Mathematical Economics: Suggested Solutions to Homework \# 7

1. An infinite horizon dynamic programming exercise: Solve letter (a) of problem 4 in the Appendix on dynamic programming by Kreps.
Answer: The first important step is to make this into a dynamic programming problem. To do this, define, $S=\{-100,-99, \ldots\} \times$ $\{E, F, I\}$, where the typical state $s=(n, \omega)$ has two coordinates, the first being an integer greater than -100 , the second a state variable. The interpretation is that s represents the state of being at parking spot n and finding either the spot empty (E), full (F), or having in fact already parked before, so that the state of the spot is irrelevant (I). As we will see, I plays the role of an absorbing state, which represents the eventual end of the decisions to be taken. Second, using obvious notation, define $A=\{p, c\}$. Define the feasible action correspondence as follows: $\Phi: S \rightarrow 2^{A}$, for every $s \in S$,

$$
\Phi(n, \omega)=\left\{\begin{array}{cc}
\{p, c\} & \omega=E \\
\{c\} & \omega=F \\
\{p\} & \omega=I .
\end{array}\right.
$$

As will be seen, the labeling of the action in the case of $\omega=I$ is irrelevant. The stochastic transition function is $f: S \times A \rightarrow S$, given by

$$
f((n, \omega), a)=\left\{\begin{array}{cc}
(n+1, E) & \text { if } a=c, \text { with prob. } 1-\alpha \\
(n+1, F) & \text { if } a=c, \text { with prob. } \alpha \\
(n+1, I) & \text { if } \omega=E, a=p \\
(n+1, I) & \text { if } \omega=I .
\end{array}\right.
$$

Finally, the payoff function is $r: S \times A \rightarrow \mathbf{R}$ defined by

$$
r((n, \omega), a)=\left\{\begin{array}{cc}
0 & \text { if } a=c \\
0 & \text { if } a=p, \omega \neq E \\
-|n| & \text { if } a=p, \omega=E .
\end{array}\right.
$$

The stochastic DP problem is thus to maximize $\sum_{t=0}^{\infty} r\left(s_{t}, a_{t}\right)$. If we label by σ a strategy for this problem, we have, using the notation in the book, that

$$
W(\sigma)(s)=\sum_{t=0}^{\infty} r(\sigma)(s)
$$

Having thus expressed our problem as a DP problem, we start by observing an obvious feature of any optimal strategy: If σ^{*} is an optimal strategy, then it must be the case that for all $s \in S$ such that $s=(n, E)$ with $n \geq 0, \sigma^{*}\left(h_{n}\left(s_{0}\right)\right)=p$ (where $s_{0}=$ $(-100, E)$, the initial state of the problem). In other words, as soon as spot -1 is passed, any optimal strategy must prescribe to grab the first empty spot. The proof is this is not hard. I will omit it for brevity, but you should think about how to do it.
Given this observation we immediately get that for any optimal strategy σ^{*}, for all $s=(n, \omega)$ such that $n \geq 0$,

$$
V(s)=W\left(\sigma^{*}\right)(s)=\left\{\begin{array}{cl}
-\sum_{t=1}^{\infty}(t+n) \alpha^{t-1}(1-\alpha) & \text { if } \omega=F \\
-n & \text { if } \omega=E \\
0 & \text { if } \omega=I
\end{array}\right.
$$

which, using the observation that $\sum_{t=1}^{\infty} t \alpha^{t}=\alpha /(1-\alpha)^{2}$, can be rewritten as follows:

$$
V(s)=W\left(\sigma^{*}\right)(s)=\left\{\begin{array}{cl}
-1 /(1-\alpha)-n & \text { if } \omega=F \\
-n & \text { if } \omega=E \\
0 & \text { if } \omega=I
\end{array}\right.
$$

The observation is useful because it shows that it is licit to artificially reduce the horizon of this problem to a finite one (terminating at time $\mathrm{T}=100$), using the value function $V(s)$ as the last period revenue function (stationarity is obviously lost, but we do not care for FHDP problems). It is easy to check that this FHDP problem satisfies assumptions A1-3 in chapter 11 of Sundaram (since now $r_{t}(s, a)$ is bounded and, trivially, continuous for all t). Thus to find the optimal strategy we only need to apply Bellman's principle of optimality, which says that: Strategy σ^{*} is optimal if and only if we have for every $s \in S$,

$$
\begin{equation*}
W\left(\sigma^{*}\right)(s)=\max _{a \in \Phi(s)}\left\{r(s, a)+W\left(\sigma^{*}\right)(f(s, a))\right\} . \tag{1}
\end{equation*}
$$

