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Abstract

We study the effects on a simple agency problem of assuming that parties display beliefs
which are not necessarily represented by additive measures, as will be the case if they are
uncertainty averse or if there are unforeseen contingencies. We present the players’ problems,
prove existence of solutions, and discuss analogies and differences with the standard case
in the characteristics of optimal incentive schemes. It is shown that quality of information,
which cannot be captured in the additive case, can be extremely important for both parties’
choices. In fact we discuss improvements in the quality of information, and prove that they
are going to be beneficial to the principal in a number of cases. This is not in general true
for (the natural generalization of) changes in Blackwell informativeness.
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1 Introduction

In a typical agency problem one party, called principal, has to hire another, called agent, to
perform some task. The principal cannot observe the agent’s action, but she observes the
realization of a random variable (for example her revenues) whose distribution is affected by
it. Thus she has to devise a payment structure in order to induce the agent to take the course
of action which is best possible for her given the informational constraints. Clearly what the
principal is facing is just a statistical inference problem, and it is obvious that the structure
of the uncertainty that different actions induce plays a key role in determining how well the
principal does.

The agency problem has been at the center of a large and growing literature in the last
decade, ever since Holmström’s [12] and Grossman and Hart’s [10] seminal contributions. All
these works employ the standard subjective expected utility (SEU for short) model, and in
particular they assume that the beliefs of all parties can be represented by additive measures.
While this is the obvious starting point, empirical evidence and casual introspection suggest
that this assumption might imply imposing a severe restriction on the generality of the results
obtained.

In a classical paper [5], Daniel Ellsberg presented some experimental evidence that in
certain situations decision makers make choices that are incompatible with any decision rule
that requires the existence of an (additive) probability measure on the set of the possible
states of the world, such as SEU. He faced the subjects with one urn containing 90 balls: 30
balls are red while the other 60 are black and yellow in an unknown proportion. Then he
asked to rank the following four bets:

1. $ 1000 if a red ball is extracted from the urn, 0 otherwise:

2. $ 1000 if a black ball is extracted, 0 otherwise;

3. $ 1000 if a red or a yellow ball is extracted, 0 otherwise;

4. $ 1000 if a black or a yellow ball is extracted, 0 otherwise.

The majority of the subjects stated the following preferences:

1 � 2 4 � 3

but this would be impossible if their choices reflected an underlying probability function over
the set of states of the world. To see this let P (r), P (b) and P (y) be the probabilities of
the event that the ball extracted is, respectively, red, black or yellow. Then 1 � 2 implies
P (r) > P (b), while 4 � 3 implies P (r ∪ y) < P (b∪ y), and both inequalities cannot hold if P
is additive. As Ellsberg observed, the reason for such pattern of choices is obvious: People
tend to prefer situations in which the structure of uncertainty is better defined, or, to use
Frank Knight’s famous distinction [14], there is more risk and less uncertainty. This is the
case for bets 1 and 4, for in those cases the decision maker (henceforth DM) knows exactly
how many cases are favourable and how many are not. It is also interesting to note that this
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‘mistake’ was done by experts as well (even Savage himself, Ellsberg reports), and that even
when they realized the problem many just refused to change their preferences. In general
it seems that most DMs prefer to bet on events about which they have better information
(either because it is broader or because it is more reliable), and thus display what has been
termed an aversion to uncertainty.1

In recent years decision theorists have offered a possible formal solution to the puzzle of
uncertainty aversion. Starting from the seminal work of David Schmeidler ([17], first circu-
lated in 1982) they studied axiomatic models of non-additive representations of uncertainty.
For example, these models allow the DM facing Ellsberg’s problem to be willing to buy bet
2 for $ 200 (thus revealing P (b) = 1/5, if we assume that her preferences are linear) and
bet 3 for $ 400 (thus revealing P (r ∪ y) = P (bc) = 2/5). While this might seem prima facie
unintuitive, it should be remembered that in Savage’s operationalistic approach probabilities
are (observable) bet prices, and it seems perfectly reasonable that the amount and quality of
information are taken into account when forming those prices.

A more basic criticism of the SEU theory (and of most decision theory, as a matter of
fact) is that DMs are never really facing a given decision problem. The problem has to be
structured, and that is often the hardest part of the exercise of practically applying any
decision rule. In particular the DM has to construct the set of states of the world, which
in the theory are taken to be “exhaustive descriptions of all aspects relevant to the decision
problem”. It seems clear that no sensible DM would have any hopes of accomplishing such
an immense feat but for some scarcely realistic laboratory examples. In most circumstances
she will be aware that the state space she perceives is just a very coarse version of the “true”
state space for the problem. Using (in a wide sense) a terminology which has become very
fashionable recently, she realizes that there are relevant unforeseen contingencies. In such
circumstances she might understand that also her perception of actions is incomplete, and it
seems reasonable to provide for the possibility that she perceive them as maps from states
to sets of consequences rather than to singletons. This is discussed and justified in detail
in [6] and in works by other authors (e.g., Mukerji [16] and, with a different interpretation,
Jaffray and Wakker [13] and Hendon et al. [11]). Interestingly it is shown that also in these
situations, if preferences satisfy some axioms then they can be represented via non-additive
beliefs.

The discussion above provides the motivation for this paper. Our objective is to apply
the decision rule which arises in both the families of models sketched above, to a very simple
agency problem (with finitely many revenue levels for the principal), and to see the effects of
this generalization2 on the solutions to the agency problem (as compared, say, to the results
presented in Grossman and Hart [10]). More importantly, this generalization allows us to
analyze a totally new side of the information problem: How important is the ambiguity of
the stochastic structure of returns? Is the principal going to benefit from a reduction in the

1It should be stressed at this point that this has no relation to risk aversion. A DM can be risk averse
without being uncertainty averse, and vice versa.

2As it can be easily seen, the model we study has SEU as a special case.
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non-additivity of beliefs?3

As it turns out, the introduction of non-additivity has no disruptive consequences on
standard results. We shall see that, while with non-additive priors it is no more possible to
separate the principal’s problem in two stages, it is still possible to prove that such a problem
has a solution. However differences in the quality of information about the agent’s actions do
play an important role in the principal’s choice, as a result and some examples will testify.

