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MATHEMATICAL ECONOMICS: SUGGESTED SOLUTIONS TO
HOMEWORK # 2

1. (ex. 5) As usual, the only demanding property to prove is the
triangle inequality, the other three properties being immediate
for all the three proposed metrics.
Consider a nondecreasing function f : A → R, with A ⊆ R+

a linear subspace of R+, such that for any x, y ∈ A, f(x + y) ≤
f(x) + f(y). Then, by using the triangle inequality for the abso-
lute value we find

f(|a− c|) ≤ f(|a− b|+ |b− c|)
≤ f(|a− b|) + f(|b− c|).

Thus, to show that a function is a metric, we just need to show
that it induces a function f : R+ → R which is nondecreasing
and subadditive on R+.

• ρ(a, b) = f(|a − b|) for f(x) =
√
x, which is increasing on

R+. As to subadditivity, notice that

x+ y ≤ x+ 2
√
xy + y,

which is equivalent to subadditivity (since all numbers in-
volved are nonnegative).

• σ(a, b) = f(|a − b|) for f(x) = x/1 + x, which is increasing
on R+. Next, notice that for any x, y ∈ R+,

x+ y

1 + x+ y
=

x

1 + x+ y
+

y

1 + y + x
≤ x

1 + x
+

y

1 + y
,

proving subadditivity.
• τ(a, b) = f(|a − b|) for f(x) = min{x, 1}, which is nonde-

creasing on R+. Finally, for any x, y ∈ R+, notice that if
either x > 1 or y > 1 (or both), then min{x + y, 1} = 1, so
that

min{x+ y, 1} ≤ min{x, 1}+min{y, 1},
follows immediately. If instead x ≤ 1 and y ≤ 1, then the
above equation boils down to min{x+ y, 1} ≤ x+ y, which
is certainly true.
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2. (Ex. 15) Suppose first that A is bounded. Then there is x0 and
α ∈ R such that d(a, x0) ≤ α for all a ∈ A. By the triangle
inequality, for any a, b ∈ A,

d(a, b) ≤ d(a, x0) + d(x0, b) ≤ 2α.

This shows that {d(a, b) : a, b ∈ A} is a bounded set, so that
diam(A) < ∞.
Next, suppose that diam(A) = α < ∞. Fix x0 ∈ A. Then it
follows that for any a ∈ A,

d(a, x0) ≤ α,

which shows that A is bounded.

3. (Ex. 16) Let V be a vector space, and d a metric on V that satis-
fies the conditions stated in the exercise. We want first to show
that ∥x∥ = d(x, 0) is a norm. Properties (i) and (ii) follow im-
mediately from analogous properties of d. As to (iii), if α ∈ R,
then ∥αx∥ = d(αx, 0) = |α| d(x, 0) = |α| ∥x∥. Finally,

∥x+y∥ = d(x+y, 0) = d(x,−y) ≤ d(x, 0)+d(−y, 0) = ∥x∥+∥y∥.

To see an example of a vector space and a metric that is not
induced by a norm, consider R with the discrete metric. Notice
first of all that if α ̸= ±1, d(αx, α y) = 1 ̸= α, so that one of
the properties used above fails. And indeed the function ∥x∥ =
d(x, 0) is not a norm, since ∥x∥ = 1 for all x ∈ R \ {0} (thus
failing property (iii)).

4. (Ex. 33) By the triangle inequality,

d(x, y) ≤ d(x, xn) + d(y, xn).

If the sequence (xn) converges to both x and y, then d(x, xn) → 0
and d(y, xn) → 0 as n → ∞, which implies that d(x, y) = 0, or
equivalently x = y.

5. (Ex. 34, Ch. 3) Let’s just show the most general statement (the
first one follows by taking yn ≡ y). By the triangle inequality
(twice) we have

d(xn, yn) ≤ d(xn, x) + d(x, yn)

≤ d(xn, x) + d(yn, y) + d(x, y).
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Symmetrically,

d(x, y) ≤ d(xn, x) + d(xn, y)

≤ d(xn, x) + d(yn, y) + d(xn, yn).

We thus have that for every n ∈ N,

d(x, y)−d(xn, x)−d(yn, y) ≤ d(xn, yn) ≤ d(x, y)+d(xn, x)+d(yn, y),

so that by the squeezing theorem the real sequence d(xn, yn)
converges to

d(x, y) = lim
n
[d(x, y)− d(xn, x)− d(yn, y)]

= lim
n
[d(x, y) + d(xn, x) + d(yn, y)].

6. (Ex. 40) Fix x ∈ ℓ1. Then, for any given k,

∥x− x(k)∥1 =
∞∑
i=1

|xi − x
(k)
i |

=
∞∑

i=k+1

|xi|

=
∞∑
i=1

|xi| −
k∑

i=1

|xi|.

Taking limits as k → ∞ shows that ∥x− x(k)∥1 → 0.

Next, consider x ∈ ℓ2. Then,

∥x− x(k)∥2 =

√√√√ ∞∑
i=1

|xi − x
(k)
i |2

=

√√√√ ∞∑
i=k+1

|xi|2

=

√√√√ ∞∑
i=1

|xi|2 −
k∑

i=1

|xi|2.
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Again, taking limits as k → ∞ shows that ∥x− x(k)∥2 → 0.

Finally, consider x = (0, 1, 0, 1, 0, 1, . . .) ∈ ℓ∞. It is clear that for
every k

∥x− x(k)∥∞ = sup
i

|xi − x
(k)
i | = 1,

therefore x(k) never converges to x in the sup-norm.

7. (ex. 46) It is simple to see that the three proposed metrics sat-
isfy properties (i)-(iii) of a metric. Therefore, let’s concentrate
on property (iv), the triangle inequality. This is trivial for d1
and simple (but tedious) for d2. As to d∞, it follows from the
observation that

max{α + β, γ + δ} ≤ max{α, γ}+max{β, δ}.

Next, it is straightforward to show that these metrics satisfy the
property that whenever an → a (in d) and xn → x (in ρ), then
(an, xn) → (a, x) according to the product metric, and conversely.
(Either because the sum of two 0’s is a 0, or becasue the max of
two 0’s is a 0.)

Finally, all these metrics are equivalent if d1((an, xn), (a, x)) → 0
iff d2((an, xn), (a, x)) → 0 iff d∞((an, xn), (a, x)) → 0. But these
equivalences follow from what we just showed, since in all
the three metrics convergence happens iff d(an, a) → 0 and
ρ(xn, x) → 0.
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