Mathematical Economics: Suggested Solutions to Homework \# 5

1. Points 1,2 and 4 are immediate. Let's look at 3 . One of the implications is immediate: if C satisfies the condition that for all nonnegative $\alpha, \beta \in \mathbf{R}, \alpha C+\beta C=(\alpha+\beta) C$, then clearly taking $\beta=1-\alpha$ we see that C must be convex. In fact, in the case in which $\alpha+\beta=1$ also the converse is true: For, suppose that C is convex and α, β are such that $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. Then by convexity of C we have that $C \supseteq \alpha C+\beta C$. The converse inclusion follows immediately by taking the same element from each replica of C in the r.h.s..
Turn now to the converse in the general case: Suppose that C is convex and α, β are nonnegative. By the argument we just made, we have that

$$
\frac{\alpha}{\alpha+\beta} C+\frac{\beta}{\alpha+\beta} C=C .
$$

But this implies that

$$
\alpha C+\beta C=(\alpha+\beta)\left[\frac{\alpha}{\alpha+\beta} C+\frac{\beta}{\alpha+\beta} C\right]=(\alpha+\beta) C .
$$

The proof of the second half of point 5 (for the closure) is actually different from that of the first point seen in class. Here you want to prove directly that given $a, b \in \operatorname{cl}(C)$ and $\alpha \in[0,1]$, then $\alpha a+(1-\alpha) b \in \operatorname{cl}(C)$. To do so, find sequences a_{n} and b_{n} in C such that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$. By convexity of $C, \alpha a_{n}+(1-\alpha) b_{n} \in$ C for every n, and clearly $\alpha a_{n}+(1-\alpha) b_{n} \rightarrow \alpha a+(1-\alpha) b$, so that the limit must also be in the closure of C.
2. (The pointwise limit of a sequence of convex functions is a convex function) Suppose that $f^{n} \rightarrow f$ pointwise, and each f_{n} is convex. If f is not convex, then there are $x, y \in V$ and $\alpha \in[0,1]$ and $\varepsilon>0$ such that

$$
f(\alpha x+(1-\alpha) y)>\alpha f(x)+(1-\alpha) f(y)+\varepsilon .
$$

On the other hand, each f_{n} is convex, so that

$$
f_{n}(\alpha x+(1-\alpha) y) \leq \alpha f_{n}(x)+(1-\alpha) f_{n}(y) .
$$

Putting the two inequalities together, and denoting $z=\alpha x+$ $(1-\alpha) y$, we get

$$
\left(f(z)-f_{n}(z)\right)>\varepsilon+\alpha\left(f(x)-f_{n}(x)\right)+(1-\alpha)\left(f(y)-f_{n}(y)\right),
$$

which by pointwise convergence leads to a contradiction (as $n \rightarrow \infty)$, since ε is positive.
3. (Theorem 3.14 from class) Let $K=A-B$. Since A and B are disjoint, $0 \notin K$. By Lemma 3.13, there is a $p \in \mathbf{R}^{n} \backslash\{0\}$ such that $p z \geq p 0=0$ for every $z \in K$. That is, $p(a-b) \geq 0$ for every $a \in A$ and $b \in B$.
4. (The cone $K=\left\{y \in \mathbf{R}^{n}: y=\sum_{i=1}^{m} \lambda_{i} a^{i}, \exists \lambda_{i} \geq 0, i=1, \ldots, m\right\}$ is nonempty, convex and closed) It is clear that K is nonempty. Convexity is also straightforward. We prove closedness. Let y^{n} be a sequence in K and suppose that $y^{n} \rightarrow y$. For each y^{n} there is a corresponding vector $\lambda^{n}=\left[\lambda_{1}^{n}, \ldots, \lambda_{m}^{n}\right] \in \mathbf{R}^{m}$. Since y^{n} is Cauchy and

$$
\left\|y^{m}-y^{n}\right\|=\left\|\sum_{i}\left(\lambda_{i}^{m}-\lambda_{i}^{n}\right) a^{i}\right\|,
$$

it follows that the sequence (λ^{n}) must also be Cauchy and therefore converge in \mathbf{R}^{m}. Denote by λ its limit. First of all, notice that since $\lambda^{n} \geq 0$ for every n, then $\lambda \geq 0$. We now want to show that $z=\sum_{i} \lambda_{i} a^{i} \in K$ must be equal to y. Notice that

$$
\|y-z\| \leq\left\|y-y^{n}\right\|+\left\|y^{n}-z\right\|
$$

and since both terms on the r.h.s. converge to 0 as $n \rightarrow \infty$, we must have that $y=z$.

