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Chapter 1

Vector Spaces

1.1 Cartesian Products and Rn

Suppose we want to classify a wine according to two characteristics, ageing and alcoholic

strength. For example, suppose to read on a label: 2 years of ageing and 12 degrees.

We write:

(2, 12) .

Look at another label and read: 1 year of ageing and 10 degrees. In this case we write:

(1, 10) .

The pairs (2, 12) and (1, 10) are called ordered pairs, and in them the first element,

ageing, is distinguished from the second one, alcoholic strength. In an ordered pair,

therefore, position is fundamental.

Let A1 be the set of the possible years of ageing and A2 the set of the possible

alcoholic strengths. We can then write:

(2, 12) ∈ A1 × A2,

(1, 10) ∈ A1 × A2,

A generic element of A1 is denoted by a1 and one of A2 by a2. For example, in (2, 12)

we have: a1 = 2 and a2 = 12.

Definition 1 Given two sets A1 and A2, the Cartesian product A1 × A2 is the set of

all ordered pairs (a1, a2) with a1 ∈ A1 and a2 ∈ A2.

In the example, we have A1 ⊆ N and A2 ⊆ N, that is, the elements of A1 and A2
are natural numbers. More generally, suppose that A1 = A2 = R, so that as elements

7



8 CHAPTER 1. VECTOR SPACES

of A1 and A2 we have any real number, though with a possible different interpretation

according to the position.

In this case, A1 ×A2 = R× R = R2 and the pair (a1, a2) can be represented in the

plane:

Fig. 1

An ordered pair of real numbers (a1, a2) ∈ R2 is called vector. In some cases, it can be

useful to associate a segment to (a1, a2):

Fig. 2

Among the subsets of R2 particularly important are:

(i) {(a1, a2) ∈ R2 : a1 = 0}, that is, the set of ordered pairs (0, a2). It is the axis of

the ordinates.

(ii) {(a1, a2) ∈ R2 : a2 = 0}, that is, the set of ordered pairs (a1, 0). It is the axis of

the abscissae.

(iii) {(a1, a2) ∈ R2 : a1 > 0 and a2 > 0}, that is, the set of ordered pairs (a1, a2) with

components both positive. It is the first quadrant. In a similar way the other

quadrants are defined:

Fig. 3

Before we have classified some wines using two characteristics, ageing and alcoholic

strength. Now we consider a more complicated product, for example a portfolio of

assets. Suppose there are 4 different assets that can be bought in the market. A

portfolio is described by the ordered quadruple:

(a1, a2, a3, a4) ,

where a1 is the money invested in the first asset, a2 the one invested in the second

asset, and so on. For example:

(1000, 1500, 1200, 600)

denotes a portfolio in which 1000 euros have been invested in the first asset, 1500 in

the second one, and so on. The position is fundamental, the portfolio:

(1500, 1200, 1000, 600)

is clearly different from the previous one, though the amounts of money invested are

still 1500, 1200, 1000 and 600.



1.2. OPERATIONS IN RN 9

As the quantities of money are real numbers, we set A1 = A2 = A3 = A4 = R,

where Ai is the set of the possible amounts of money that can be invested in asset

i = 1, 2, 3, 4. We have:

(a1, a2, a3, a4) ∈ A1 × A2 ×A3 × A4 = R4.

In particular,

(1000, 1500, 1200, 600) ∈ R4.

In general, we consider n sets A1, ..., An.

Definition 2 Given n sets A1, ..., An, the Cartesian product A1 × · · · × An is the set

of all the ordered n-tuples (a1, ..., an) with a1 ∈ A1, ..., an ∈ An.

If A1 = · · · = An = R, we write:

A1 × · · · × An = Rn.

An element (a1, ..., an) ∈ R is called vector.

Notation. The Cartesian product A1 × · · · × An is sometimes denoted by
∏n
i=1Ai.

The vectors in R3 have a graphical representation:

Fig. 4

1.2 Operations in Rn

Consider two vectors in Rn:

x = (x1, ..., xn) ,

y = (y1, ..., yn) .

We define the sum vector x+ y as:

x+ y = (x1 + y1, ..., xn + yn) .

For example, consider in R3 the two vectors x = (7, 8, 9) and y = (2, 4, 7). We have:

x+ y = (7 + 2, 8 + 4, 9 + 7) = (9, 12, 16) .

Note that x + y ∈ Rn, that is, through the sum a new element of Rn has been con-

structed.



10 CHAPTER 1. VECTOR SPACES

Let now α ∈ R and x ∈ Rn. We call product of the scalar α for the vector x the

vector αx defined as:

αx = (αx1, ..., αxn) .

For example, given α = 2 and x = (7, 8, 9) ∈ R3, we have:

2x = (2 · 7, 2 · 8, 2 · 9) = (14, 16, 18) .

Also αx ∈ Rn, so that also with the scalar multiplication a new element of Rn has been

constructed.

Notation. Let −x = (−x1, ...,−xn). We have −x = (−1) x and x − y = x + (−1) y.

Moreover, set 0 = (0, ..., 0).

We have therefore introduced in Rn two operations, sum and scalar multiplication.

Let us see their properties. We start with the sum.

Proposition 3 Let x, y and z be three vectors in Rn. We have:

(i) x+ y ∈ Rn (Rn is closed with respect to the sum),

(ii) x+ y = y + x (commutative property),

(iii) (x+ y) + z = x+ (y + z) (associative property),

(iv) x+ 0 = x (existence of a neutral element for the sum),

(v) x+ (−x) = 0 (existence of the opposite of each vector).

Proof These properties are easily checked. For example, we prove (ii). We have:

x+ y = (x1 + y1, ..., xn + yn) = (y1 + x1, ..., yn + xn) = y + x,

as desired. �

Consider now the scalar multiplication.

Proposition 4 Let x, y ∈ Rn and α, β ∈ R. We have:

(i) αx ∈ Rn (Rn is closed with respect to the scalar multiplication),

(ii) α (x+ y) = αx+ αy (distributive property),

(iii) (α+ β) x = αx+ βx (distributive property),

(iv) 1x = x (existence of a neutral element for the scalar multiplication),
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(v) α (βx) = (αβ) x (associative property).

Proof Also in this case these properties are easily checked. For example, consider (iii).

We have:

(α+ β)x = ((α+ β) x1, ..., (α+ β) xn)

= (αx1 + βx1, ...., αxn + βxn)

= (αx1, ..., αxn) + (βx1, ..., βxn)

= αx+ βx

as desired. �

1.3 Vector Spaces

We have seen how in Rn two operations can be defined, sum and scalar multiplication.

These operations feature some properties, described in the two last propositions. We

now consider another space and show that also in this case two similar operations can

be defined.

A polynomial f (x) of degree nhas the form f (x) = a0 + a1x + · · · + anx
n, with

an 	= 0 and ai ∈ R for each 0 ≤ i ≤ n− 1. Let Pn be the set of all the polynomials of

degree less than or equal to n, with in addition the degenerated polynomial 0, whose

coefficients are all zero. Clearly,

P1 ⊆ P2 ⊆ · · · ⊆ Pn.