The second question raises the more general issue of the comparative statics of informa-
tion. As it seems intuitively clear, improving the quality of information or the specification
of the state space reduces the cost of implementing some actions and so it often increases
principal’s profits. On the other hand the fact that information is symmetrically distributed
will imply that this will not happen always, as it will depend on which actions parties be-
come more informed about. There are, of course, additive notions of informativeness which
are complementary to the one just discussed and are well-known to economists, for instance
Blackwell informativeness. We will see that some well-known comparative statics results us-
ing this notion do not easily extend to non-additive beliefs, at least with its most natural
generalizations to this larger class of measures.

The paper is organized as follows. In part 2 we briefly sketch formally the two decision
models outlined above and present and explain the decision rule employed in the rest of
the paper. Section 3.1 introduces the agency model and our assumptions. The principal’s
problem is outlined and discussed in section 3.2, and the existence of a solution to it is proved
in section 3.3. We analyze more in depth the structure and features of such solution in section
3.4. In part 4 we discuss the comparative statics of information. Section 4.1 analyzes the
effects of changes in the non-additivity of beliefs, after discussing how such a change should be
properly defined. Likewise section 4.2 starts with a discussion about the proper generalization
of the concept of Blackwell informativeness and then proceeds to analyze the comparative
statics.

2 Models of Non-Additive Uncertainty

Let Ω be a set of states of the world and Σ be an algebra of subsets of Ω. A set-function
ν : Σ → R is called a (normalized) capacity if it satisfies:

(i) ν(∅) = 0, ν(Ω) = 1,

(ii) ∀A, B ∈ Σ : A ⊆ B ⇒ ν(A) ≤ ν(B).

Note that (i) and (ii) imply that the range of ν is contained in [0, 1]. A capacity is called
convex if in addition to (i)-(ii) it satisfies

(iii) ∀A, B ∈ Σ : ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B).
3It is important to point out from the outset that, following the standard literature on agency theory,

we will throughout assume that there is a common prior, so that the non-additive beliefs will be shared by
both principal and agent, even though we believe that some more insights might come from relaxing this
assumption.
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It is called a probability if (iii) holds with equality for every A and B. Obviously every
probability is a convex capacity, but not vice versa.

To obtain an integral representation of preferences which parallels the standard SEU
representation we need a concept of integral with respect to a capacity. Schmeidler [17]
suggested to use the integral proposed by Gustave Choquet in [3]. If a : Ω → R is a bounded
Σ-measurable function and ν is a capacity (not necessarily convex) on Ω we define the Choquet
integral of a with respect to ν to be the number

∫
Ω

a(ω) dν(ω) =
∫ ∞

0
ν({ω ∈ Ω : a(ω) ≥ α}) dα

+
∫ 0

−∞
[ν({ω ∈ Ω : a(ω) ≥ α}) − 1] dα

where the integrals are taken in the sense of Riemann. In particular, if Ω is finite (that is,
Ω = {ω1, . . . , ωn}) and a(ω1) ≥ a(ω2) ≥ . . . ≥ a(ωn), then

∫
Ω

a(ω) dν(ω) =
n−1∑
i=1

(a(ωi)− a(ωi+1))ν({ω1, . . . , ωi}) + a(ωn).

Notice that since the integrands are monotone, the Choquet integral always exists, and if ν is
a probability it reduces to a standard Lebesgue integral. Also observe that if a(ωi) = a(ωi+1),
then if we relabel the states of the world, so that the labels assigned to state i and i + 1 are
swapped and all the others remain the same, the value of the integral will remain unchanged.
Henceforth all the integrals will be taken in the sense of Choquet, except where otherwise
noted.

When integrating on a convex capacity, the Choquet integral behaves in a very “pes-
simistic” manner. To see what this means let us recall a very nice equivalence result due to
Schmeidler [17, Proposition]. Given a convex capacity ν define the core of ν to be the set

C(ν) = {P : Σ → R : P is additive,
P (Ω) = ν(Ω),∀E ∈ S, P (E) ≥ ν(E)},

i.e., the set of probabilities on Σ which dominate ν. It is a well-known result from cooperative
game theory that the core of a convex capacity is non-empty. If a : Ω → R is bounded and
Σ-measurable then ∫

Ω
a(ω) dν(ω) = min

P∈C(ν)

∫
Ω

a(ω) dP (ω). (1)

Thus we can interpret a convex capacity as the lower envelope of a set of probabilities, and
the Choquet integral as an operator which integrates (in the standard sense) a function a
using the “worst possible” probability, the one which minimizes the expectation of a. In
other words a DM whose preferences are representable by a Choquet integral with respect to
a convex capacity behaves as if she had a set of priors C(ν) and she maximized the minimum
expected utility on C(ν).



6 Paolo Ghirardato

Schmeidler presented in [17] a set of axioms which yield as representation a Choquet
integral with respect to a capacity. In his model the objects of choice, called acts, are
functions from the state space Ω into the set P of all lotteries (i.e., probabilities with a
finite support)4 on some set of consequences X . The set of all acts is denoted F . The
DM’s preferences � on F satisfy Schmeidler’s axioms if and only if there is a utility function
U : P → R, unique up to a positive affine transformation and affine5 on P, and a unique
capacity ν on Σ such that for every f, g ∈ F ,

f � g ⇐⇒
∫
Ω

U(f(ω)) dv(ω) ≥
∫
Ω

U(g(ω)) dv(ω). (2)

If, moreover, the DM’s preferences satisfy an additional axiom called “uncertainty aversion”,
then ν will be convex. Intuitively, an uncertainty averse DM prefers substituting objective
(risky) mixing for subjective (uncertain) mixing, hence the name given to this property. For
every act f we can define the distribution on X as follows: For X ⊆ X , let

νf (X) = ν({ω ∈ Ω : f(ω) ∈ X}) = ν(f−1(X)). (3)

Notice that if ν is a convex capacity then νf will be a convex capacity for all f . Obviously
we have ∫

Ω
U(f(ω)) dν(ω) =

∫
X

U(x) dνf (x),

so we can equivalently represent the DM’s preferences with the integral on the distribution
induced by each act.

As we saw earlier, another situation in which non-additive beliefs might be generated is
when the DM’s perception of the state space Ω is “coarse”, and she is aware of some incom-
pleteness in her perception. This problem has been analyzed theoretically in [6]. Suppose
that the DM only perceives as state space a partition Π of Ω. If X is the finite set of possible
outcomes, then she is assumed to perceive acts in F according to what we call a perception
correpondence C : F ×Π → 2X , that is, each act f ∈ F is a correspondence from Π to X (to
simplify notation we write fc(π) rather than C(f, π)). As we anticipated in the introduction,
the interpretation of this is that, even though she does not understand why, the DM might
realize that act f can yield more than one possible outcome in some (perceived) state π.6

If the DM’s preferences � on F satisfy some natural generalizations of Savage’s axioms
to this set-up, then her beliefs on Π can be represented by a (finitely additive) probability
measure P defined on all subsets of Π. For any act f ∈ F let νf be the “distribution” on X
defined as follows, for every X ⊆ X ,

νf (X) = P ({π ∈ Π : fc(π) ⊆ X}). (4)
4In other words there is an independent randomizing device with “objectively known” probabilities. Schmei-

dler’s result has been later generalized to a framework without objective lotteries (à la Savage) by Gilboa [7]
and Wakker [19].

