini’s Theorem and the fact that OH(0) is
o(ba(X), B(X))-compact). Then, for all ¢ > 0 there exists 7 € N such that |(p,,m) — (p,m)| < e for all
m € 0H(0) and all n > 7. By the Lebourg Mean Value Theorem, for all n > 7 there exist v, € (0,1)
and m, € 0H(v,¢, + (1 —v,)¢) C OH(0) such that |H(yp,)— H(®)| = [{¢,,mn) — (p,m,)| < &, and
H(yp,) — H(p). Moreover, since (¢p,,, ) converges to (¢, -) uniformly on 0H (0) implies that

H°(0;0,) = = H°(0; ).
(G x| (s m) = ax (p,m) (05¢)

The case ¢,, | ¢ is analogous.
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B Proofs of the Results in the Main Text

We begin with two preliminary remarks and a piece of notation that are used throughout this

appendix. First, given the representation in Lemma 1, we observe without proof that
{u(f): feF}={p € Bo(X): p =u(f), for some f € F} = By(XZ, u(X)).

Second, notice that it is w.l.o.g. to assume that u(X) 2 [—1,1]. Finally, given a nonempty,
convex and weak™ compact set C of probabilities on X, we denote for every ¢ € By(X),

Clp) =min P(p),  Clp) = max Pp).

B.1 Proof of Proposition 4

Taking A = 1 in the definition proves point 1. Next we prove that =* is monotonic (point
4). Suppose that f(s) = g(s) for all s € S. By axiom 2, for every h € F and X € (0,1],
Af(s) + (1 = XN)h(s) = Ag(s) + (1 — A)h(s) for all s € S. Using axiom 4, we thus obtain that
Af+ (1 —=X)h = Ag+ (1 — A)h. This shows that f =* g. If = = y, then the monotonicity of »>*
yields  %=* y. Along with point 1, this proves point 2. As to point 3, reflexivity also follows
from monotonicity. To show transitivity, suppose that f =* g and ¢ >=* h. Then for all k € F
and all A € (0,1], we have

AM+A=Nk=Ag+ (1 =Nk = A+ (1= Nk.

This shows that f =* h.

Next, we prove the implication = of point 5 (The other implication follows immediately
from the following Proposition 5, and it is not used in the proof of that proposition). Given
fyg,h € Fand X € (0,1), suppose that f =* g. Then for every u € (0,1] and every k € F, we

have

(1=Xp,  1-p I=Mp, , 1-p
A 1—A h k| = (A 1— A h k
(A)f+ (1= Ap) o T (A)g + (1 = Ap) o T

by definition of =*. Rearranging terms, we find
pAf 4+ (1 =Xh) + (1 =k = pAg + (1 = Nh) + (1 — p)k,

which implies Af + (1 — A)h =" Ag + (1 — A\)h, since the choice of p and k was arbitrary. The
case A = 1 is trivial. Point 6 follows immediately from the following Proposition 5. (It is not
used in the proof of that proposition.)

Finally, assume that >=** is an independent binary relation such that f »=** g implies f = g.
Then f =** g implies \f + (1 — A\)h =** Ag+ (1 — A)h for all h € F and A € (0,1], hence
M+ (L =XNh=A g+ (1= ANhfor all h € F and A € (0, 1], finally f »=* g. This proves 7.
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B.2 Proof of Proposition 5

Notice that f 3= g iff I(Au(f) + (1 — MNu(h)) > I(Au(g) + (1 — ANu(h)) for all h € F and all
A € (0,1]. Define 2 on By(X,u(X)) by setting

> 1h == T(Ap+ (1= N)0) > I(Mb+ (1 = M\)f), V0 € Bo(S,u(X)), VA € (0, 1].

Clearly, f »=* g iff u(f) = u(g). It is routine to show, either using the properties of >* or
those of I, that 2 is a nontrivial, monotonic and conic preorder on By(X%,u(X)). Moreover, if
n 2 Wy, foralln € N, ¢, — ¢, ¢, — ¢, then I(Ap,, + (1 — X)0) > I(A\Y,, + (1 — N)), for all
A€ (0,1], all @ € By(X,u(X)), and all n € N. Since I is supnorm continuous, it follows that
2.
We have thus shown that 2 is a conic, continuous, monotonic, nontrivial preorder on
By(X,u(X)). By Proposition 22 it follows that there exists a unique nonempty, weak™ compact

and convex set C of probabilities on Y such that

¢Z¢<:>/gde2/1/)dP for all P € C,
S S

which immediately yields the statement.

