Mathematical Economics: Suggested Solutions to Homework \# 2

1. (ex. 5) As usual, the only demanding property to prove is the triangle inequality, the other three properties being immediate for all the three proposed metrics.
Consider a nondecreasing function $f: A \rightarrow \mathbf{R}$, with $A \subseteq \mathbf{R}_{+}$ a linear subspace of \mathbf{R}_{+}, such that for any $x, y \in A, f(x+y) \leq$ $f(x)+f(y)$. Then, by using the triangle inequality for the absolute value we find

$$
\begin{aligned}
f(|a-c|) & \leq f(|a-b|+|b-c|) \\
& \leq f(|a-b|)+f(|b-c|)
\end{aligned}
$$

Thus, to show that a function is a metric, we just need to show that it induces a function $f: \mathbf{R}_{+} \rightarrow \mathbf{R}$ which is nondecreasing and subadditive on \mathbf{R}_{+}.

- $\rho(a, b)=f(|a-b|)$ for $f(x)=\sqrt{x}$, which is increasing on \mathbf{R}_{+}. As to subadditivity, notice that

$$
x+y \leq x+2 \sqrt{x y}+y
$$

which is equivalent to subadditivity (since all numbers involved are nonnegative).

- $\sigma(a, b)=f(|a-b|)$ for $f(x)=x / 1+x$, which is increasing on \mathbf{R}_{+}. Next, notice that for any $x, y \in \mathbf{R}_{+}$,

$$
\frac{x+y}{1+x+y}=\frac{x}{1+x+y}+\frac{y}{1+y+x} \leq \frac{x}{1+x}+\frac{y}{1+y},
$$

proving subadditivity.

- $\tau(a, b)=f(|a-b|)$ for $f(x)=\min \{x, 1\}$, which is nondecreasing on \mathbf{R}_{+}. Finally, for any $x, y \in \mathbf{R}_{+}$, notice that if either $x>1$ or $y>1$ (or both), then $\min \{x+y, 1\}=1$, so that

$$
\min \{x+y, 1\} \leq \min \{x, 1\}+\min \{y, 1\},
$$

follows immediately. If instead $x \leq 1$ and $y \leq 1$, then the above equation boils down to $\min \{x+y, 1\} \leq x+y$, which is certainly true.
2. (Ex. 15) Suppose first that A is bounded. Then there is x_{0} and $\alpha \in \mathbf{R}$ such that $d\left(a, x_{0}\right) \leq \alpha$ for all $a \in A$. By the triangle inequality, for any $a, b \in A$,

$$
d(a, b) \leq d\left(a, x_{0}\right)+d\left(x_{0}, b\right) \leq 2 \alpha
$$

This shows that $\{d(a, b): a, b \in A\}$ is a bounded set, so that $\operatorname{diam}(A)<\infty$.
Next, suppose that $\operatorname{diam}(A)=\alpha<\infty$. Fix $x_{0} \in A$. Then it follows that for any $a \in A$,

$$
d\left(a, x_{0}\right) \leq \alpha,
$$

which shows that A is bounded.
3. (Ex. 16) Let V be a vector space, and d a metric on V that satisfies the conditions stated in the exercise. We want first to show that $\|x\|=d(x, 0)$ is a norm. Properties (i) and (ii) follow immediately from analogous properties of d. As to (iii), if $\alpha \in \mathbf{R}$, then $\|\alpha x\|=d(\alpha x, 0)=|\alpha| d(x, 0)=|\alpha|\|x\|$. Finally,

$$
\|x+y\|=d(x+y, 0)=d(x,-y) \leq d(x, 0)+d(-y, 0)=\|x\|+\|y\| .
$$

To see an example of a vector space and a metric that is not induced by a norm, consider \mathbf{R} with the discrete metric. Notice first of all that if $\alpha \neq \pm 1, d(\alpha x, \alpha y)=1 \neq \alpha$, so that one of the properties used above fails. And indeed the function $\|x\|=$ $d(x, 0)$ is not a norm, since $\|x\|=1$ for all $x \in \mathbf{R} \backslash\{0\}$ (thus failing property (iii)).
4. (Ex. 33) By the triangle inequality,

$$
d(x, y) \leq d\left(x, x_{n}\right)+d\left(y, x_{n}\right) .
$$

If the sequence $\left(x_{n}\right)$ converges to both x and y, then $d\left(x, x_{n}\right) \rightarrow 0$ and $d\left(y, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, which implies that $d(x, y)=0$, or equivalently $x=y$.
5. (Ex. 34, Ch. 3) Let's just show the most general statement (the first one follows by taking $y_{n} \equiv y$). By the triangle inequality (twice) we have

$$
\begin{aligned}
d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n}, x\right)+d\left(x, y_{n}\right) \\
& \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right)+d(x, y) .
\end{aligned}
$$