Example 5 We have f (x) = x+ x2 ∈ P2, while f (x) = 3x− 10x4 ∈ P4. �

Let f (x) = a0+ a1x+ · · ·+ anx
n and g (x) = b0+ b1x+ · · ·+ bnx

n be two elements

of Pn, that is, two polynomials at most of degree n. We define the sum polynomial as:

(f + g) (x) = (a0 + b0) + (a1 + b1) x+ · · · + (an + bn) x
n.

For example, consider in P4 the two polynomials f (x) = x+x2 and g (x) = 3x− 10x4.

We have:

(f + g) (x) = (0 + 0) + (1 + 3)x+ (1 + 0) x2 + (0 + 0)x3 + (0− 10) x4

= 4x+ x2 − 10x4.

Note that f + g ∈ P4, and so the sum polynomial f + g, is also an element of the

space Pn.
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Now let be α ∈ R and f (x) = a0+a1x+ · · ·+anxn ∈ Pn. The scalar multiplication
αf in Pn is defined as:

(αf) (x) = αa0 + αa1x+ · · ·+ αanx
n.

For example, consider the polynomial f (x) = x+ 5x4 ∈ P4 and α = 5. We have:

(5f) (x) = 5x+ 25x4.

Again, note that αf ∈ Pn.

Proposition 6 Let f , g and h be three elements of Pn and let α and β be two elements

of R. We have:

(i) Pn is closed with respect to the sum and to the scalar multiplication.

(ii) f + g = g + f (commutative property).

(iii) (f + g) + h = f + (g + h) (associative property).

(iv) f + 0 = f (existence of a neutral element for the sum).

(v) f + (−f) = 0 (existence of the opposite of each f ∈ Pn).

(vi) α (f + g) = αf + αg (distributive property).

(vii) (α+ β) f = αf + βf (distributive property).

(viii) 1f = f (existence of a neutral element for the scalar multiplication).

(ix) α (βf) = (αβ) f (associative property).

Proof Let prove for example the (vi). Let f (x) = a0 + a1x + · · · + anx
n and g (x) =

b0 + b1x+ · · · + bnx
n be two elements of Pn. We have:

α (f + g) (x) = α [(a0 + b0) + (a1 + b1)x+ · · · + (an + bn) x
n]

= α (a0 + b0) + α (a1 + b1)x+ · · ·+ α (an + bn) x
n

= αa0 + αa1x+ · · · + αanx
n + αb0 + αb1x+ · · · + αbnx

n

= αf (x) + βg (x) ,

as desired. �

We have therefore considered two spaces, Rn and Pn, in which it is possible to

define two operations, sum and scalar multiplication, that share similar properties in

the two spaces. This analogy suggests the following fundamental abstraction.
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Definition 7 Let V be a set on which two operations are defined, sum and scalar

multiplication. The sum associates to each pair v, w ∈ V the element v + w ∈ V ; the

scalar multiplication associates to each α ∈ R and v ∈ V the element αv ∈ V . The

set V is said to be a vector space (on R) if, for every v, w, z ∈ V and every α, β ∈ R,
these operations satisfy the following properties:

(i) v + w = w + v (commutative property).

(ii) (v + w) + z = v + (w + z) (associative property).

(iii) There exists an element 0 ∈ V such that v+0 = v (existence of a neutral element

for the sum).

(iv) There exists an element −v ∈ V such that v + (−v) = 0 (existence of the

opposite of each v ∈ V ).

(v) 1v = v (existence of a neutral element for the scalar multiplication).

(vi) α (v + w) = αv + αw (distributive property).

(vii) (α+ β) v = αv + βv (distributive property).

(viii) α (βv) = (αβ) v (associative property).

>From this definition it follows immediately that Rn and Pn, endowed with their

operations of sum and scalar multiplication, are two examples of vector spaces. In

fact, we have already seen in the previous sections as such operations satisfy properties

(i)-(viii) of the Definition 7.

To show another example of a vector space, we now introduce matrices. A matrix

m× n is a table of real numbers



a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

· · · · · · · · · ·
· · · · · · · · · ·
am1 am2 · · · amj · · · amn




For example, 


1 5 7 9

3 −2 −1 −4

12 15 11 9
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is a matrix 3× 4, in which

a11 = 1, a12 = 5, a13 = 7, a14 = 9,

a21 = 3, a22 = −2, a23 = −1, a24 = −4,

a31 = 12, a32 = 15, a33 = 11, a34 = 9.

Notation. The matrix of components aij is sometimes denoted with (aij).

In a matrix (aij) we distinguish n columns (said column vectors):




a11

·
·
am1


 ,




a12

·
·
am2


 , ...,




a1n

·
·
amn


 ,

and m rows (said row vectors):
(
a11 · · · a1n

)
,

(
a21 · · · a2n

)
,

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·(
am1 · · · amn

)
.

For example, for the matrix



1 5 7 9

3 −2 −1 −4

12 15 11 9




we have 3 row vectors:
(

1 5 7 9
)
,

(
3 −2 −1 −4

)
,

(
12 15 11 9

)
,

and 4 column vectors:



1

3

12


 ,




5

−2

15


 ,




7

−1

11


 ,




9

−4

9


 .
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When m = n, the matrix is said to be square, while when m 	= n the matrix is said

to be rectangular. For example,



1 5 −1

3 4 2

1 7 9




is a square matrix 3× 3.

Let M (m,n) be the space of all the matrices m× n. In M (m,n) we can define in

a natural way the operations of sum and scalar multiplication. As to the sum, let (aij)

and (bij) be two matrices in M (m,n); the sum matrix (aij) + (bij) is defined as:



a11 · · · a1n

· · · · ·
· · · · ·
am1 · · · amn


+




b11 · · · b1n

· · · · ·
· · · · ·
bm1 · · · bmn


 =




a11 + b11 · · · a1n + b1n

· · · · ·
· · · · ·

am1 + bm1 · · · amn + bmn


 ,

that is, (aij) + (bij) = (aij + bij). For example:



1 5 7 9

3 −2 −1 −4

12 15 11 9


+




0 2 1 4

−1 3 1 4

5 8 1 2


 =




1 7 8 13

2 1 0 0

17 23 12 11


 .

Given α ∈ R and (aij) ∈M (m,n), the scalar multiplication α (aij) is defined as:

α




a11 · · · a1n

· · · · ·
· · · · ·
am1 · · · amn


 =




αa11 · · · αa1n

· · · · ·
· · · · ·

αam1 · · · αamn


 ,

that is α (aij) = (αaij). For example,

4




1 5 7 9

3 −2 −1 −4

12 15 11 9


 =




4 20 28 36

12 −8 −4 −16

48 60 44 36


 .

It is immediate to see that M (m,n) endowed with these two operations is a vector

space. We have therefore a third example, besides Rn and Pn, of a vector space.

1.4 First Properties of Vector Spaces

In this section we show some of the first properties of vector spaces. It is important

to observe that the proofs of these properties are based exclusively on the properties

(i)-(viii) of Definition 7.
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Proposition 8 In a vector space V the neutral element 0 is unique.

Proof Suppose there exists 0′ ∈ V such that v + 0′ = v for every v ∈ V . To prove

that 0 is unique, we have to show that 0′ = 0. We have:

0
′ + 0 = 0

′ (definition of 0),

0+ 0′ = 0 (hypothesis on 0′).

On the other hand, the commutative property implies 0′ + 0 = 0 + 0
′, and so we

conclude that 0′ = 0, as desired. �

Proposition 9 In a vector space V each element has a unique inverse −v.