B.3 Proof of Remark 1

The following result is the claim in the remark. Recall that X is here assumed to be a o-algebra.

Proposition 29 Let = be an invariant biseparable preference. Then the following statements

are equivalent:

(1) For all z,y,z € X such thaty > z, and all sequences of events {An}n>1 C X with A, | 0,
there exists n € N such that y »=* vAzz2.

(i7) C consists of countably additive probabilities.

Proof. (i) = (ii): Let A, | 0 and let y,2 € X be such that y > 2. W..o.g. assume
u(y) =1 and u(z) = 0 and let z; = (1/k)y + (1 — (1/k))z so that u(z;) = 1/k (hence z > 2).
By monotone continuity, for all k& € N there exists 7 € N such that z; =* yAzz. Whence
1/k > P(Az) for all P € C, but P(A,,) is decreasing, and thus lim, ., P(4,) < 1/k. Clearly
this implies that all the Ps belonging to C are countably additive.

(71) = (i): As C is a weak®™ compact set of countably additive probabilities, it is weak
compact. By Theorem IV.9.1 of Dunford and Schwartz [10] it follows that if ¢ > 0 and A,, | 0
there exists i such that P(A,,) < ¢ for all n > 7 and all P € C. Now, let z,y,z € X be such
that y = z. If z %= x, we have y =* z =* A,z for all n (z statewise dominates zA,z). If z >~ z,
there exists n such that P(A4,) < [u(y) —u(z)]/[u(z) — u(z)] for all n > n and all P € C. That
is, u(y) > (u(x) — u(2))P(A4,) + u(z) = P(u(xA,z)). We conclude that y =* xAzz. O
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B.4 Proof of Proposition 6

Lemma 30 Let Y be a vector space and u,v be two nonzero linear functionals on Y. One and

only one of the following statements is true:

e u=av for some a > 0.
e dJycY :u(y)v(y) <O0.

Proof. Clearly the two statements cannot be both true. Assume, by contradiction that both
are false. That is: there exist u,v nonzero linear functionals on Y such that u # av for all
a>0,and u(y)v(y) >0foralyeY.

Then ¥ = [uv > 0JU[u = 0]U v = 0] = [uv > 0] Ukeru U kerv. keru and kerv are
maximal subspaces of Y, hence Y = (z) @ keru for some z € Y such that u(z) > 0. If
keru = kerw, for all y € Y, there exist b € R and x € kerw such that y = bz + x, whence

=bu(z) = —=<bu(z :u(z)
uly) = bu(z) = TIb0() = 1

y' € keru\ kerv and y” € kerv\ keru (keru and ker v are maximal subspaces), we can choose
y' and y” such that v(y') > 0 and u(y”) < 0. Finally, u(y’ + ¢y")v(y' + y") = uw(y")v(y') < 0,
which is absurd. 0

v(y), which is absurd. Else, keru # kerw, so there exist

Corollary 31 Let X be a nonempty convex subset of a vector space and u,v be two nonconstant
affine functionals on X. There exist a € R4 and b € R such that u = av + b iff u(xy) >
u(ze) = v(x1) > v(x2) for every x1,x2 € X.

Proof. Necessity being trivial, we only prove sufficiency. Notice that
Y ={t(x; —x2) : t e Ry, z1,20 € X}
is a vector space and the functionals

[T t(x1 — 562) — t(U(«Tl) - u(xQ))v

0 t(z — x2) — t(v(xr) —v(x2))
are well defined, nonzero, and linear on Y. Moreover,
U(t(ry —x2)) > 0 = u(x1) > u(zr2) = v(z1) > v(xr2) = v(t(x1 — x2)) > 0.

Therefore fly € Y such that @(y) 9(y) < 0. By the previous lemma, there exists a > 0 such that
4 = av. Finally, fix xg € X, for all z € X

u(z) — u(zg) = w(1(z — x9)) = av(1(z — xg)) = av(x) — av(zo)

so u(z) = av(z) + [u(zo) — av(xg)], set b = [u(zg) — av(xp)]. O
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Proof of Proposition 6. (i) = (ii): For all z,y € X,
u(z) >u(y) = x =1 y=—=x =y =T =5y = T =2 y = uz(z) > uz(y).

