Mathematical Economics: Suggested Solutions to Homework \# 3

1. (Ex. 17, Ch. 4) First, we show that A is open iff $A^{\circ}=A$. Recalling the definition of A° we immediately get that $A^{\circ} \subseteq A$ for any A. If A is itself open, then clearly $A \subseteq A^{\circ}$, proving the equality. Conversely, if $A=A^{\circ}$, then A is open.
As to the proof that A is closed iff $A=\bar{A}$, the "only if" is again trivial. The proof of the "if" is analogous to the one above.
2. (Exs. 33 and 34 , Ch. 4) Given $A \subseteq M$ and $x \in M$, suppose that x is a limit point of A. We want to show that for every $\varepsilon>0$, the set $B_{\varepsilon}(x)$ contains infinitely many points of A (indeeed, $A \backslash\{x\}$). This is shown by contradiction. Suppose that for some $\varepsilon, B_{\varepsilon}(x)$ only contains finitely many points of $A \backslash\{x\}$. Then there must be some $y \neq x$ which is in $B_{\varepsilon}(x) \cap A$ and is closest to x. Let $\delta=d(x, y)$. Then $B_{\delta}(x) \cap(A \backslash\{x\})=\emptyset$, which is a contradiction.
Given the result we just proved, we can show that there is a sequence $\left(x_{n}\right) \subseteq A \backslash\{x\}$ such that $x_{n} \rightarrow x$. For every $n \in$ \mathbf{N}, choose $x_{n} \in A \backslash\{x\}$ so that $x_{n} \in B_{1 / n}(x)$. This selection is feasible since by what we just proved every such open ball contains infinitely many elements. (It does require the axiom of choice, though.) By construction it yields a sequence that converges to x.
3. (Ex. 46, Ch. 4) The fact that D (the statement " A is dense") implies (a) follows immediately from Corollary 4.11 in the book. The implication (a) $\Rightarrow(\mathrm{b})$ is obvious, as is the implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$.
Saying that A^{c} has nonempty interior amounts to saying that there is $x \in A^{c}$ and $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq A^{c}$; equivalently, there is an open ball $B_{\varepsilon}(x)$ such that $B_{\varepsilon}(x) \cap A=\emptyset$. This proves $(c) \Rightarrow(d)$ (by proving its contrapositive).
To prove that $(\mathrm{d}) \Rightarrow \mathrm{D}$, begin by observing that for every $A \subseteq$ $M,(\bar{A})^{c}=\left(A^{c}\right)^{\circ}$. In fact, $x \in(\bar{A})^{c}$ if there is $\varepsilon>0$ such that $B_{\varepsilon}(x) \cap A=\emptyset$. The latter set equality is equivalent to saying that $B_{\varepsilon}(x) \subseteq A^{c}$, so that for some $\varepsilon>0, B_{\varepsilon}(x) \subseteq A^{c}$, which is equivalent to saying that $x \in\left(A^{c}\right)^{\circ}$.

Given the equality $(\bar{A})^{c}=\left(A^{c}\right)^{\circ}$, if A^{c} has empty interior then $\emptyset=\left(A^{c}\right)^{\circ}=(\bar{A})^{c}$, which is equivalent to $M=\bar{A}$.