Proof Suppose there exists w ∈ V such that v + w = 0. To prove that −v is unique,

we have to show that w = −v. Since v + w = 0, we have:

−v = (−v) + 0

= (−v) + (v + w)

= (−v + v) + w (associative property)

= 0 + w

= w.

It follows that −v = w, as desired. �

Proposition 10 Let v and w be any two vectors of a vector space V . There exists a

unique vector x ∈ V such that v + x = w.

Proof Define x = w + (−v). We have:

v + x = v + (w + (−v))
= (w + (−v)) + v (commutative property)

= w + (−v + v) (associative property)

= w + (v + (−v)) (commutative property)

= w + 0 = w.

Therefore, x = w + (−v) is such that v + x = w. Let us prove that w + (−v) is also
the unique vector of this type. Let x be whatever vector of V such that v + x = w.

We have to show that x = w + (−v). We have:

x = x+ 0

= x+ (v + (−v))
= (x+ v) + (−v) (associative property)

= w + (−v) ,

as desired. �
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Proposition 11 Let V be a vector space. For every v ∈ V we have 0v = 0, (−1) v =

−v and α0 = 0.

Proof We start by proving that 0v = 0. By definition, 0 solves x + v = v. On the

other hand, we have:

v + 0v = 1v + 0v

= (1 + 0) v (distributive property)

= 1v = v.

Therefore, also 0v solves v + x = v. From Proposition 10 it then follows that 0v = 0.

To prove that (−1) v = −v, we observe that for every v ∈ V we have:

(−1) v + v = (−1) v + 1v

= (−1 + 1) v (distributive property)

= 0v.

But, according to what has been just proved, we have 0v = 0 and therefore (−1) v+v =

0. Hence, both −v and (−1) v solve x + v = 0. By Proposition 10 we can conclude

that (−1) v = −v.

To prove that α0 = 0, observe that α0 = α (v − v) = αv + α (−v) = αv − αv = 0.

�

1.5 Vector Subspaces

Definition 12 A nonempty subset W of a vector space V is a vector subspace of V if

αv + βw ∈W for every α, β ∈ R and every v, w ∈W .

The following characterization clarifies the nature of vector subspaces.

Proposition 13 A nonempty subset W of a vector space V is a vector subspace of V

if and only if W is itself a vector space with respect to the operations of sum and scalar

multiplication inherited by V .

Proof “If.” Let W be a vector space with respect to the operations of sum and scalar

multiplication inherited by V . Let v, w ∈ W . Since W is closed with respect to the

scalar multiplication, we have that αv ∈W and βw ∈W . It follows that αv+βw ∈W
because W is closed with respect to the sum. Therefore, W is a vector subspace.
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“Only if.” Let W be a vector subspace of V and let v, w ∈ W . Setting α = β = 1

in Definition 12 we get v + w ∈ W , while setting β = 0 we get αv ∈ W . Therefore,

W is closed with respect to the operations of sum and scalar multiplication inherited

by V . We leave to the reader the easy check that these operations satisfy in W the

properties (i)-(viii) of Definition 7. �

Example 14 Let m ≤ n and

M = {x ∈ Rn : x1 = · · · = xm = 0} .

For example, if n = 3 and m = 2, we have:

M =
{
x ∈ R3 : x1 = x2 = 0

}
.

The set M is a vector subspace of Rn. In fact, let x, y ∈M and α, β ∈ R. We have:

αx+ βy = (αx1 + βy1, ..., αxn + βyn)

= (0, ..., 0, αxm+1 + βym+1, ..., αxn + βyn) ∈M.

In particular, the axis of the ordinates, which corresponds to M = {x ∈ R2 : x1 = 0},
is a vector subspace of R2. �

Example 15 Let r1, ..., rm be real numbers with m ≤ n+ 1 and let

M = {f ∈ Pn : f (ri) = 0 for i = 1, ...,m} .

The set M is a vector subspace of Pn. In fact, let f, g ∈ Pn and α, β ∈ R. We have:

(αf + βg) (ri) = αf (ri) + βg (ri) for i = 1, ...,m

and therefore αf + βg ∈ M . For example, consider P2 and the numbers 1 and 3. In

this case,

M = {f ∈ P2 : f (1) = f (3) = 0} ,

that is, M is the set of all the polynomials

a0 + a1x+ a2x
2

whose coefficients a0, a1, a2 are such that:
{
a0 + a1 + a2 = 0

a0 + 3a1 + 9a2 = 0
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This system of equations is solved by
(
t,−4

3
t, t
3

)
for every t ∈ R. Therefore,

M =

{
t− 4

3
tx+

t

3
x2 : t ∈ R

}
.

If, instead, we consider the three numbers 1, 3 and 5, we have:

M = {f ∈ P2 : f (1) = f (3) = f (5) = 0} ,

that is, this time M is the set of all the polynomials

a0 + a1x+ a2x
2

whose coefficients a0, a1, a2 are such that:




a0 + a1 + a2 = 0

a0 + 3a1 + 9a2 = 0

a0 + 5a1 + 25a2 = 0

This system has the unique solution (0, 0, 0) and therefore M is the trivial vector

subspace M = {0} of P2, where 0 is the degenerated polynomial whose coefficients

are all null. This result is actually not surprising as the polynomials in P2 can have

at most two roots, while the condition f (1) = f (3) = f (5) = 0 requires that 1, 3

and 5 be all roots of the polynomial, which in P2 can hold only for the degenerated

polynomial 0. �

Example 16 Pk is a vector subspace of Pn for every k ≤ n. In fact, we have:

Pk = {f ∈ Pn : ak+1 = · · · = an = 0} .

. �

Example 17 Let M be the set of all x ∈ R4 such that:




2x1 − x2 + 2x3 + 2x4 = 0

x1 − x2 − 2x3 − 4x4 = 0

x1 − 2x2 − 2x3 − 10x4 = 0

It it possible to check that the vectors
(
−10

3
t,−6t,−2

3
t, t

)

solve the system for every t ∈ R. It follows that:

M =

{(
−10

3
t,−6t,−2

3
t, t

)
: t ∈ R

}
.
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For completeness we solve the system. Consider x4 as a“parameter” and solve the

system for x1, x2 and x3; clearly, these solutions will depend on the value of the

parameter x4. 



2x1 − x2 + 2x3 + 2x4 = 0

x1 − x2 − 2x3 − 4x4 = 0

x1 − 2x2 − 2x3 − 10x4 = 0

⇒





2x1 − x2 = −2x3 − 2x4

x1 − x2 = 2x3 + 4x4

x1 − 2x2 − 2x3 − 10x4 = 0




2 (x2 + 2x3 + 4x4)− x2 = −2x3 − 2x4

x1 + (−2x3 − 2x4 − 2x1) = 2x3 + 4x4

x1 − 2x2 − 2x3 − 10x4 = 0

⇒





x2 = −6x3 − 10x4

x1 = −4x3 − 6x4

x1 − 2x2 − 2x3 − 10x4 = 0




x2 = −6x3 − 10x4

x1 = −4x3 − 6x4

(−4x3 − 6x4)− 2 (−6x3 − 10x4)− 2x3 − 10x4 = 0

⇒





x2 = −6x3 − 10x4

x1 = −4x3 − 6x4

x3 = −2
3
x4

⇒





x2 = −6
(
−2
3
x4
)
− 10x4

x1 = −4
(
−2
3
x4
)
− 6x4

x3 = −2
3
x4

⇒





x2 = −6x4

x1 = −10
3
x4

x3 = −2
3
x4

This implies that all and only the vectors of R4 of the form
(
−10

3
t,−6t,−2

3
t, t
)
solve

the system for every t ∈ R.. �

1.6 Operations on the Subspaces

If W1 and W2 are two vector subspaces of V , it is possible to show that also the

intersection W1 ∩W2 is a vector subspace of V . More generally, we have:

Proposition 18 If W1, ...,Wn are n vector subspaces of V , then
⋂n
i=1Wi is a vector

subspace of V .