By Corollary 31, this implies that we can assume u; = ug = u. Moreover, for all f,g € F,
[ =1 9= f=5g. Thatis,

P(u(f)) = P(u(g)) VP eCi= P(u(f)) = P(u(g)) VP €Cy,

which by Proposition 21 (applied to By(X,u(X))) implies C2 C Cy.
(74) = (7): Obvious.

B.5 Proof of Proposition 7

The result follows immediately (take 1 = 0) from the following lemma, that will be of further

use.

Lemma 32 For all f € F,

min P(u(f)) = inf {I <u(f) 41 ; Au(g)> —I <1 ; Au(g)>}

pPeC geF

and

max P(u(f)) = sup {1 (u(f) + 2 ; Au(g)) —1 (1 ; Au(g))}

PeC gEF
Ae(0,1]

= sup {I(u(f) +4) - 1)}
YEBL (D)
Proof. Clearly {@u(g) g€ F, A€ (0,1]} C By(X). Conversely, for all ¢ € By(X) there
exists a € (0,1) and g € F such that ay) = u(g) hence 1 = Lu(g). Since @ ranges from 0

to oo (recall that A € (0,1]), there exists A" such that < = (1;7,)‘/) and ¢ = (1;,>‘l)u(g). We have

thus proved the second equality in both equations.
Take Zmin € X that satisfies u(zmin) = C(u(f)).?? We have f =* xpn; that is, for all g € F
and A € (0,1]:
I(u(Azmin + (1 = A)g)) < I(u(Af + (1= A)g))

or

I(Au(@min) + (1 = Mu(g)) < I(Au(f) + (1 = Nu(g)).
Therefore,

Au(Zmin) + 1((1 = Au(g)) < I(Au(f) + (1 = Nu(g))

22Notice that such Zmin exists. In fact, there exist «’/,2” € X such that 2’ = f(s) = «” for all s € S, then
' =" f(s) =* 2 and u(z') > P(u(f)) > u(z”) for all P € C. Finding Tmin is now trivial.
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from which we obtain

awin) < 1 () + 25 2000)) ~ 1 (15 M0t

Finally,

geEF
Ae(0,1]

ey < it {1(utn)+52u0) -1 (520 |
Conversely, let zi,r € X be such that

wmﬁw:é%h{104ﬂ+1;Amm)—I(lgkmm)}%

Then,

) < 1 () + 25 ut)) 1 (25 2000))

A
for all g € F and A € (0,1], whence f >* xiye. That is, u(zinr) < C(u(f)), or

Agi%%] {I <u(f) + 1;)\u(g)) —1 <1 ; )‘u(g)>} < min P(u(f)),

which concludes the proof. ]

B.6 Proof of Lemma 8
(i) = (4i): Suppose that for some A\, N and x, ', A\ f + (1 = A\)z ~* X g+ (1 — X)2’. Applying
Eq. (6) of Proposition 5, this is equivalent to

APu(f))+ 1 =XNu(x) =N P(u(g)) + (1 — X)u(x') forall P eC.

It follows that for all P € C,

P(u(f)) = P(a(9) + 510~ N)ule) — (1= Nu(a)]

so that we get the conclusion by letting a = /\7, and b= $[(1 — X)u(a2’) — (1 — Nu(z)].
(1) = (4): Suppose that

P(u(f)) =aP(u(g)) +b forall P eC.

Suppose first that a < 1. Then, let A = a. By renormalizing the utility function if necessary,
we can assume that b/(1 — A) € u(X), so that there is x € X for which u(z) = b/(1 — ). It

23 Again, notice that such iy exists. In fact, choosing z’, 2" € X such that 2’ = f(s) = z”, it follows

geF
Ae(0,1]

w@) 21wz ot {10+ 5200 ) -1 (52u0) b2 ).
Finding &in¢ is now trivial.

33



follows that f ~* Ag+ (1 — \) z. The case of a > 1 is dealt with by rewriting the equation as
follows: , ,
P(u(g)) = EP(u(f)) - for all P € C,

and proceeding as above to get A f+ (1 — )z ~* g. Finally, suppose that a = 1. Having chosen
(renormalizing utility if necessary) x, 2’ € X such that u(x) = 0 and u(2’) = b, it follows that
if+so~rlg+ia

(73) = (i7i): Obvious.