Given $\alpha<1$, let n^{α} be the integer satisfying the following;

$$
n^{\alpha} \equiv \inf \left\{n \in\{1,2, \ldots, 100\}: \alpha^{-n} \geq 1 / 2\right\} .
$$

Consider the strategy $g: S \rightarrow A$ defined as follows:

$$
g(s)=\left\{\begin{array}{cc}
p & \text { if } \omega=I \\
c & \text { if } \omega=F \\
p & \text { if } \omega=E, n \geq-n^{\alpha} \\
c & \text { if } \omega=E, n<-n^{\alpha}
\end{array}\right.
$$

We will show that $\sigma^{*}=[g, g, \ldots, g]$ satisfies (1). So the simple rule is to calculate (depending on the size of α) the number n^{α}, and to take the first available spot after $-n^{\alpha}$.
The first step in doing this is to calculate $W\left(\sigma^{*}\right)$. This can easily be seen to take the form

$$
W\left(\sigma^{*}\right)(s)=\left\{\begin{array}{cc}
0 & \text { if } \omega=I \\
-|n| & \text { if } n \geq-n^{\alpha}, \omega=E \\
-\frac{(|n|-1)-|n| \alpha+2 \alpha^{|n|}}{(1-\alpha)} & \text { if } n \geq-n^{\alpha}, \omega=F \\
-\frac{\left(n^{\alpha}-1\right)-n^{\alpha} \alpha+2 \alpha^{n^{\alpha}}}{(1-\alpha)} & \text { if } n<-n^{\alpha}, \omega \neq I
\end{array}\right.
$$

The only thing that needs to be proved are the third and fourth entries. The third is easily showed by induction on n, and the fourth then follows immediately.
Consider $s=(n, \omega)$ (remember that now $n \leq 0$). If $\omega=F$ or I, then (1) holds trivially, so suppose that $\omega=E$ (implying $\Phi(s)=\{p, c\})$. We basically have two cases to discuss here, first the one for $n \leq-n^{\alpha}-1$, and then that of $n \geq-n^{\alpha}$.
Suppose that $n \leq-n^{\alpha}-1$. The two-period problem is then

$$
\max _{a \in\{p, c\}} r((n, E), a)+W\left(\sigma^{*}\right)(f(n, E), a) .
$$

Choosing c (as g prescribes) is optimal if

$$
-|n| \leq-\frac{\left(n^{\alpha}-1\right)-n^{\alpha} \alpha+2 \alpha^{n^{\alpha}}}{(1-\alpha)}
$$

which is immediately rewritten as follows:

$$
-n \geq n^{\alpha}+\frac{2 \alpha^{n^{\alpha}}-1}{1-\alpha}
$$

But the last inequality holds, in fact, because of the definition of n^{α} we have

$$
-n \geq n^{\alpha}+1>n^{\alpha}+\frac{2 \alpha^{n^{\alpha}}-1}{1-\alpha}
$$

since we have

$$
1>\frac{2 \alpha^{n^{\alpha}}-1}{1-\alpha} .
$$

Coming to the (more interesting) case of $n \geq-n^{\alpha}$, we have that p is better than c if

$$
-|n| \geq-(1-\alpha)(|n|-1)-\frac{\alpha}{1-\alpha}\left[(|n|-2)-(|n|-1) \alpha+2 \alpha^{|n|-1}\right],
$$

which, after some rewriting, is equivalent to

$$
-n+(1-\alpha)(n+1) \leq-\frac{\alpha}{1-\alpha}\left[(n+2)-(n+1) \alpha-2 \alpha^{-(n+1)}\right] .
$$

The latter is seen with some arithmetic to hold as long as $\alpha^{-n} \geq$ $1 / 2$, which is the case, since $-n \leq n^{\alpha}$. We can thus conclude that σ^{*} solves the Bellman equation for every s and is thus the optimal strategy.