Proof As 0 ∈ Wi for every 1 ≤ i ≤ n, we have that
⋂n
i=1Wi 	= ∅. Let v, w ∈ W and

α, β ∈ R. As v, w ∈ ⋂ni=1Wi, we have v, w ∈ Wi for every i = 1, ..., n and therefore

αv + βw ∈ Wi for every i = 1, ..., n since each Wi is a vector subspace of V . So,

αv + βw ∈ ⋂ni=1Wi and therefore
⋂n
i=1Wi is a vector subspace of V . �

The union of vector subspaces is not in general a vector subspace of V , as the next

example shows.

Example 19 The sets W1 = {x ∈ R2 : x1 = 0} and W2 = {x ∈ R2 : x2 = 0} are both

vector subspaces of R2. We have:

W1 ∪W2 =
{
x ∈ R2 : x1 = 0or x2 = 0

}
,

which is not a vector subspace of R2. In fact, both (1, 0) and (0, 1) belong to W1∪W2,

but (1, 0) + (0, 1) = (1, 1) /∈W1 ∪W2. �
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1.7 Linear Independence

Definition 20 A finite set of vectors {vi}ni=1 of a vector space V is said to be linearly

independent if, for each set {αi}ni=1 of real numbers, we have:

α1v
1 + α2v

2 + · · ·+ αnv
n = 0 =⇒ α1 = α2 = · · · = αn = 0.

The set {vi}ni=1 is said linearly dependent if it is not linearly independent, i.e., if

there exists a set {αi}ni=1 of real numbers, not all null, such that:

α1v
1 + α2v

2 + · · · + αnv
n = 0.

Example 21 In Rn consider the vectors:

e1 = (1, 0, ..., 0) ,

e2 = (0, 1, 0, ..., 0) ,

·
·
·

en = (0, 0, ..., 0, 1) .

The set {e1, ..., en} is linearly independent. In fact, we have

α1e
1 + · · · + αne

n = (α1, ..., αn)

and therefore α1e1 + · · · + αne
n = 0 implies α1 = · · · = αn = 0. �

Before continuing with the examples, there is a question of terminology to clarify.

Although linear independence and dependence are properties of a set of vectors {vi}ni=1,
in the sequel we will often say “sets of linearly independent (dependent) vectors” rather

than “linearly independent (dependent) set of vectors”.

Example 22 In R3, the vectors

x1 = (1, 1, 1) ,

x2 = (3, 1, 5) ,

x3 = (9, 1, 25) ,

are linearly independent. In fact,

α1x
1 + α2x

2 + α3x
3 = α1 (1, 1, 1) + α2 (3, 1, 5) + α3 (9, 1, 25)

= (α1 + 3α2 + 9α3, α1 + α2 + α3, α1 + 5α2 + 25α3)
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and therefore α1x1 + α2x
2 + α3x

3 = 0 implies





α1 + 3α2 + 9α3 = 0

α1 + α2 + α3 = 0

α1 + 5α2 + 25α3 = 0

,

which is a system of equations whose unique solution is (α1, α2, α3) = (0, 0, 0). More

generally, to verify if k vectors

x1 =
(
x11, ..., x

1
n

)
,

x2 =
(
x21, ..., x

2
n

)
,

·
·
·

xk =
(
xk1, ..., x

k
n

)
,

are linearly independent in Rn it is necessary to solve the following system:




α1x
1
1 + α2x

2
1 + · · · + αkx

k
1 = 0

α1x
1
2 + α2x

2
2 + · · · + αkx

k
2 = 0

· · · · ·
· · · · ·
α1x

1
n + α2x

2
n + · · · + αkx

k
n = 0

If (α1, ..., αk) = (0, ..., 0) is the unique solution, then these vectors are linearly independ-

ent in Rn. For example, consider in R3 the two vectors x1 = (1, 3, 4) and x2 = (2, 5, 1).

The system to solve is: 



α1 + 2α2 = 0

3α1 + 5α2 = 0

4α1 + α2 = 0

,

whose unique solution is (α1, α2) = (0, 0). These two vectors x1 and x2 are therefore

linearly independent. �

Example 23 Consider the vectors:

x1 = (2, 1, 1) ,

x2 = (−1,−1,−2) ,

x3 = (2,−2,−2) ,

x4 = (2,−4,−10) .
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To verify if these vectors are linearly independent in R3, we solve the system:




2α1 − α2 + 2α3 + 2α4 = 0

α1 − α2 − 2α3 − 4α4 = 0

α1 − 2α2 − 2α3 − 10α4 = 0

As we saw before, this system is solved by the vectors
(
−10

3
t,−6t,−2

3
t, t

)
(1.1)

for every t ∈ R. Therefore, (0, 0, 0, 0) is not the unique solution of the system and so

the vectors x1, x2, x3 and x4 are linearly dependent. In fact, setting for example t = 1

in (1.1), we have that the quadruple

(α1, α2, α3, α4) =

(
−10

3
,−6,−2

3
, 1

)

is an example of set of coefficients not all null such that α1x1+α2x2+α3x3+α4x4 = 0.

�

Example 24 Consider in P2 the following polynomials:

f1 (x) = 1, f2 (x) = x, f3 (x) = x2.

These polynomials are linearly independent. In fact, suppose per contra that this is

not true and that f1, f2 and f3 are linearly dependent. By definition, there exists a set

{α∗1, α∗2, α∗3} of real numbers not all equal to zero such that:

α∗1f1 + α∗2f2 + α∗3f3 = 0.

This means that for every x ∈ R it holds:

α∗1f1 (x) + α∗2f2 (x) + α∗3f3 (x) = 0, (1.2)

that is,

α∗1 + α∗2x+ α∗3x
2 = 0 (1.3)

for every x ∈ R. If α∗3 	= 0, equation (1.3) would be a second degree equation, which

as well known can have at most two solutions in R. Therefore, (1.3) cannot hold for

every x ∈ R, and so α∗3 = 0.

On the other hand, if α∗2 	= 0, equation (1.2) would require α∗1 + α∗2x = 0 for every

x ∈ R, which is impossible because it is a first degree equation, with therefore only

one solution. It follows that α∗2 = 0, and therefore (1.3) implies that also α∗1 = 0. We

have therefore shown that α∗1 = α∗2 = α∗3 = 0, which contradicts the assumption that
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these coefficients are not all equal to zero. We conclude that the polynomials f1, f2
and f3 are linearly independent. In a similar way it is possible to show that in Pn the

polynomials

1, x, x2, ..., xn

are linearly independent. �

Example 25 Consider in P2 the following polynomials:

f1 (x) = 1− x, f2 (x) = x (1− x) , f3 (x) = 1− x2.