5That is, if p, q ∈ P and αp ⊕ (1 − α)q is their mixture with weight α ∈ [0, 1] then U(αp ⊕ (1 − α)q) =
αU(p) + (1 − α)U(q). In other words, the DM behaves as an expected utility maximizer with respect to
lotteries.

6Say because she has taken act f more than once in similar problems and she observed various different
outcomes in state π.
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Notice that if fc is a function then νf is a probability distribution, and in general it is a
convex capacity on 2X . Actually more is true: νf satisfies a property stronger than (iii).

(iii’) For every n > 0 and every collection X1, . . . , Xn ∈ 2X

νf (∪n
i=1X

i) ≥
∑

I⊆{1,...,n}
I 	=∅

(−1)|I|+1νf (∩i∈IXi)

where |I| is the cardinality of set I.

That is, νf is what (after Shafer [18]) is called a belief function. In [6] it is proved that the
afore-mentioned axioms plus another axiom (which intuitively depicts a strongly pessimistic
attitude) imply that there is a utility function U : X → R, unique up to a positive affine
transformation, such that for every f, g ∈ F ,

fc � gc ⇐⇒
∫
X

U(x) dνf (x) ≥
∫
X

U(x) dνg(x). (5)

Thus the DM’s preferences can again be represented by a Choquet integral with respect to
the distributions on X .

In a sense these two models describe two complementary sources of the non-additivity
of the distributions νf . There is on one hand the vagueness of the information on which
probability judgements on the (perceived) state space are based. And then there is the
(perceived) indeterminacy of the results of acts, due to incomplete specification of the state
space.

3 The Agency Problem: Optimal Incentive Schemes and their
Characteristics

3.1 The Model

The set-up of our model is fairly standard. There are two individuals, one, the principal,
needs (for some unmodelled reasons) to hire the other, the agent, to perform a specific task.
We let Ω be a set of states of the world, X a finite set of outcomes7 (in which the principal is
interested) and F be a finite set of actions that the agent can take. Specifically, an action is
a measurable function f : Ω → X , i.e., for every ω ∈ Ω f(ω) is an outcome for the principal.
We let n be the number of elements of X , that is, X = {x1, . . . , xn}.

It is assumed that the principal cannot observe the action f that the agent truly under-
takes, therefore she can only make her payment (in amounts of money) to the agent depend
on the outcome x ∈ X that she obtains from the agent’s activity. Such a payment we call
an incentive scheme, formally it is a function Y : X → R. Given the stochastic structure

7We could equivalently assume that the set of states of the world is finite, or that all actions are simple,
i.e., they have finite range. The reason for this particular choice will become apparent shortly.
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of the problem, in general the principal will not be able to deduce the agent’s action by the
outcome (but see below).

We will assume that both players’ preferences can be represented by a Choquet integral
with respect to the distribution function induced on X by each action, and that this is
common for both. As we saw in section 2 this could be due to either uncertainty aversion
or to incomplete knowledge of the state space. In the former case players have a common
convex capacity ν on the state space Ω, which induces the non-additive distribution νf on
X for every action f . In the latter case both players perceive the same partition Π of Ω,
they have the same perception correspondence C (that is, they agree on the way actions are
constructed) and they have a common (additive) prior P on Π. Thus they agree that action
f ∈ F induces the distribution νf defined in equation (4). Following Grossman and Hart
([10], assumption A3), we will assume that νf (xi) > 0 for each f ∈ F and i = 1, . . . , n, that
is, every action induces a positive probability of every outcome (this is what in the literature
is called the “no shifting support condition”).

The agent’s utility function V : R × F → R has the usual separable form V (y, f) =
u(y)− c(f), where u : R→ R is strictly increasing, concave, and represents the utility from
money income (thus the agent can be risk-averse). c : F → R is non-negative and it can
be interpreted as the disutility of taking action f . Therefore, given that the principal is
employing the incentive scheme Y , the agent chooses f ∈ F so as to maximize

VY (f) ≡
∫
X

u(Y (x)) dνf (x)− c(f). (6)

The agent has reservation utility u, i.e., he will accept the job he is offered only if his expected
utility is higher than u. Without loss of generality we assume that u ≥ 0 and that there is
an action l ∈ F such that c(l) < c(f) for each f �= l, f ∈ F . l is called the least cost action.

The principal is risk-neutral, so that she chooses Y ∈ Rn and f ∈ F in order to maximize

∫
X

(x− Y (x)) dνf (x)

subject to the constraint that Y implements f (to be explained below).

3.2 The Principal’s Problem

Suppose that principal wants to induce agent to take action f ∈ F by paying him the incentive
scheme Y . Then she is going to reach her objective only if Y satisfies the following definition.

Definition 1 Incentive scheme Y implements f if the following constraints are satisfied

(IC)
∫
X u(Y (x)) dνf (x)− c(f) ≥

∫
X u(Y (x))dνg(x)− c(g), ∀g ∈ F ;

(IR)
∫
X u(Y (x)) dνf (x)− c(f) ≥ u.
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Define Yf = {Y ∈ Rn : Y implements f}. Obviously l can always be implemented
efficiently with the constant incentive scheme Y ≡ ȳ, where8

ȳ = u−1(u + c(l)) ≡ CFB(l),

as then both (IR) and all the (IC) are obviously satisfied. For Y ∈ Yf , let

φf (Y ) =
∫
X

(x− Y (x))dνf (x)

so if we define Ψ(f) ≡ maxY ∈Yf
φf (Y ) we have that the principal’s problem is to

max
f∈F

Ψ(f). (7)

Following Grossman and Hart, we shall call second best action an f which solves (7) and
second best incentive scheme a Y which implements such action. In general, we shall define
optimal an incentive scheme which maximizes φf (·) for some f .