Symmetrically,

$$
\begin{aligned}
d(x, y) & \leq d\left(x_{n}, x\right)+d\left(x_{n}, y\right) \\
& \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right)+d\left(x_{n}, y_{n}\right)
\end{aligned}
$$

We thus have that for every $n \in \mathbf{N}$,

$$
d(x, y)-d\left(x_{n}, x\right)-d\left(y_{n}, y\right) \leq d\left(x_{n}, y_{n}\right) \leq d(x, y)+d\left(x_{n}, x\right)+d\left(y_{n}, y\right)
$$

so that by the squeezing theorem the real sequence $d\left(x_{n}, y_{n}\right)$ converges to

$$
\begin{aligned}
d(x, y) & =\lim _{n}\left[d(x, y)-d\left(x_{n}, x\right)-d\left(y_{n}, y\right)\right] \\
& =\lim _{n}\left[d(x, y)+d\left(x_{n}, x\right)+d\left(y_{n}, y\right)\right] .
\end{aligned}
$$

6. (Ex. 40) Fix $x \in \ell_{1}$. Then, for any given k,

$$
\begin{aligned}
\left\|x-x^{(k)}\right\|_{1} & =\sum_{i=1}^{\infty}\left|x_{i}-x_{i}^{(k)}\right| \\
& =\sum_{i=k+1}^{\infty}\left|x_{i}\right| \\
& =\sum_{i=1}^{\infty}\left|x_{i}\right|-\sum_{i=1}^{k}\left|x_{i}\right| .
\end{aligned}
$$

Taking limits as $k \rightarrow \infty$ shows that $\left\|x-x^{(k)}\right\|_{1} \rightarrow 0$.
Next, consider $x \in \ell_{2}$. Then,

$$
\begin{aligned}
\left\|x-x^{(k)}\right\|_{2} & =\sqrt{\sum_{i=1}^{\infty}\left|x_{i}-x_{i}^{(k)}\right|^{2}} \\
& =\sqrt{\sum_{i=k+1}^{\infty}\left|x_{i}\right|^{2}} \\
& =\sqrt{\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}-\sum_{i=1}^{k}\left|x_{i}\right|^{2}}
\end{aligned}
$$

Again, taking limits as $k \rightarrow \infty$ shows that $\left\|x-x^{(k)}\right\|_{2} \rightarrow 0$.
Finally, consider $x=(0,1,0,1,0,1, \ldots) \in \ell_{\infty}$. It is clear that for every k

$$
\left\|x-x^{(k)}\right\|_{\infty}=\sup _{i}\left|x_{i}-x_{i}^{(k)}\right|=1
$$

therefore $x^{(k)}$ never converges to x in the sup-norm.
7. (ex. 46) It is simple to see that the three proposed metrics satisfy properties (i)-(iii) of a metric. Therefore, let's concentrate on property (iv), the triangle inequality. This is trivial for d_{1} and simple (but tedious) for d_{2}. As to d_{∞}, it follows from the observation that

$$
\max \{\alpha+\beta, \gamma+\delta\} \leq \max \{\alpha, \gamma\}+\max \{\beta, \delta\}
$$

Next, it is straightforward to show that these metrics satisfy the property that whenever $a_{n} \rightarrow a$ (in d) and $x_{n} \rightarrow x$ (in ρ), then $\left(a_{n}, x_{n}\right) \rightarrow(a, x)$ according to the product metric, and conversely. (Either because the sum of two 0 's is a 0 , or becasue the max of two 0 's is a 0 .)
Finally, all these metrics are equivalent if $d_{1}\left(\left(a_{n}, x_{n}\right),(a, x)\right) \rightarrow 0$ iff $d_{2}\left(\left(a_{n}, x_{n}\right),(a, x)\right) \rightarrow 0$ iff $d_{\infty}\left(\left(a_{n}, x_{n}\right),(a, x)\right) \rightarrow 0$. But these equivalences follow from what we just showed, since in all the three metrics convergence happens iff $d\left(a_{n}, a\right) \rightarrow 0$ and $\rho\left(x_{n}, x\right) \rightarrow 0$.