These vectors are linearly dependent. In fact, set α1 = α2 = 1 and α3 = −1. We have:

α1f1 (x) + α2f2 (x) + α3f3 (x) = (1− x) + x (1− x)−
(
1− x2

)
= 0

for every x ∈ R. Therefore, α1f1 + α2f2 + α3f3 = 0. �

In the next definition we extend the notion of linear independence to sets of vectors

of any cardinality, possibly infinite.

Definition 26 An infinite set S of vectors of a vector space V is said to be linearly

independent if each finite subset of vectors of S is linearly independent. Otherwise, S

is said to be linearly dependent.

For example, let P be the space of all the polynomials of whatever degree. Of

course,

P1 ⊆ P2 ⊆ · · · ⊆ Pn ⊆ · · ·

and P =
⋃
n≥1Pn. The vectors

f1 (x) = 1, f2 (x) = x, ..., fn (x) = xn−1, ...

form a linearly independent infinite set. In fact, it is easy to verify that each finite

subset of {fn}n≥1 is linearly independent.

1.8 Linear Combinations

Definition 27 A vector v of a vector space V is said to be a linear combination of

vectors {vi}ni=1 of V if there exist n real coefficients {αi}ni=1 such that v = α1v
1+ · · ·+

αnv
n.

Example 28 In R3 consider the two vectors e1 = (1, 0, 0) and e2 = (0, 1, 0). A vector

of R3 is a linear combination of e1 and e2 if it has the form (α1, α2, 0) for α1, α2 ∈ R.
In fact, (α1, α2, 0) = α1e

1 + α2e
2. �
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Example 29 Consider in P2 the polynomials f1 (x) = 1, f2 (x) = x, and f3 (x) = x2.

Each element of P2 can be written as α1f1+α2f2+α3f3 for α1, α2, α3 ∈ R. Therefore,
each element of P2 is a linear combination of the vectors {f1, f2, f3}. �

The notion of linear combinations allows to establish a fundamental characterization

of linear dependence.

Theorem 30 Assume n ≥ 2. A set {vi}ni=1 of nonzero vectors of a vector spaceV

is linearly dependent if and only if for some 2 ≤ k ≤ n the vector vk is a linear

combination of the vectors v1, ..., vk−1.

In other words, a set {vi}ni=1 is linearly dependent if and only if there exists at least

an element of {vi}ni=1 that is a linear combination of some other elements of {vi}ni=1.

Proof “Only if.” Let {vi}ni=1 be a linearly dependent set of vectors of V . Let 2 ≤ k ≤ n

be the first natural number between 2 and n such that the set
{
v1, ..., vk

}
is linearly

dependent. In the “worst” case, k will be equal to n since by hypothesis {vi}ni=1 is a
linearly dependent set. According to the definition of linear dependence, then there

exist k real coefficients {αi}ki=1, not all null, such that:

α1v
1 + α2v

2 + · · · + αkv
k = 0.

We have αk 	= 0 because otherwise
{
v1, ..., vk−1

}
would be a linearly dependent set,

contradicting the fact that k is the smaller natural number between 2 and n such that{
v1, ..., vk

}
is a linearly dependent set. Having established that αk 	= 0, we can write:

vk =
−α1
αk

v1 +
−α2
αk

v2 + · · · + −αk−1
αk

vk−1

and therefore vk is a linear combination of the vectors
{
v1, ..., vk−1

}
. This proves the

“only if ”.

“If.” Assume that there exists, for some 2 ≤ k ≤ n, a set of real coefficients {αi}k−1i=1

such that:

vk = α1v
1 + · · · + αk−1v

k−1.

Consider the real coefficients {βi}ni=1 such that:

βi =





αi 1 ≤ i ≤ k − 1

−1 i = k

0 k + 1 ≤ i ≤ n
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By construction, {βi}ni=1 is a set of real coefficients not all null and such that
∑n

i=1 βiv
i =

0. In fact:
n∑

i=1

βiv
i = α1v

1 + · · ·+ αk−1v
k−1 + (−1) vk + 0vk+1 + · · · + 0vn

= vk − vk = 0.

It follows that {vi}ni=1 is a linearly dependent set. �

Example 31 We saw that the polynomials f1 (x) = 1 − x, f2 (x) = x (1− x) and

f3 (x) = 1 − x2 are linearly dependent. In this case each of them can be expressed as

a linear combination of the other two. In fact:

f1 (x) = f3 (x)− f2 (x) ,

f2 (x) = f3 (x)− f1 (x) ,

f3 (x) = f1 (x) + f2 (x) .

�

Example 32 Consider in R3 the vectors x1 = (1, 3, 4), x2 = (2, 5, 1) and x3 = (0, 1, 7).

We have that x3 = 2x1 − x2, and therefore Theorem 30 can be applied to the set

{x1, x2, x3} by setting k = 3. It follows that {x1, x2, x3} is a linearly dependent set. It

is immediate to verify that also in this case each of the vectors in the set {x1, x2, x3}
is a linear combination of the other two. Next example will show that this is not,

however, a property of all the sets of linearly dependent vectors. �

Example 33 Consider inR3 the vectors x1 = (1, 3, 4), x2 = (2, 6, 8), and x3 = (2, 5, 1).

We have that x2 = 2x1 and therefore Theorem 30 can be applied to the set {x1, x2, x3}
by setting k = 2. The vectors x1, x2, and x3 are therefore linearly dependent. Note

that x3 is not a linear combination of x1 and x2, that is, there do not exist α1, α2 ∈ R
such that x3 = α1x

1 + α2x
2. Therefore, though Theorem 30 guarantees that in a set

of linearly dependent vectors some of them are a linear combination of other vectors

of the set, this property does not necessarily hold for all the vectors of the set. For

example, this property held for all vectors in the two previous examples, but not in

this last one. �

Next result is an immediate, but fundamental, consequence of Theorem 30.

Corollary 34 A set S of cardinality greater than 1, finite or infinite, of vectors of a

vector space V is linearly independent if and only if none of the vectors in the set S is

a linear combination of other vectors in S.

Note that the case n = 1, i.e., S = {v}, has to be treated separately. On the other

hand, by definition {v} is linearly independent if and only if v 	= 0.
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1.9 Generated Subspaces

Definition 35 Let S be a subset of V . The subspace generated by S, denoted by

span (S), is the smallest vector subspace of V containing S.

Therefore, span (S) is the smallest vector subspace in which the set S “lives.”

Proposition 36 Let {Wα} be the collection of all vector subspaces of V containing the

set S. We have that span (S) =
⋂
αWα.

Proof It is easy to see that the proof of Proposition 18 holds in reality for any collection,

finite or infinite, of vector subspaces. Therefore,
⋂
αWα is itself a vector subspace of V .

As S ⊆ Wα for each Wα, we have span (S) ⊆ ⋂αWα because, by definition, span (S)

is the smallest vector subspace of V containing S.

On the other hand, span (S) belongs to the collection {Wα} because is a vector

subspace of V containing S. It follows that
⋂
αWα ⊆ span (S) , and we can therefore

conclude that
⋂
αWα = span (S). �

The intersection
⋂
αWα is always nonempty since it contains at least the null vec-

tor 0. Therefore, Proposition 36 guarantees that span (S) exists for every subset S.

