Mathematical Economics: Suggested Solutions to Homework \# 1

1. (Ex. 3) This is straightforward.
2. (Ex. 14) This is also straightforward.
3. (Ex. 24) Suppose first that $\left(a_{n}\right)$ is a bounded sequence. Notice that then

$$
R_{n}=\sup \left\{-a_{n},-a_{n+1}, \ldots\right\}=-\inf \left\{a_{n}, a_{n+1}, \ldots\right\}=-t_{n} .
$$

Moreover, $\left(R_{n}\right)$ and $\left(t_{n}\right)$ are also bounded, so

$$
\begin{aligned}
\lim \sup _{n}\left(-a_{n}\right) & =\inf _{n} R_{n} \\
& =\inf _{n}-\left(t_{n}\right) \\
& =-\sup _{n}\left(t_{n}\right) \\
& =-\liminf _{n} a_{n} .
\end{aligned}
$$

Next, consider the case in which $\left(a_{n}\right)$ is unbounded.
Given a sequence $\left(b_{n}\right)$, if $\lim \sup b_{n}=-\infty$, that means that $T_{n}=\sup \left\{b_{n}, b_{n+1}, \ldots\right\}$ is unbounded below and diverges to $-\infty$. Indeed, then the sequence $\left(b_{n}\right)$ itself must be diverging to $-\infty$ (thus, we end up solving exercise 25 along with 24 , aren't we lucky?). For, suppose not. Then there is a $\beta \in \mathbf{R}$ such that for every N, we can find $n \geq N$ for which $b_{n} \geq \beta$ (check that this is really what it means to negate that $\lim b_{n}=-\infty$). This implies, however, that $T_{N} \geq \beta$ for every N; i.e., T_{n} is bounded below, contradicting the fact that $T_{n} \rightarrow-\infty$.
Thus, if limsup $-a_{n}=-\infty$, then $\left(-a_{n}\right) \rightarrow-\infty$, so that $a_{n} \rightarrow$ $+\infty$. This implies (why?) that $\lim \inf a_{n}=+\infty$, so that

$$
-\liminf a_{n}=-\infty=\limsup -a_{n}
$$

Next, we show that, given a sequence $\left(b_{n}\right)$, if $\lim \sup b_{n}=+\infty$, there must be a subsequence of $\left(b_{n}\right)$ that diverges to $+\infty$ (thus concluding the proof of Exercise 25). Indeed, if

$$
\inf _{n}\left(\sup \left\{b_{n}, b_{n+1}, \ldots\right\}\right)=+\infty
$$

then $\sup \left\{b_{n}, b_{n+1}, \ldots\right\} \equiv+\infty$; that is, every tail of $\left(b_{n}\right)$ is unbounded above. This implies that there is a subsequence of $\left(b_{n}\right)$ that diverges properly. For, notice that given $k \in \mathbf{N}$ there must be an element $b_{n_{k}} \geq k$. This can be repeated with $k+1$, taking care to consider only the tail of the sequence $\left(b_{n_{k}+1}, b_{n_{k}+2}, \ldots\right)$, and so on. (A careful proof of this is done by induction, but it is clear how this works. $)^{1}$
Thus, if limsup $-a_{n}=+\infty$, then there is a subsequence $\left(-a_{n_{k}}\right) \rightarrow$ $+\infty$. This implies that $\left(a_{n_{k}}\right) \rightarrow-\infty$, so that for every n,

$$
t_{n}=\inf \left\{a_{n}, a_{n+1}, \ldots\right\}=-\infty .
$$

It follows that $\lim \inf a_{n}=\sup _{n} t_{n}=-\infty$, so that, once again,

$$
-\liminf a_{n}=+\infty=\limsup -a_{n} .
$$

4. (Ex. 27) Let $\left(a_{n}\right)$ be a sequence. Notice to start that if $\lim \sup a_{n}=$ $\pm \infty$ then we have seen in the previous exercise how to find a subsequence that converges to $\lim \sup a_{n}$.
So, suppose that $\lim \sup a_{n}=M \in \mathbf{R}$. As we know, the previous equality implies that for every $\varepsilon>0, a_{n}>M-\varepsilon$ for infinitely many n and $a_{n}<M+\varepsilon$ for all but finitely many n. Notice, first of all, that because of this we can find n_{1} which is large enough so that $\left|a_{n_{1}}-M\right|<1$. Similarly, for every $k>1$ we can find an index $n_{k}>n_{k-1}$ such that $\left|a_{n_{k}}-M\right|<1 / k$. We thus obtain inductively a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ such that $\left(a_{n_{k}}\right) \rightarrow M$.
The result about liminf a_{n} follows from the result proved above (ex. 24) that

$$
\liminf a_{n}=-\lim \sup \left(-a_{n}\right),
$$

as the sequence $\left(-a_{n_{k}}\right)$ that we obtain by the above reasoning (applied to $\left(-a_{n}\right)$) converges to $-M=\liminf a_{n}$.
5. (Ex. 33) The first statement is easy to prove: Suppose the original sequence $\left(x_{n}\right)$ converges to some limit x. Take any sequence

[^0]n_{k} of natural numbers and consider the corresponding subsequence of the original sequence. For any $\epsilon>0$ there exists an integer N such that for all $n \geq N$
$$
\left|x_{n}-x\right|<\epsilon
$$

But then we also have the same inequality for the subsequence as long as $n_{k} \geq N$. Therefore any subsequence itself must converge to the same limit x.
The second statement is almost as easy. Suppose $\left(x_{n}\right)$ is a sequence such that every subsequence extracted from it has a further subsequence that converges to the same limit x. Suppose that $\left(x_{n}\right)$ does not converge to x. Then for any k, there exist n_{k} for which $\left|x_{n_{k}}-x\right|>1 / k$. But then the subsequence $\left(x_{n_{k}}\right)$ cannot have a further subsequence that converges to x, violating my assumption.
6. (Ex. 45) This is immediate.

[^0]: ${ }^{1}$ Notice that $\left(b_{n}\right)$ itself does not have to diverge to $+\infty$. Consider the sequence $(1,2,1,4,1,6, \ldots)$ which coincides with n on even indices and is identically 1 on odd indices. Such sequence satisfies $\lim \sup b_{n}=+\infty$, but b_{n} does not diverge to $+\infty$ (it doesn't have a limit).