Example 1 To illustrate the difference with the additive case, let us consider a problem
in which the principal distinguishes only two outcomes, a “success” and a “failure”, i.e.,
X = {x1, x2}, where x1 > x2. For every f and every i = 1, 2 let νfi = νf (xi). Given
the particular structure of the Choquet integral, the exact formula for (IC) and (IR) will
then depend on whether z1 ≥ z2, where zi = u(Y (xi)) (or, equivalently since u is strictly
increasing, y1 ≥ y2, where yi = Y (xi)) or z1 < z2 (y1 < y2).

If z1 ≥ z2 then we can write

(IC-1) νf1z1 + (1− νf1)z2 − c(f) ≥ νg1z1 + (1− νg1)z2 − c(g), ∀g ∈ F ;

(IR-1) νf1z1 + (1− νf1)z2 − c(f) ≥ u.

If z1 < z2 then we can write

(IC-2) (1− νf2)z1 + νf2z2 − c(f) ≥ (1− νg2)z1 + νg2z2 − c(g), ∀g ∈ F ;

(IR-2) (1− νf2)z1 + νf2z2 − c(f) ≥ u.

Notice that the equations coincide if νf and νg are additive, but they are different if either
is strictly non-additive. Thus the agent will always discount the probability of the event he
considers to be best, as we mentioned earlier.

For future reference, it will be useful to partition the set Yf in three subsets as follows

Yf = Y <
f ∪ Y >

f ∪ Y >>
f

8For every f , CFB(f) stands for first best cost of implementing f , i.e., the cost the principal would sustain
in the (first best) situation in which she could observe the agent’s action.
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where
Y <

f ≡ {Y ∈ Yf : y1 < y2}
Y >

f ≡ {Y ∈ Yf : y2 + x1 − x2 ≥ y1 ≥ y2}
Y >>

f ≡ {Y ∈ Yf : y1 > y2 + x1 − x2}

The set Y <
f is the set of non-monotonic incentive schemes, in the sense that payments to the

agent do not respect the order of the revenues to the principal. The set Y >>
f is the set of

monotonic incentive schemes in which the principal pays so much when the good outcome
occurs that she is going to have lower profits than if the bad outcome occurs.

Now, for f ∈ F let

Rf = νf1x1 + (1− νf1)x2,

R>>
f = (1− νf2)x1 + νf2x2.

Analogously, for every y ∈ R2 let

Cf (y) = νf1y1 + (1− νf1)y2,

C>>
f (y) = (1− νf2)y1 + νf2y2.

Finally, define Cf ≡ minY ∈(Yf\Y >>
f

) Cf (Y ) and C>>
f ≡ minY ∈(Y >>

f
) C>>

f (Y ). Obviously Rf =

R>>
f , and Cf = C>>

f when νf is additive.
We can now see that the principal’s problem is to maximize

Ψ(f) = max[(Rf − Cf ), (R>>
f − C>>

f )].

In particular it is not hard to see that Ψ(l) = Rl − u−1(u + c(l)). Note that differently
from the case in which ν is additive, it is not possible to formulate the principal’s problem
of implementing f simply as a cost-minimization problem: The principal’s revenue function
depends on the incentive scheme she employs.

This phenomenon is by no means specific to the two-outcome case, and it is a result of
the non-additivity of the measure νf , which prevents the usual separation of the principal’s
objective function φf (·) in revenues (which do not depend on the incentive scheme used) and
costs. Since the principal’s probability assessments will change with the incentive schemes she
offers, her expected revenues will change as well. By a well-known fact on Choquet integrals
(see Schmeidler [17, Proposition])

φf (Y ) =
∫
X

(x− Y (x)) dνf (x) ≥
∫
X

x dνf (x) +
∫
X
−Y (x) dνf (x)

and strict inequality might hold for non-additive νf .
This notwithstanding, many results of the standard additive analysis are still valid in the

more general case, the following being an example.
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Remark 1 In the additive case it is well-known that if the agent is risk-neutral, then the
principal will be able to obtain her first-best profit by choosing the incentive scheme Y defined
by yi = xi − P where

P =
∫
X

x dνf∗(x)− CFB(f∗)

and f∗ = arg maxf∈F{
∫
X x dνf (x) − CFB(f)}. One easily sees that the result can be gen-

eralized to allow for non-additive beliefs, as long as they are shared by both players. What
is important in this case is that the principal can induce the agent to maximize her utility
since, thanks to the choice of Y , they have the same objective function. Now, it can be seen
that since (y1, . . . , yn) and (x1, . . . , xn) differ only by a constant the non-additivity of beliefs
does not matter. However it should be kept in mind that counterexamples to this result can
be easily constructed if we allow heterogenous priors (even if they are additive).

3.3 Existence of Solutions to the Principal’s Problem

The non-separability mentioned above might induce the reader to wonder whether a solution
to the principal’s problem always exists under the conditions stated so far. First of all we
have seen earlier that, exactly as in the standard case, the least cost action can always be
implemented at first best cost with expected profit Ψ(l) = Rl −CFB(l). Now, if Yf = ∅ then
Ψ(f) = −∞ so to prove existence we only have to show that for each f ∈ F , Yf �= ∅ implies
that φf (Y ) attains a maximum in Yf . Given that, the fact that F is finite is enough to imply
that the principal’s problem has a solution. We begin by proving a well-known result.

Lemma 1 For f ∈ F , suppose that Y ∈ Yf is such that (IR) holds with inequality, i.e.
∫
X

u(Y (x)) dνf (x)− c(f) > u

then ∃Ȳ ∈ Yf such that φf (Ȳ ) > φf (Y ).

Proof: Let ε > 0 be such that∫
X

[u(Y (x))− ε] dνf (x)− c(f) > u

Given the hypothesis on u it is possible to find Ȳ = (ȳ1, . . . , ȳn) such that u(ȳi) = zi − ε,
i = 1, 2, . . . , n. Also, monotonicity of u implies that for each i, ȳi > yi, so that φf (Ȳ ) > φf (Y ).
✷

Theorem 2 For every f ∈ F , φf (Y ) attains a maximum in Yf .

Proof: φf : Rn → R is continuous over Yf , hence it is only necessary to prove that
in her search for optimal incentive schemes, the principal can restrict her attention to a
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compact subset of Yf , for then the result follows from Weierstrass’s theorem. By lemma 1
only incentive schemes that satisfy (IR) with equality can be optimal, hence define

Yf ≡ {Y ∈ Yf :
∫
X

u(Y (x)) dνf (x)− c(f) = u}

If u is linear then the result in remark 1 applies, so that the statement is certainly true. So
assume that u is nonlinear.