Moreover, span (S) is unique as it coincides with
⋂
αWα.

The next important result shows that span (S) has a “concrete” representation in

terms of linear combinations of S.

Theorem 37 Let S be a subset of V . A vector v ∈ V belongs to span (S) if and only

if it is a linear combination of vectors of S, that is, if and only if there exists a finite

set {vi}i∈I of S and a set {αi}i∈I of real coefficients such that v =
∑

i∈I αiv
i.

Proof “If.” Let v ∈ V be a linear combination of a finite set {vi}i∈I of vectors of

S. For simplicity, set {vi}i∈I = {v1, ..., vn}. There exists therefore a set {αi}ni=1 of

real coefficients such that v =
∑n

i=1 αiv
i. By definition of vector subspace, we have

α1v
1+α2v

2 ∈ span (S) because v1, v2 ∈ span (S). Moreover, (α1v1 + α2v
2) ∈ span (S)

implies (α1v
1 + α2v

2) + α3v
3 ∈ span (S), and proceeding in this way we get that

v =
∑n

i=1 αiv
i ∈ span (S), as desired.

“Only if”. Let W be the set of all vectors v of V that can be expressed as linear

combinations of vectors of S; that is, v ∈ W if there exist finite sets {vi}i∈I ⊆ S and

{αi}i∈I ⊆ R such that v =
∑n

i=1 αiv
i. It is easy to see that W is a vector subspace of

V containing S. It follows that span (S) ⊆ W and therefore every v ∈ span (S) is a

linear combination of vectors of S. �

Before illustrating Theorem 37 with some examples, we state a simple consequence

of this theorem.
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Corollary 38 Let S be a subset of V . The vector v ∈ V is a linear combination of

vectors of S if and only if span (S) = span (S ∪ {v}).

Example 39 Let S =
{
v1, ..., vk

}
⊆ V . For Theorem 37 we have:

span (S) =

{
v ∈ V : v =

k∑

i=1

αiv
i with αi ∈ R for every i = 1, ..., k

}

=

{
k∑

i=1

αiv
i : αi ∈ R for every i = 1, ..., k

}
.

For example, consider k vectors {fi}ki=1 of the vector space Pn, with k ≤ n + 1. We

have:

span (S) =

{
k∑

i=1

αifi : αi ∈ R forevery i = 1, ..., k

}
.

�

Example 40 Let S = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} ⊆ R3. We have:

span (S)

=
{
x ∈ R3 : x = α1 (1, 0, 0) + α2 (0, 1, 0) + α3 (0, 0, 1)

with αi ∈ R for every i = 1, 2, 3}
= {(α1, α2, α3) : αi ∈ R for every i = 1, 2, 3} = R3.

More generally, let S = {e1, ..., en} ⊆ Rn. We have:

span (S) =

{
x ∈ Rn : x =

n∑

i=1

αie
i with αi ∈ R for every i = 1, ..., n

}

= {(α1, ..., αn) : αi ∈ R forevery i = 1, ..., n} = Rn.

�

Example 41 If S = {v}, we have span (S) = {αv : α ∈ R}. For example, let v =

(2, 3) ∈ R2. We have:

span (S) = {(2α, 3α) : α ∈ R} ,

that is, in this case span (S) it is nothing but the straight line that passes through the

point v.

Fig.

�
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Example 42 Consider a financial market in which the returns of the assets depend

on the state of the economy, which can be of three types:

s1 = “recession” s2 = “stasis” s3 = “growth.

Each asset can be described as a vector (x1, x2, x3) of R3, in which xi is the return of

the asset in case state si obtains, for i = 1, 2, 3. Suppose that there exist only three

assets on the market: x1, x2, and x3. Let αi be the quantity of asset xi held, so that

the vector of coefficients (α1, α2, α3) represents a portfolio formed by these assets. The

quantities αi can be both positive and negative. In the first case we are “long” in the

asset and we have the return xi in case state si obtains; when αi is negative we are

instead “short” on the asset and we have to pay the return xi when si obtains. The

return of a portfolio (α1, α2, α3) in the different states is therefore given by the linear

combination

α1x
1 + α2x

2 + α3x
3.

The set span (x1, x2, x3) is thus the collection of all the returns that can be earned with

portfolios constituted by three assets available on the market. It is therefore a vector

subspace of R3.

More generally, consider a financial market in which are traded n assets {xi}ni=1 ,whose
returns depend on k states of nature {si}ki=1. Each asset is then described by a vec-

tor (x1, ..., xk) ∈ Rk, in which xi is the return of the asset if state si obtains, for

i = 1, ..., k. A portfolio in this market is represented by a vector (α1, ..., αn) of real

coefficients and the return of the portfolio in the different states of nature is given by

the linear combination
∑n

i=1 αix
i. It follows that span (x1, ..., xn) is the set of all the

returns that can be earned with portfolios of assets of this market. These returns form,

therefore, a vector subspace of Rk. �

1.10 Bases

Suppose S is a subset of a vector space V . By Theorem 37, span (S) consists of

the linear combinations of vectors in S. Suppose that S is a linearly dependent set.

By Theorem 30 and by Corollary 34, some vectors in S can in turn be expressed as

linear combinations of other elements of S. By Corollary 38, such vectors are therefore

redundant for the generation of span (S). In fact, if a vector v in span (S) is a linear

combination of vectors of S, by Corollary 38 we have span (S) = span (S − {v}), where
S − {v} is the set S without the vector v.

A linearly dependent set S thus contains some redundant elements with respect to

the generation of span (S). This does not happen if, instead, S is a linearly independent

set, a case in which by Corollary 34 none of the vectors of S can be expressed as linear
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combination of other elements of S. In other words, when S is linearly independent,

all its vectors are essential for the generation of span (S).

These considerations lead us to introduce the notion of basis of a vector space.

Definition 43 A set of vectors S of V is said to be a basis of V if S is a linearly

independent set such that span (S) = V .

If S is a basis of V we have therefore:

(i) each v ∈ V is representable as a linear combination of vectors in S;

(ii) all the vectors of S are essential for this representation, none of them is redundant.

The following result makes clear this “essentiality” of a basis for the representation

as linear combinations of the elements of V .

Theorem 44 A subset S of a vector space V is a basis of V if and only if each vector

v ∈ V can be written in a unique way as a linear combination of vectors in S.

In other words, there is a unique finite set of coefficients {αi}i∈I and of vectors

{vi}i∈I ⊆ S such that v =
∑

i∈I αiv
i.

Proof We prove the theorem only for finite S; in the infinite case the proof is similar,

though notationally tedious. “Only if.” Let S = {v1, ..., vn} be a basis of V . Suppose

there exist two sets of real coefficients, {αi}ni=1 and {βi}ni=1, such that:

v =
n∑

i=1

αiv
i =

n∑

i=1

βiv
i.

We therefore have:
n∑

i=1

(αi − βi) v
i = 0,

and, being the vectors in S linearly independent, this implies that αi−βi = 0 for every

i = 1, ..., n, that is, αi = βi for every i = 1, ..., n.

“If.” Let S = {v1, ..., vn} and suppose that every v ∈ V can be written in a unique

way as a linear combination of vectors in S. Clearly, by Theorem 37 we have V =

span (S). It remains to prove that S is a linearly independent set. Suppose that the

real coefficients {αi}ni=1 are such that:
n∑

i=1

αiv
i = 0.

