MATHEMATICAL ECONOMICS: SUGGESTED SOLUTIONS TO HOMEWORK # 2

1. (ex. 5) As usual, the only demanding property to prove is the triangle inequality, the other three properties being immediate for all the three proposed metrics.

Consider a nondecreasing function $f : A \to \mathbf{R}$, with $A \subseteq \mathbf{R}_+$ a linear subspace of \mathbf{R}_+ , such that for any $x, y \in A$, $f(x + y) \leq f(x) + f(y)$. Then, by using the triangle inequality for the absolute value we find

$$\begin{array}{rcl} f(|a-c|) & \leq & f(|a-b|+|b-c|) \\ & \leq & f(|a-b|) + f(|b-c|) \end{array}$$

Thus, to show that a function is a metric, we just need to show that it induces a function $f : \mathbf{R}_+ \to \mathbf{R}$ which is nondecreasing and subadditive on \mathbf{R}_+ .

• $\rho(a,b) = f(|a-b|)$ for $f(x) = \sqrt{x}$, which is increasing on \mathbf{R}_+ . As to subadditivity, notice that

$$x + y \le x + 2\sqrt{xy} + y,$$

which is equivalent to subadditivity (since all numbers involved are nonnegative).

• $\sigma(a,b) = f(|a-b|)$ for f(x) = x/1 + x, which is increasing on \mathbb{R}_+ . Next, notice that for any $x, y \in \mathbb{R}_+$,

$$\frac{x+y}{1+x+y} = \frac{x}{1+x+y} + \frac{y}{1+y+x} \le \frac{x}{1+x} + \frac{y}{1+y},$$

proving subadditivity.

• $\tau(a,b) = f(|a-b|)$ for $f(x) = \min\{x,1\}$, which is nondecreasing on \mathbb{R}_+ . Finally, for any $x, y \in \mathbb{R}_+$, notice that if either x > 1 or y > 1 (or both), then $\min\{x + y, 1\} = 1$, so that

 $\min\{x+y,1\} \le \min\{x,1\} + \min\{y,1\},\$

follows immediately. If instead $x \le 1$ and $y \le 1$, then the above equation boils down to $\min\{x + y, 1\} \le x + y$, which is certainly true.

2. (Ex. 15) Suppose first that *A* is bounded. Then there is x_0 and $\alpha \in \mathbf{R}$ such that $d(a, x_0) \leq \alpha$ for all $a \in A$. By the triangle inequality, for any $a, b \in A$,

$$d(a,b) \le d(a,x_0) + d(x_0,b) \le 2\alpha.$$

This shows that $\{d(a,b) : a, b \in A\}$ is a bounded set, so that $diam(A) < \infty$.

Next, suppose that diam(A) = $\alpha < \infty$. Fix $x_0 \in A$. Then it follows that for any $a \in A$,

$$d(a, x_0) \le \alpha,$$

which shows that *A* is bounded.

3. (Ex. 16) Let *V* be a vector space, and *d* a metric on *V* that satisfies the conditions stated in the exercise. We want first to show that ||x|| = d(x, 0) is a norm. Properties (i) and (ii) follow immediately from analogous properties of *d*. As to (iii), if $\alpha \in \mathbf{R}$, then $||\alpha x|| = d(\alpha x, 0) = |\alpha| d(x, 0) = |\alpha| ||x||$. Finally,

$$||x+y|| = d(x+y,0) = d(x,-y) \le d(x,0) + d(-y,0) = ||x|| + ||y||.$$

To see an example of a vector space and a metric that is not induced by a norm, consider **R** with the discrete metric. Notice first of all that if $\alpha \neq \pm 1$, $d(\alpha x, \alpha y) = 1 \neq \alpha$, so that one of the properties used above fails. And indeed the function ||x|| = d(x, 0) is not a norm, since ||x|| = 1 for all $x \in \mathbf{R} \setminus \{0\}$ (thus failing property (iii)).