Let Π the set of all the n ! permutations of {1, 2, . . . , n}, i.e. the set of all the one-to-one
functions π : {1, 2, . . . , n} → {1, 2, . . . , n}. One can obviously partition Rn in n ! sets

Rπ ≡ {y ∈ Rn : ∀i, j = 1, 2, . . . , n, i �= j, π(i) < π(j)⇒ yi ≥ yj}

Let Yπ
f = Yf ∩Rπ and let Zπ

f be its image through u. It is sufficient to prove that, for every
permutation π, there is a compact subset of Yπ

f such that only the schemes belonging to it
are optimal, for it is clear that, once that is proved, the fact that there only finitely many
such permutations yields the result.

Without any loss of generality we can renumber the outcomes so that π = id, where id
is the identity function9. Let pi = xi − yi be the profit of the principal in state i. Depending
on which incentive scheme Y she is paying, principal’s profit will ordered according to some
permutation πY so that we can write p1,πY ≥ p2,πY ≥ · · · ≥ pn,πY .

If Yf = ∅ then the statement follows, so assume that Yf �= ∅. Let

mi = νf ({x1, . . . , xi})− νf ({x1, . . . , xi−1}),
mπY

i = νf ({x1,πY , . . . , xπY (i),πY
})− νf ({x1,πY , . . . , xπY (i)−1,πY

}).

As νf is monotone, all the numbers above are non-negative. In fact, one can interpret mi as
the probability of getting yi under the permutation π = id, for one easily sees that:

∫
X

u(Y (x)) dνf (x) =
n∑

i=1

zi mi.

The interpretation of mπ
i is analogous. Consider the case in which mi = mπY

i , i.e. the
principal and the agent use the same probabilities. Following Grossman and Hart ([10],
proposition 1) we can apply a result in Bertsekas [1] to show that if {zk}∞k=1 is an unbounded
sequence in10 Zf , i.e., for every M > 0 can find k such that ||zk|| > M , given that u−1 is
nonlinear and convex, and that νf (xi) > 0 for every i (which by the convexity of νf implies
that mi > 0), then

lim
k→∞

n∑
i=1

(xi − u−1(zk
i )) mi = −∞.

9And, to simplify notation, in the rest of the proof we shall omit the id superscript.
10Observe that for every k the fact that zk ∈ Zf implies that

∑n

i=1
zk

i mi is constant.
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But by the maxmin property of Choquet integral given in equation (1) , we also have that
for every Y ∈ Rn ∫

X
(x− Y (x)) dνf (x) ≤

n∑
i=1

(xi − yi) mi

so that we conclude that

lim sup
k→∞

∫
X

(x− Y k(x)) dνf (x) ≤ lim
k→∞

n∑
i=1

(xi − yk
i ) mi = −∞,

where yk
i = u−1(zk

i ). So we can artificially put a bound on the constraint set Yf , which is
what we wanted to prove. ✷

Remark 2 We can exactly use the technique employed by Grossman and Hart ([10], propo-
sition 1) to show that the existence result holds also when the action space F is not finite
but it is compact in some topology. Let {fk}∞k=1 be a sequence converging to f . Assume that
Ψ(fk) → M . If M = −∞ then we certainly have Ψ(f) ≥ limk→∞ Ψ(fk). If M > −∞ then
by the result of Bertsekas, if Y k is the optimal incentive scheme for fk then the sequence
{Y k}∞k=1 is bounded (otherwise Ψ(fk)→ −∞). Let Y be a limit point, then Y ∈ Yf and thus

Ψ(f) ≥ φf (Y ) = lim
k→∞

Ψ(fk).

This proves that Ψ is upper semicontinuous, so that again the result follows from Weierstrass’s
theorem.

3.4 On the Structure of Optimal Incentive Schemes and Actions

We have already seen some characteristics of optimal incentive schemes. Lemma 1 told us
that if the principal is employing an optimal incentive scheme the agent will never receive
an expected utility higher than u. Analogously we could prove (this is Grossman and Hart’s
proposition 6) that at least one of the incentive compatibility constraints will be binding if
f is not the least cost action.

An interesting problem is whether the incentive scheme will be monotonic, in the sense
that higher profits for the principal will correspond with higher payments to the agent.
Grossman and Hart [10] studied the problem extensively (with additive uncertainty) and
they concluded that if there are more than two outcomes it will not in general be the case
that the incentive scheme is monotonic. On the other hand their proposition 4 implies that
monotonicity is assured in the case with two outcomes. The following example shows that
allowing non-additive uncertainty invalidates this result.

Example 1 (continued) Suppose that there are only two actions: f and l, and that νf and
νl are defined as follows

νf1 = 0.3 νf2 = 0.6

νl1 = 0.27 νl2 = 0.3
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Figure 1: Example 1

Outcomes are x1 = 1000, x2 = 0, while costs are c(f) = 10, c(l) = 9. Agent’s utility function
for income is u(y) = y

1
2 for y ≥ 0 (the behaviour of u for y < 0 is not important). u = 0, i.e.

agent has zero reservation utility.
The principal’s problem is depicted in figure 1. Differently from the additive case here

we see that the individual rationality constraint IR is only piecewise linear, as it changes
slope when it intersects the 45◦ line (which is represented by a dashed line). Also there are
two different incentive compatibility constraints, one on each side of the bisectrix. Thus Y <

f

contains all the points above the IR-2 and to the left of the IC-2 constraints, while Yf \ Y <
f

contains all the points above IR-1 and to the right of IC-1. The dotted curve is part of the
principal’s indifference curve passing through point A. The latter also changes slope (when
entering Y >>

f ), but as this happens far below the z1 axis, it is not represented.
As we can see in the figure, f can at best be implemented with the incentive scheme

B ∈ (Yf \ Y <
f ) for a cost11 of Cf (B) = 0.3(100

3 )2 ≈ 333.33, while there is a Ŷ ∈ Y <
f , namely

A, such that Cf (A) = 0.3(8)2 + 0.7(11.33)2 ≈ 109.11. Moreover, one can check that the
expected profit of f is higher than that of l, so that f is a second best action.

The reason for this result is that, differently from what can happen in the additive case,
action f is less non-additive than l, therefore it yields higher expected revenue for the princi-

11It is easy to see that the principal would not benefit from offering an incentive scheme Y ∈ Y >>
f . Thus

we can restrict our attention to the subset of Yf where the principal’s revenue is constantly equal to Rf .