(7i1) = (i1): Notice that the expected utility mappings

P o= P(u(f))
P = Plu(g))

are affine functionals on C. Therefore, (by the standard uniqueness properties of affine repre-

sentations) they are isotonic iff one is a positive affine transformation of the other.

B.7 Proof of Proposition 10

(i) = (iii): Suppose that k is crisp. Then for all f ~ g and A € (0,1], Ak + (1 — A\)f ~
Ak + (1 — A)g. That is,

I(u(k) + (1= Nu(f)) = I(Au(k) + (1 = Mu(g)),
or, equivalently since I(u(f)) = I(u(g)),
F(u+ 52 ) -1 (S50 =1 (a0 + 520 ) -1 ()

Therefore, for all ¥,0 € By(X) such that I(¢) = 1(6),

I(u(k) + ) = I(¢) = I(u(k) + 0) — 1(6).
If I(v) # 1(0), set a = I(¢) — I(0). Then, I(v)) = I(0 + a), whence
I(u(k)+ ) —I() = I(u(k) + 0 4+ a) — I(0 + a),

so that again
I(u(k) +¢) = 1(¢) = I(u(k) +6) = 1(0).

By Lemma 32, we conclude that if k is crisp

Clu(k)) = inf {I(u(k)+¢)—IW)}= sup {I(u(k)+1)—I(¢)}=C(u(k)).

pEBL(X) 0€BL(X)

(791) = (iv): Notice that (ii7) and Lemma 32 imply

inf  {I(u(k) +¢) = I(¢))} = C(u(k)) = C(u(k)) = sup {I(u(k) +1) = I(s))},

pE€BL (%) ©€BL(X)
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thus I(u(k) +¢) — I(¢0) = I(u(k)) for all ¢ € By (X), whence for all A € (0, 1] and all g € F:

(w15 000 ) -1 (5000 ) = 1)

or

I(Au(k) + (1 = Au(g)) = M (u(k)) + (1 = M) (u(g))-

Finally, notice that the above equation is trivially true if A = 0.
(tv) = (i): If f ~gand A € (0,1), it follows from (iv) that

IOu(k) + (1= Nu(f)) = M(u(k) + (1= NI(u(f))
= M (u(k))+ (1= N)I(u(g))
= I(wu(k) + (1= Nu(g)),

whence Ak + (1 = A)f ~ Ak + (1= N)g.
(1) = (dii): Since k < z, there exist A\, \" and y, %’ such that

A+ (1 =Ny~ Nz+1-=-XN)y,
which, applying Proposition 5, is equivalent to
AP(u(k)) + (1= Nu(y) = Nu(z) + (1 = N)uly'),

for every P € C. This immediately implies (4i7).
(7i1) = (41): Since P(u(k)) = ~ for every P € C, we just need to choose x € X such that
u(x) =, and then apply Proposition 5 to see that k ~* x, yielding (i7).

B.8 Proof of Theorem 11

Suppose that 3= satisfies axioms 1-5. Let I and u respectively be the preference functional and
utility that represent = obtained in Lemma 1, and C the weak® compact and convex set of
probabilities on X that represents »=* obtained in Proposition 5.

We have observed in Proposition 7 that C(u(f)) < I(u(f)) < C(u(f)) for all f € F. Hence,
if f is crisp then I(u(f)) = P(u(f)) for every P € C. If f is not crisp, then there exists
a(u(f)) € [0,1] such that

Such a(u(f)) is unique, for

I(u(f)) = Clu(f))

C(u(f)) = C(u(f))

We see that the function a(-) provides the sought representation. We are therefore done if we
prove that a can be defined on F,_ \ K.

a(u(f)) =
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Suppose that f,g € K and f =< g. Then, there exist a pair of constants z,2’ € X and
weights A\, \ € (0, 1] such that

Af+ A =Nz~*Ng+(1-XN)2" (16)

It follows from point 1 of Proposition 4 that Eq. (16) implies I (Au(f)+(1—N)u(zx))
(1 —X)u(z')), so that by the constant linearity of I, AI(u(f))+ (1 —N) u(x) = N I(u(g)) + (1 —

N)u(z'). As a consequence,

N 1

+ 7l =N u(@) = (1 =X u()]-

If we set 8= +[(1 = N)u(z') — (1 — A)u(z)] and a = X'/A, we then obtain
I{u(f)) = al(u(g)) + 5.
Notice that Eq. (16) also implies that for every P € C,
AP(u(f)) + (1 = A u(z) = N'P(u(g)) + (1 = X) u(z).