Since we also have that
∑n

i=1 0v
i = 0, we conclude that αi = 0 for every i = 1, ..., n

since by hypothesis the vector 0 can be written in a unique way as a linear combination

of vectors in S. �
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Example 45 The standard basis of Rn is given by the vectors {e1, ..., en}. Every

x ∈ Rn can be written in a unique way as linear combination of these vectors. In

particular:

x = x1e
1 + · · · + xne

n =
n∑

i=1

xie
i,

that is, the coefficients of the linear combination are the components of the vector x.�

Example 46 Since the standard basis of Pn is given by the polynomials

f1 (x) = 1, f2 (x) = x, ..., fn+1 (x) = xn,

each f ∈ Pn can be uniquely written as

f =
n+1∑

i=1

αifi

with αi ∈ R for i = 1, ..., n+ 1. �

Example 47 Since the standard basis of P is given by the polynomials

f1 (x) = 1, f2 (x) = x, ..., fn+1 (x) = xn, ...

each polynomial f ∈ P can be uniquely written as a linear combination of vectors

taken from the infinite set {fi}i≥1. �

1.11 Dimension

Each vector of a vector space V can be “reconstructed” as a linear combination of the

vectors of a basis of V . In a sense, a basis is therefore a “genetic code” for a vector

space, which contains all the information that is necessary to identify its elements.

Since there are in general multiple bases of a given vector space, these information can

thus be “summarized” through different sets of vectors.

In view of these observations, it is therefore natural to think that a vector space

is the “bigger” the more elements its bases have, that is, the bigger is the quantity of

information needed to identify the elements of the vector space. In this section we will

to formalize this simple and natural intuition.

Let start with a definition.

Definition 48 A vector space V is said to have finite dimension if it has a basis with

a finite number of elements.
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For example, the spaces Rn and Pn have both finite dimension because for example

{e1, ..., en} and {1, x, ..., xn} are, respectively, bases of these spaces featuring a finite

number of elements.

Next theorem has an importance that is inversely proportional to the tediousness

of its proof.

Theorem 49 Let V be a finite dimensional vector space with a basis of n elements.

For each linearly independent set of vectors
{
v1, ..., vk

}
, with k ≤ n, there exist n − k

vectors
{
vk+1, ..., vn

}
such that the set {vi}ni=1 is a basis of V .

Proof We prove the theorem by induction. We start therefore with k = 1, that is,

from a singleton {v1}. We want to show that there exist n−1 vectors that, when added

to v1, form a bases of V . Let {w1, ..., wn} be a basis of n elements of V . There exist

coefficients {α∗i}ni=1 ⊆ R such that

v1 =
n∑

i=1

α∗iw
i. (1.4)

As v1 	= 0, not all these coefficients are zero (why is v1 	= 0?). Suppose, for example,

that α∗1 	= 0. We have that:

w1 =
1

α∗1
v1 − 1

α∗1

n∑

i=2

α∗1w
i,

and therefore for each set of coefficients {α∗i }ni=1 ⊆ R we have:

n∑

i=1

αiw
i =

n∑

i=2

αiw
i + α1

[
1

α∗1
v1 − 1

α∗1

n∑

i=2

α∗1w
i

]

=

(
α1
α∗1

)
v1 +

n∑

i=2

(
αi −

α∗i
α∗1

)
wi.

It follows that span (v1, w2, ..., wn) = span (w1, w2, ..., wn), and so span (v1, w2, ..., wn) =

V .

We now show that the vectors {v1, w2, ..., wn} are linearly independent, so that we

can conclude that {v1, w2, ..., wn} is a basis of V . Let {βi}ni=1 ⊆ R be coefficients such

that

β1v
1 +

n∑

i=2

βiw
i = 0. (1.5)

We want to show that β1 = · · · = βn = 0. Suppose β1 	= 0. We have:

v1 =
n∑

i=2

(−βi
β1

)
wi.
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On the other hand, by (1.4) we have v1 =
∑n

i=1 α
∗
iw

i, and therefore:

α∗1 = 0 and α∗i =
−βi
β1

for every i = 2, ..., n

since by Theorem 44 the vector v1 can be uniquely written as linear combination of

the basis {wi}ni=1.
But, α∗1 = 0 contradicts the assumption α∗1 	= 0, and we are therefore arrived at a

contradiction. We conclude that β1 = 0. At this point, setting β1 = 0, (1.5) reduces

to
n∑

i=2

βiw
i = 0.

As {w2, ..., wn} is a linearly independent set (see Exercise 13.0.8), we thus have that

β2 = · · · = βn = 0, and this completes the proof that {v1, w2, ..., wn} is a linearly

independent set of V and therefore a basis of it. The case k = 1 is therefore proved.

Suppose now that the theorem is true for every set of k − 1 vectors; we want to

show that the theorem is true for every set of k vectors. Let therefore
{
v1, ..., vk

}
be a

set of k linearly independent vectors. The subset
{
v1, ..., vk−1

}
is linearly independent

and it has k − 1 elements. There exist therefore n− (k − 1) vectors
{
w̃k, ..., w̃n

}
such

that
{
v1, ..., vk−1, w̃k, ..., w̃n

}
is a basis of V . Then, there exist coefficients {α∗i}ni=1 ⊆ R

such that

vk =
k−1∑

i=1

α∗i v
i +

n∑

i=k

α∗i w̃
i. (1.6)

As the vectors
{
v1, ..., vk−1

}
are linearly independent, at least one of the coefficients

{α∗i }ni=1 is not zero. Otherwise, we would have vk =
∑k−1

i=1 α
∗
i v
i, and the vector vk

would be therefore a linear combination of the vectors
{
v1, ..., vk−1

}
, something that

by Corollary 34 cannot happen. Let, for example, α∗k 	= 0. We have:

w̃k =
1

α∗k
vk +

k−1∑

i=1

−α
∗
i

α∗k
vi +

n∑

i=k

−α
∗
i

α∗k
w̃i.

For each set of coefficients {αi}ni=1 ⊆ R we have:

k−1∑

i=1

αiv
i +

n∑

i=k

αiw̃
i

=
k−1∑

i=1

αiv
i + αk

[
1

α∗k
vk +

k−1∑

i=1

−α
∗
i

α∗k
vi +

n∑

i=k

−α
∗
i

α∗k
w̃i

]
+

n∑

i=k+1

αiw̃
i

=
k−1∑

i=1

(
αi −

αkα
∗
i

α∗k

)
vi +

αk
α∗k
vk +

n∑

i=k+1

(
αi −

αkα
∗
i

α∗k

)
w̃i
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and therefore:

span
(
v1, ..., vk, w̃k+1, ..., w̃n

)
= span

(
v1, ..., vk−1, w̃k, ..., w̃n

)
= V.

It remains to show that the vectors
{
v1, ..., vk, w̃k+1, ..., w̃n

}
are linearly independent.

Let {βi}ni=1 ⊆ R be coefficients such that:

k∑

i=1

βiv
i +

n∑

i=k+1

βiw̃
i = 0. (1.7)

We want to show that β1 = · · · = βn = 0. Suppose βk 	= 0. We have:

vk =
k−1∑

i=1

(
− βi
βk

)
vi +

n∑

i=k+1

(
− βi
βk

)
w̃i.