Agency and Uncertainty 15

pal. Also, given that the difference in the probabilities of x2 is much larger than the difference
in the probabilities of x1, in a sense x2 is a better signal that the agent has undertaken action
f , and thus the principal prefers to pay the agent more in such a case.

In a similar vein, we can prove that if an action f is such that the agent has another
action g which does not cost more and induces a distribution on X which is “similar” but
less non-additive,12 then f cannot be implemented.

Theorem 3 Suppose that f ∈ F is such that ∃g ∈ F for which either of the following is
true:

(i) c(f) > c(g) and νg ≥ νf (i.e., for every X ⊆ X , νg(X) ≥ νf (X));

(ii) c(f) ≥ c(g), νg ≥ νf and νg(x) > νf (x) for every x ∈ X ;

then Yf = ∅, i.e., f is not implementable.

Proof: It is easy to see that if νg ≥ νf then
∫
X a(x) dνg(x) ≥

∫
X a(x) dνf (x) for every

function a : X → R. Hence under either condition there can be no Y which satisfies (IC). ✷

Thus the quality of information players have regarding an action, as reflected in the non-
additivity of the distribution it induces on X , plays an important role in determining whether
it is implementable or not. It does also affect the action’s appetibility for the principal, as
the following example shows.

Example 2 This is a variation on an example by David Kreps, presented in his textbook on
microeconomics [15, pp.601-603]. There are two outcomes x1 = $10 and x2 = $0, the utility
function of the agent is u(y) = ln(y) and u = 0. There are three actions, f, g and h, their
respective costs of effort to the agent are c(f) = 0, c(g) = 0.1 and c(h) = 2.27, and they
induce the following distributions:

νf1 = 0.1 νf2 = 0.9

νg1 = 0.15 νg2 = 0.85

νh1 = 0.94 νh2 = 0.01.

Notice that f and g are additive. The only change we made to Kreps’s example is that we
made h slightly non-additive: his h gave a 0.99 chance of obtaining x1. He shows that when
only f and g are available the principal will choose to implement f , the least cost action,
with the flat incentive scheme of $1, for an expected profit of 0, since the difference in the
distributions of f and g is not large enough to offset the difference in cost. On the other
hand, when his h is also available the principal will choose to implement it, even though
its cost to the agent is very high. Intuitively the reason is that h gives a statistical pattern

12Either because it is felt to be less dependent on unspecified contingencies or because the agent has a better
quality of information. In section 4.1, when discussing the comparative statics of information, we explain this
in greater detail.
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of outcomes which is much different from the other actions, so that it is less costly for the
principal to distinguish it.

But when h gives the distribution above things change. One can check that in such a case
the optimal incentive scheme for implementing h is (13.32, 0.71), which gives the principal
an expected profit of -3.29. Hence in this case the principal will still prefer to implement f .
The non-additivity of the induced distribution, albeit slight, is enough to counterbalance the
palatability of h due to its different stochastic structure.

4 The Comparative Statics of Information

A natural question in agency problems is how are the choice of second best action and
the principal’s profits13 going to be affected by changes in the information on the stochastic
relation between actions and outcomes. The main novelty of our framework is that in addition
to standard additive notions of changes in informativeness, we can discuss changes in the
players’ confidence on their state of information, as formally reflected by changes in the
non-additivity of their beliefs.

4.1 Changes in Non-Additivity

We want to analyze what happens when the extent of the non-additivity of the distributions
νf decreases in some way.14 We identify two main justifications for this: 1) The (confidence
about the) quality of the information on some actions increases, reducing uncertainty aversion;
2) The perception of the state space Π becomes more refined, in the sense that the old Π is
seen as a partition of the new Π. How are these changes going to be represented formally?

In case 1 what we are looking for is a global measure of the uncertainty aversion displayed
by a convex capacity. Local measures of uncertainty aversion have been offered by Dow and
Werlang (DW, [4]) and Gilboa and Schmeidler [8]. Given a capacity ν defined on an algebra
Σ of subsets of some state space Ω, for every T ∈ Σ let cν(T ) = 1− ν(T )− ν(Ω \ T ). It can
be seen that if ν is convex, cν will be non-negative, and it will be identically zero if and only
if ν is additive. So DW proposed the following intuitive condition: We say that µ displays
higher uncertainty aversion than ν at T ⊆ Ω, cν(T ) ≤ cµ(T ), or equivalently

ν(T ) + ν(Ω \ T ) ≥ µ(T ) + µ(Ω \ T ). (8)

This is made global as follows: µ displays (strictly) higher uncertainty aversion than ν if (8)
holds for every T ∈ Σ with strict inequality holding for at least one T .

While it is clearly a very natural quantification of the amount of non-additivity of a ca-
pacity, this definition suffers, in our viewpoint, of a serious problem. Decreases in uncertainty
aversion in this sense can be associated with drastic changes of the likelihood ratios of events.

13By lemma 1, whatever beliefs are, the agent is always going to receive utility u in an optimal incentive
scheme.

14Obviously, we can analyze increases in non-additivity just by reversing our results.
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That is, it is possible that the players decide that their previous assessments of likelihood
were mistaken and, while increasing the total weight allocated between T and its complement
Ω \T (as equation (8) requires), alter their beliefs significantly. Using a (weak) analogy with
consumer theory we could say that a change of displayed uncertainty aversion in the sense
above is equivalent to the sum of two effects: one is a “pure” increase in total weight which
keeps likelihood ratios approximately constant, the other is a revision of likelihood ratios that
keeps total weight approximately constant.15 It is straightforward to construct examples in
which it turns out that the principal was not pessimistic enough when she formulated beliefs,
and she over-estimated the likelihood of “good” states and under-estimated the likelihood of
“bad’ states. Obviously then a decrease in uncertainty aversion could be associated with a
sharp decrease in profits for the principal. In such examples the effect of likelihood ratios re-
vision is dominant. But we are presently more interested in “pure” reductions of uncertainty
aversion, and we would like to focus our attention on those. This provides motivation for the
following definition.

Definition 2 Given two convex capacities ν and µ defined on an algebra Σ of subsets of Ω
we say that µ displays pure uncertainty aversion not lower than ν if for every T ∈ Σ

ν(T ) ≥ µ(T ). (9)

We say that µ displays pure uncertainty aversion higher than ν if at least one of the (9) holds
with strict inequality.

It is clear that definition 2 is strictly stronger than DW’s, and that a pure reduction in uncer-
tainty aversion, while allowing revisions of likelihood ratios, will not allow drastic revisions.