That is, P(u(f)) = aP(u(g)) + B for every P € C. We conclude that

Tu(f)) — Clu(f)
WD) = el —ctlf)
_ al(u(g) + § - maxpec(aP(u(g)) + )
TrcelaP(u(9) T F) = mexpeclaPa) 7
— a(ulg)).

Therefore, a(u(f)) = a(u(g)) whenever f =< ¢. If, with a little abuse of notation, we let
a([f]) = a(u(f)), we find that a : (F/= \ K) — [0,1], as claimed.

B.9 Proof of Proposition 12

Since %=1 and =9 reveal identical ambiguity, we have C; = C3 = C and we can assume u; = ug =
u. If C is a singleton, then =1 and =2 coincide, hence %=1 is more ambiguity averse than 3=
and vacuously a1 ([f]) > az2([f]) for every f € F\ K = (. Therefore, we assume |C| > 1.

Suppose that =1 is more ambiguity averse than =9. Fix f € F\ K, and let x € X be
indifferent to f for =;. We have:

ar([f) C(u(f)) + (1 = ar([f]) C(u(f)) = u(=) < ax([f]) C(u(f)) + (L — ax([f]) C(u(f)).

That is,

as([f]) (C(u(f)) = C(u(f))) +Clu(f)) = ar([f]) (C(u(f)) = Clu(f))) + Clu(f)),

whence a;([f]) > a2([f])-
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Conversely, suppose that ai([f]) > a2([f]) for every f € F\ K. For all x € X,

frriz e a(u(f)) (Clu(f))
= ax(u(f)) (C(u(f))

= [

—C
—C

On the other hand, for all f € K and all x € X, we can take P € C to obtain:

fr1ze Plu(f) >ulz) & f = .

B.10 Proof of Theorem 14

For all f € F, Lemma 32 yields

max P(u(f)) = sup {I(u(f)+)—I()},

pec pEBY()

while item 1 of Proposition 23 yields

¢éﬁmﬂwﬁ+w%JW0=F®WUDZQ%%PWUM

But, for all ¢ € By(X), there exist A € (0,1) and f € F such that A¢ = u(f). Hence,

1 1
mer (o) =g (390) = i, P (5200) = i, P9

Since both C and 0I(0) are weak™-compact and convex subsets of ba(3), we conclude that

C = 91(0).

B.11 Proof of Proposition 16

It m' € Core(T), then m'() > 1(€) > infyepymy T +£) — I(1) = Io(0;€) = minearo) m(€),
which implies m’ € 91(0).

If COT@(I) = 81(0)7 then IO(O; &) = mianBI(O) m (5) = mianCore(I) m (5) = I(E) = IO(O; 5)
for all & € By(X), so I,(0;-) = I(-) and I is concave. Conversely, if I is concave a standard
result (see Clarke [9]) guarantees that 0I(0) = Core(I). (The convex case is analogous.)

B.12 Proof of Proposition 18

As we observed earlier, if y € X, y =* f iff u(y) = P(u(y)) > P(u(f)) for all P € C iff
u(y) > C(u(f)). Similarly, f =* yiff C(u(f)) > u(y). Let 2/, 2” € X be such that 2’ 3= f(s) = 2"

for all s € S. Since =* is monotonic, 2’ =* f =* 2", so that

u(z") < C(u(f)) < Cu(f)) < u(a).

Hence for all t € [C(u(f)), C(u(f))] there exists z; such that u(x;) = t (recall that u is affine

and X is convex).
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Let x € X satisfy C(u(f)) < u(z) < C(u(f)). If y =* f then u(y) > C(u(f)) > u(x) and
y =" x; analogously, if f =" y, then = »=* y. We can conclude that = € C*(f).

Conversely, let x € C*(f), and take Tmin, Tmax € X such that w(zmin) = C(u(f)) and
W Tmax) = C(u(f)); Tmax =% f =" Tmin, hence Tmax =% o =* Tmin. That is, C(u(f)) > u(x) >
C(u(f)). This concludes the proof, as it amounts to saying that

C*(f) ={z e X :C(u(f)) < ulx) < C(u(f))},

while the existence of Zmin, Tmax € X such that u(rmin) = C(u(f)) and u(rmax) = C(u(f))
guarantees that u(C*(f)) = [C(u(f)), C(u(f))].