4. (Ex. 33) By the triangle inequality,

$$d(x,y) \le d(x,x_n) + d(y,x_n).$$

If the sequence (x_n) converges to both x and y, then $d(x, x_n) \to 0$ and $d(y, x_n) \to 0$ as $n \to \infty$, which implies that d(x, y) = 0, or equivalently x = y.

5. (Ex. 34, Ch. 3) Let's just show the most general statement (the first one follows by taking $y_n \equiv y$). By the triangle inequality (twice) we have

$$d(x_n, y_n) \leq d(x_n, x) + d(x, y_n)$$

$$\leq d(x_n, x) + d(y_n, y) + d(x, y).$$

Symmetrically,

$$\begin{aligned} d(x,y) &\leq d(x_n,x) + d(x_n,y) \\ &\leq d(x_n,x) + d(y_n,y) + d(x_n,y_n). \end{aligned}$$

We thus have that for every $n \in \mathbf{N}$,

$$d(x,y) - d(x_n, x) - d(y_n, y) \le d(x_n, y_n) \le d(x, y) + d(x_n, x) + d(y_n, y),$$

so that by the squeezing theorem the real sequence $d(x_n, y_n)$ converges to

$$d(x,y) = \lim_{n} [d(x,y) - d(x_{n},x) - d(y_{n},y)]$$

=
$$\lim_{n} [d(x,y) + d(x_{n},x) + d(y_{n},y)].$$

6. (Ex. 40) Fix $x \in \ell_1$. Then, for any given k,

$$||x - x^{(k)}||_{1} = \sum_{i=1}^{\infty} |x_{i} - x_{i}^{(k)}|$$
$$= \sum_{i=k+1}^{\infty} |x_{i}|$$
$$= \sum_{i=1}^{\infty} |x_{i}| - \sum_{i=1}^{k} |x_{i}|.$$

Taking limits as $k \to \infty$ shows that $||x - x^{(k)}||_1 \to 0$. Next, consider $x \in \ell_2$. Then,

$$||x - x^{(k)}||_{2} = \sqrt{\sum_{i=1}^{\infty} |x_{i} - x_{i}^{(k)}|^{2}}$$
$$= \sqrt{\sum_{i=k+1}^{\infty} |x_{i}|^{2}}$$
$$= \sqrt{\sum_{i=1}^{\infty} |x_{i}|^{2} - \sum_{i=1}^{k} |x_{i}|^{2}}.$$

Again, taking limits as $k \to \infty$ shows that $||x - x^{(k)}||_2 \to 0$.

Finally, consider $x = (0, 1, 0, 1, 0, 1, ...) \in \ell_{\infty}$. It is clear that for every k

$$||x - x^{(k)}||_{\infty} = \sup_{i} |x_i - x_i^{(k)}| = 1,$$

therefore $x^{(k)}$ never converges to x in the sup-norm.

7. (ex. 46) It is simple to see that the three proposed metrics satisfy properties (i)-(iii) of a metric. Therefore, let's concentrate on property (iv), the triangle inequality. This is trivial for d_1 and simple (but tedious) for d_2 . As to d_{∞} , it follows from the observation that

$$\max\{\alpha + \beta, \gamma + \delta\} \le \max\{\alpha, \gamma\} + \max\{\beta, \delta\}.$$

Next, it is straightforward to show that these metrics satisfy the property that whenever $a_n \rightarrow a$ (in *d*) and $x_n \rightarrow x$ (in ρ), then $(a_n, x_n) \rightarrow (a, x)$ according to the product metric, *and conversely*. (Either because the sum of two 0's is a 0, or becasue the max of two 0's is a 0.)

Finally, all these metrics are equivalent if $d_1((a_n, x_n), (a, x)) \to 0$ iff $d_2((a_n, x_n), (a, x)) \to 0$ iff $d_{\infty}((a_n, x_n), (a, x)) \to 0$. But these equivalences follow from what we just showed, since in all the three metrics convergence happens iff $d(a_n, a) \to 0$ and $\rho(x_n, x) \to 0$.