As for case 2, in [6, section 3.2] we discussed what happens to the belief function νf

induced by act f when the perceived state space becomes finer, and we showed that under
certain assumptions on the perception correspondence, if we label ν ′

f the distribution after
the change in the state space, we have, for every X ⊆ X

ν ′
f (X) ≥ νf (X)

which is just equation (9) applied to the distribution on X induced by f . Thus in both cases
we obtain the following measure of comparative non-additivity.

Definition 3 For two convex capacities µ and ν, defined on all subsets of a finite set X , we
say that ν is at least as purely non-additive as µ if (9) holds for every T ⊆ X , and more
purely non-additive than µ if moreover (9) holds with strict inequality for some T .

Given definition 3 we can discuss the comparative statics of these types of changes in
information. In what follows we compare solutions to the principal’s problem before the
change, when beliefs induced by f ∈ F are represented by νf , to solutions after the change,
when beliefs are represented by ν ′

f . We have the following immediate results.

15The “approximately” is necessary because we want to preserve convexity, so that some times exact changes
will not be allowed. Hence differently from the standard example in consumer theory the decomposition in
the two effects will not in general be unique.
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Theorem 4 For f ∈ F , suppose that νf is at least as purely non-additive as ν ′
f and moreover

for every T ⊆ X and every g ∈ F

ν ′
f (T )− νf (T ) ≥ ν ′

g(T )− νg(T ) (10)

then Yf ⊆ Y ′
f , that is, the set of incentive schemes that implement f is larger in the primed

problem. Thus the principal’s expected profit from implementing f in the primed problem will
be not lower than that in the unprimed problem. That is,

Ψ′(f) ≥ Ψ(f). (11)

Proof: Let Y ∈ Yf . It is clear from definition 3 that Y will satisfy the new individual
rationality constraint, in fact notice that, if you let zi = u(yi), i = 1, . . . , n,

n∑
i=1

(zi − zi+1) ν ′
f ({x1, . . . , xi}) + zn ≥

n∑
i=1

(zi − zi+1) νf ({x1, . . . , xi}) + zn

≥ u + c(f).

Moreover (10) implies that∫
X

z(x) dν ′
f (x)−

∫
X

z(x) dν ′
g(x) ≥

∫
X

z(x) dνf (x)−
∫
X

z(x) dνg(x)

≥ c(f)− c(g),

so that also the (IC) are satisfied. Hence Y ∈ Y ′
f , as required. The second statement follows

by noticing that the Choquet integral of any function with respect to ν ′
f is less than that of

the same function with respect to νf . ✷

Condition (10) has the simple interpretation that the pure reduction in non-additivity for
the capacity induced by action f should not be lower than the analogous reductions for the
capacities induced by other actions. If this was not the case then it would be possible that
the suddenly higher quality of information regarding another action g induces a violation of
the incentive compatibility constraints. In the ceteris paribus case in which the change of
information affects only one action (10) can obviously be dispensed with, and we can also
say something about Yg.

Corollary 5 For f ∈ F , suppose that νf is at least as purely non-additive as ν ′
f and νg = ν ′

g

for every g ∈ F \ {f}, then Yf ⊆ Y ′
f and Yg ⊇ Y ′

g . Consequently Ψ′(f) ≥ Ψ(f) and
Ψ′(g) ≤ Ψ(g).

Remark 3 Clearly the conditions of theorem 4 are sufficient, but not necessary. In particular
we could substantially weaken them by letting them depend on the incentive scheme the
principal is employing in the unprimed problem. That is, suppose that incentive scheme Y
is optimal for implementing f . Then it is easy to find16 a sufficient set of conditions, for Y

16See for instance the statement of theorem 6.
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to be implementable in the primed problem, that only requires the probabilities associated
with two monotone classes of subsets of X to be non-decreased.

The following result states sufficient conditions for the gain in expected profits to be
strictly positive.

Theorem 6 For every action f ∈ F , f �= l, and every point Y ∈ Yf , it is possible to find
Y ′ ∈ Y ′

f such that Y > Y ′ if equation (10) holds for every g ∈ F and the following is true:
(*) if π is the permutation of {1, . . . , n} such that y1,π ≥ y2,π ≥ · · · ≥ yn,π, and {Ti}n

i=1 is
the monotone class of sets such that Ti = {x1,π, . . . , xi,π}, then ν ′

f (Ti) > νf (Ti) for some
i = 1, . . . , n. In such a case the inequality in (11) will hold stricty.

Proof: Let Y ∈ Yf . By theorem 4, Y ∈ Y ′
f as well. Since ν ′

f (Ti) > νf (Ti) for some i, there
is an ε > 0 small enough so that∫

X
z(x) νf (x)− ε− c(f) > u

where as usual zi = u(yi). Let Z ′ = Z − ε, then obviously Z ′ satisfies the (IR)’ and (IC)’
constraints. Hence Y ′ = u−1(Z ′) ∈ Y ′

f and Y > Y ′ by monotonicity of u. ✷

Remark 4 For the ceteris paribus case, a result analogous to corollary 5 can be obtained.
Clearly it is not generally possible to conclude that Ψ′(g) is strictly lower than Ψ(g), as the
incentive compatibility constraint with respect to f is not necessarily binding at the optimal
incentive scheme for implementing g.

The reader will certainly recognize the strong connection between this result and theo-
rem 3. Basically it says that as (relative) pure non-additivity decreases in the sense discussed
above the agent will be willing to perform action f (where f is not the least cost action)
for a uniformly lower incentive scheme. Loosely speaking the reason is that his pessimism is
constrained to operate on a smaller scale.

So far we have said nothing on the principal’s choice of second best action and her profits.
To do this let us start from the case in which the beliefs about all actions but one, f∗ (which
is not the least cost action), are unaffected by change, and ν ′

f∗ is less purely non-additive
than νf∗ . There are two possibilities: either f∗ was the second best action or not. In the
first case we have the following obvious result.

Corollary 7 Suppose that f∗ �= l is second best before change and that beliefs change as de-
scribed in the paragraph above, then principal’s expected profits will not decrease. In particular
they will increase if hypothesis (*) of theorem 6 holds.