B.13 Proof of Theorem 19

The proof of the theorem builds on the following lemma.

Lemma 33 Let I : By(X) — R be a monotonic constant linear functional, and D a set of
probabilities such that

min P (¢) < I(y) < max P ()

for all ¢p € By(X). If I(¢p) = T (minpep P(¢), maxpep P(¢)) for all ¢ € By(X), then there
exists 3 € [0, 1] such that

1(6) = Bin P (4) + (1 - B) max P (¢)

PeD

for all ¢ € Bo(X). If D is not a singleton, [ is unique.
Proof. If D is a singleton the result is trivial, so assume it is not. Since D is such that

min P () < I(¢) < max P ()

for all ¢ € B(X), for all ¢ such that minpep P (¢) < maxpep P (p) there exists a unique
B () € [0, 1] for which

I(p) = B () min P (p) + (1 —ﬂ(@))glggP(cp),

a little algebra yields:

_ I () —maxpep P (p)
ble) = minpep P (@) — maxpep P (p)
___ I(p)—maxpep P(p) _ g ( ¢ —maxpep P (p) )
maxpep P (¢) — minpep P (p) maxpep P (@) — minpep P (p) )

But, I () = T (minpep P (v) ,maxpep P (1)) for all ¥ € B(X). Moreover,

¢ —maxpep P ()

max - = 0 and
PeD (HlaXpe'D P (cp) — minpep P (‘P))

. < ¢ —maxpep P () ) _ .
min - = -1
PeD \ maxpep P (¢) — minpep P (¢)
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therefore,

¢ —maxpep P () )
ble) <maXPeD P () — minpep P (p) (=L0)
That is (3 (¢) = 3 does not depend on ¢. d

Proof of Theorem 19. Let I, u and C be the objects obtained in Lemma 1 and in Propo-
sition 5. It is enough to show that, for all ¢ € By(X), I(p) depends only on minpec P(yp)
and maxpec P(p). For, then we can set T'(minpec P(p), maxpec P(¢)) = I(¢) and apply
Lemma 33.

Let ¢, € Byp(X) be such that

in P(p) = min P d P(p) = max P(1)).
min P(p) = min P(y) and max P(p) = max P(y)

Take o > 0 such that ap,arp € B(X,u(X)) and f,g € F such that u(f) = ap and u(g) = arp.
Clearly,

min P(u(f)) = min P(u(g)) and maxP(u(f)) = max P(u(g)).

By Proposition 18,

C*(f) = u ([Clu(f)),Clulf))]) = u™" ([Cu(g),C(u(9))]) = C*(g)

and Axiom 6 yields f ~ g, so that I(ay) = I(u(f)) = I(u(g)) = I(atp) and I(yp) = I(¢)). The

converse is trivial.

B.14 Proof of Proposition 20

The uniqueness of I descending from Lemma 1 guarantees that
I(p) = i 1—
() = B min Q(p) + (1 - f) max Q(e)
for all ¢ € Bp(X). Then,

c = 81(0)
= (B glei% QL)+ (1-p) glgg@(-))(o)
C 68(51617‘51 Q())(0) +(1-75) 3(51%@(-))(0)
= D+ (1-08)D.

On the other hand, I(¢) = aminpec P(¢) + (1 — @) maxpec P(p) for all ¢ € By(X). That is,

Fumin Q() + (1 - f)max Q(-) = amin P(-) + (1 — a) max P(:).

If C = D, then clearly a = 3, and we are done. So suppose that C C D. Let ¢ be such that

¢ = minpee P(¢) < maxpec P(p) = €. A fortiori, d = mingep Q(p) < maxgep Q(¢) = d.
Moreover,

1
G==I(p)— ~I(—¢) = =d + —d.
c=3 (©) 5 (—) d+5d



Let ¢ = %Q + %E to obtain

~

(«p):ag+(1—a)ézc—i—ozg—k(l—a)é—%g—%Ezc—i— (;—a) (c—c)

and, analogously,

Therefore,

t-s)a-a- ()0

If 3> 1/2 then o > 1/2 and (3 — ) (¢ —¢) > (3 —a)(d—d), so that Eq. (17) implies o > £3.
Analogously, if 3 < 1/2 then a < 1/2 and (5 — a)(c — ¢) < (3 — a)(d — d), so that Eq. (17)
implies a < 8. This concludes the proof.
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