If f∗ was not second best before the change then nothing general can be said. While it is
true that the profit from implementing f∗ will increase, it does not have to be the case that
it rises above the profit that the principal obtained before with some action g (that became
more costly because of the tightening of the incentive compatibility constraint). This is of
course due to the common prior assumption, which implies that any change in information
will be shared by both players.
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But the case in which information is received only on the implemented action is not
as implausible as it might seem. It is conceivable that in some repeated agency situations
new information about an action can only be gained by performing it. In such cases the
discussion above implies that the principal will benefit from it. Also this would have as a
result an extreme inertia in the principal’s behavior. Even if some other action is judged to
be better for the principal by some (perfectly informed) observer, the principal is doomed to
get stuck on the action she tries first. Obviously this is a very extreme and rough picture,
and it is clear that the development of a theory of the dynamics of information accrual will
be crucial for obtaining more formal conclusions.

Finally we have to discuss the situation in which the change in information affects all
actions, i.e., all distributions become less purely non-additive. As will be clear from our
previous discussion it might be that the principal is better off17 but she might as well be worse
off. In general an obvious sufficient condition for her to be (weakly) better off is the following:
suppose that f∗ is the second best action before the change, and the principal implements
it with the second best incentive scheme Y ∗, then Y ∗ ∈ Y ′

f∗ , that is, Y ∗ implements f∗ also
after the change.

4.2 Informativeness in the Blackwell sense

The notion of informativeness which is better known in the agency literature is the one of
Blackwell [2]. In fact Grossman and Hart proved [10, propositions 13 and 14] that in a
problem with a revenue structure more informative in the Blackwell sense the principal will
have profits not lower. A discussion of this requires a suitable generalization of the concept
of informativeness in the sense of Blackwell to the non-additive case. To introduce it we first
present a result of Gilboa and Schmeidler [8, theorems 3.3 and 4.3], which shows that every
capacity is equivalent to an additive measure on a larger state-space. Let Σ = 2Ω \ ∅, i.e.,
the set of all non-empty subsets of Ω. Let uT be the capacity defined as follows

uT (A) =

{
1 A ⊇ T,
0 otherwise.

Proposition 8 For every capacity ν defined on a finite state-space Ω there are unique coef-
ficients {αν(T )}T∈Σ such that

ν =
∑
T∈Σ

αν(T )uT . (12)

Also for every action f : Ω → R one has
∫
Ω

f(ω) dν(ω) =
∑
T∈Σ

αν(T )[min
ω∈T

f(ω)]. (13)

17Generalizing corollary 7 we can obtain that as long as the change of beliefs on the second best action is
uniformly larger (as per equation (10)) the principal will be better off.
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Remark 5 The result can be (almost completely) generalized to an infinite state space [9].
In the finite case the formula for the coefficient αν(T ), T ∈ Σ, is the following:

αν(T ) = ν(T ) −
∑

I⊆{1,...,m}
I 	=∅

(−1)|I|+1ν(∩i∈ITi) (14)

where Ti = T \ {ωi} and T = {ω1, . . . , ωm}. Equation (12) can be equivalently written as
follows: for every A ⊆ Ω,

ν(A) =
∑
T⊆A

αν(T ).

The αν(T ) will be non-negative for every T ∈ Σ if and only if ν is a belief function. Also
αν(T ) = 0 for every T ∈ Σ such that |T | > 1 if and only if ν is additive. αν is called the
Möbius transform of ν.

Given this it is natural to generalize Blackwell’s definition to capacities by requiring that
it holds on their Möbius transforms. Therefore let Σ = 2X \ ∅ and let m be its cardinality
(obviously m = 2n− 1), so that α can be written as a vector in Rm. In particular we assume
that the first n entries correspond to α({x1}), . . . , α({xn}).

Definition 4 Let ν and µ be two different capacities. Then we say that ν is more informative
(or sufficient) in the (generalized) Blackwell sense than µ if there is a m×m Markov matrix18

Q such that
αµ = QT αν .

As it turns out, this definition is too general. Without having any constraints on Q basically
everything is possible, in the sense that we allow the transfer of weight from singleton to
non-singeton sets and vice versa. Thus it is possible that ν is extremely non-additive (giving
non-zero probability only to Ω) and µ is additive. Clearly in a situation like this it would
be impossible to prove that the principal is better off with beliefs like ν than with µ (by
arguments similar to the ones presented in section 4.1), so that Grossman and Hart’s result
would not hold. It seems natural that a proper generalization of Blackwell’s definition ought
to bar the possibility of weight transfer between sets of different cardinality, or at least
between singletons and all other sets, by requiring Q to have a block diagonal structure.
In this way we would be able to isolate the statistical effect of information dispersion from
changes in non-additivity. The following example shows that even this is not enough to
generalize Grossman and Hart’s result.

Example 3 There are only two actions, f and l, and two outcomes, i.e., X = {x1, x2}.
Agent’s utility function is u(y) = y1/2, u = 0, and c(f) = 4.25, c(l) = 4. We assume that for
every action a ∈ {f, l}

αν′
a

= QT ανa

18A Markov matrix is a matrix Q = [qij ] such that qij ≥ 0 for every i, j and
∑

j
qij = 1 for every i.
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where Q is the following matrix 


2
3

1
3 0

2
3

1
3 0

0 0 1


 .

Notice that there is no transfer of weight from singleton sets to X , the only non-singleton,
and that Q does not have a left inverse which is a Markov matrix, so that ν ′

a is not more
informative than νa. In the unprimed problem X = {30, 6} and beliefs are given by

νf1 = 3/8 νf2 = 3/8

νl1 = 1/4 νl2 = 5/16.

Thus in the primed problem19 X ′ = {24, 12} and beliefs are

ν ′
f1 = 1/2 ν ′

f2 = 1/4

ν ′
l1 = 3/8 ν ′

l2 = 3/16.

Under the conditions stated, if beliefs are additive Grossman and Hart’s result implies that
the principal’s expected profit is strictly lower in the primed problem. It is a straightforward
exercise to check that in the unprimed problem the principal will be indifferent between
optimally implementing f with the incentive scheme (30.25, 12.25) and implementing l with
the flat 16 incentive scheme, for an expected profit of -4.

On the other hand in the primed problem the principal can optimally implement f with
the incentive scheme (27.5625, 10.5625), which gives him an expected profit of -2.3125, but she
chooses l as second best action for an expected profit of 1/2. Thus the principal is definitely
better off in the (less informative) primed problem than in the unprimed problem.

In the simple two outcome case we have studied conditions on Q which insure the validity
of Grossman and Hart’s result,20 but they were scarcely justifiable, and involved weight
transfer towards singleton sets. Also it was unclear how they would generalize to any finite
number of outcomes. Thus we conclude that, unless some different generalization of Blackwell
informativeness is devised, in general it seems not possible to extend Grossman and Hart’s
result in a palatable way.
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