Being
{
v1, ..., vk−1, w̃k, ..., w̃n

}
a basis of V , the vector vk can be written in a unique

way as their linear combination. Therefore, (1.6) implies that

α∗i = −βi
βk

for i = 1, ..., k − 1 and i = k + 1, ..., n,

while α∗k = 0. This contradicts the previous assumption α∗k 	= 0, and we thus conclude

that βk = 0. Equality (1.7) reduces to:

k−1∑

i=1

βiv
i +

n∑

i=k+1

βiw̃
i = 0.

But, the vectors
{
v1, ..., vk−1, w̃k+1, ..., w̃n

}
are linearly independent (see again Exercise

13.0.8), and therefore we conclude that

β1 = · · · = βk−1 = βk+1 = · · · = βn = 0.

This shows that the vectors
{
v1, ..., vk, w̃k, ..., w̃n

}
are linearly independent and form

therefore a basis of V . �

Next result is a simple, but important, consequence of Theorem 49.

Corollary 50 Let V be a finite dimensional vector space with a basis of n elements.

We have:

(i) Each linearly independent set of V that has n elements is a basis of V .

(ii) Each linearly independent set of V has at most n elements.
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Proof (i) It is sufficient to set k = n in Theorem 49.

(ii) Let S be a linearly independent set in V . We consider first the case of S finite,

say S =
{
v1, ..., vk

}
. We want to show that k ≤ n. By contradiction, suppose k > n.

Then, {v1, ..., vn} is itself a linearly independent set in V (see Exercise 13.0.8) and from

part (i) is a basis of V . Therefore, the vectors
{
vn+1, ..., vk

}
are a linear combination

of the vectors {v1, ..., vn}, which by Corollary 34 contradicts the fact that the vectors{
v1, ..., vk

}
are linearly independent. Therefore, k ≤ n, and this completes the proof

for S finite.

Suppose now that S is infinite. By Definition 26, each of its finite subset is linearly

independent. Therefore, for what it has been just proved it can have at most n elements.

But, a set whose finite subsets can have at most n elements must have itself at most n

elements. It follows that S has at most n elements and the proof is complete. �

We finally arrive at the main result of the section.

Theorem 51 In a finite dimensional vector space V , each basis has the same number

of elements.

In other words, though the “genetic” information of a vector space can be coded

through different sets of vectors, that is, through different bases, all these sets have the

same number of elements, the same “magnitude.”

Proof Suppose that V has a basis of n elements. By part (ii) of Corollary 50, each other

basis of V can have at most n elements. Let
{
v1, ..., vk

}
be any another basis of V . We

show that it cannot hold k < n, so that k = n. Suppose k < n holds. By Theorem 49,

there would exist n− k vectors
{
vk+1, ..., vn

}
such that the set

{
v1, ..., vk, vk+1, ..., vn

}

would be a basis of V . This, however, contradicts the assumption that
{
v1, ..., vk

}
is

a basis of V since the vectors
{
vk+1, ..., vn

}
are not linear combination of the vectors{

v1, ..., vk
}
, being {v1, ..., vn} a linearly independent set. In conclusion, it cannot hold

k < n, and so k = n. �

Theorem 51 motivates the following fundamental definition.

Definition 52 The dimension of a finite dimensional vector space V is the number of

elements of a basis of V .

By Theorem 51 this number is unique. We denote it by dim(V ).

Example 53 We have dim (Rn) = n and dim (Pn) = n+ 1. �
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Example 54 The space P is not finite dimensional. In fact, suppose on the contrary

that dim (P) = n for some n ∈ N. By Theorem 51, each basis of P has n elements,

which is not possible because we saw that the infinite set {1, x, ..., xn, ...} is a basis of

P. A space that, like P, has not finite dimension is said to be infinite dimensional.

Therefore, P is a first example of an infinite dimensional vector space. �

Example 55 If V = {0}, that is, if V is the trivial vector space constituted only by

the neutral element 0, we set dim (V ) = 0. Observe that V does not contain linearly

independent vectors (why ?) and therefore has as basis the empty set {∅}. �



Chapter 2

Linear Functionals

In the previous sections we studied in detail the structure of a vector space. In this sec-

tion we move to the study linear functionals, a first important family of “inhabitants”

of vector spaces.

Definition 56 A function L : V → R with real values defined on a vector space V is

called functional. A functional L : V → R is linear if

L (αv + βw) = αL (v) + βL (w) (2.1)

for every v, w ∈ V and every α, β ∈ R.

Example 57 ConsiderRn. Given two vectors x, y ∈ Rn, their scalar (or inner) product
x · y is defined as x · y =

∑n
i=1 xiyi. Using inner products it is easy to define linear

functionals. In fact, given a vector χ ∈ Rn, define L : Rn → R by L (x) = χ ·x for each

x ∈ Rn. The functional L is linear:

L (αx+ βy) = χ · (αx+ βy) =
n∑

i=1

χi (αxi + βyi) = α
n∑

i=1

χixi + β
n∑

i=1

χiyi

= α (χ · x) + β (χ · y) = αL (x) + βL (y)

for every x, y ∈ Rn and every α, β ∈ R. �

Example 58 Consider P, the vector space of all polynomials defined on R. Fix r ∈ R
and define L : P → R as follows:

L (f) = f (r) for every f ∈ P.

For example, if f (x) = x2 and r = 3, we have L (f) = r2 = 9. The functional L is

linear:

L (αf + βg) = (αf + βg) (r) = αf (r) + βg (r) = αL (f) + βL (g)

for every f, g ∈ P and every α, β ∈ R. �

37
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We now give a fundamental characterization of linear functionals, which shows

that a functional is linear if and only if it preserves the operations of sum and scalar

multiplication.

Proposition 59 A functional L : V → R is linear if and only if

L (v + w) = L (v) + L (w) , (2.2)

L (αv) = αL (v) (2.3)

for every v, w ∈ V and every α ∈ R.

Proof “If.” Suppose that (2.2) and (2.3) hold. Then,

L (αv + βw) = L (αv) + L (βw) = αL (v) + βL (w) ,

and therefore L is a linear functional.

“Only if.” Let L be a linear functional. If in (2.1) we set α = β = 1, we get (2.2).

If, instead, in (2.1) we set β = 0 we get (2.3). �

Before considering other examples, we give an important property of linear func-

tionals.

Proposition 60 Let L : V → R be a linear functional. We have L (0) = 0 and

L

(
n∑

i=1

αiv
i

)
=

n∑

i=1

αiL
(
vi
)

(2.4)

for each set of vectors {vi}ni=1 in V and each set of real numbers {αi}ni=1.

Proof We show that L (0) = 0. By (2.3), we have L (α0) = αL (0) for every α ∈ R.
Since α0 = 0, we therefore have L (0) = αL (0) for every α ∈ R, and this can happen

only if L (0) = 0. We leave the proof of (2.4) as an exercise. �

Property (2.4) has a simple, but important consequence: once we know which values

a linear functional takes on the elements of a basis, we can determine the values that

the functional assumes in correspondence of all vectors of the vector space. In fact,

let S be a basis of V , finite or infinite. Each vector v ∈ V can be written as linear

combination of elements of S, that is, there exist a finite set of vectors {vi}i∈I in S and

of real coefficients {αi}i∈I such that:

v =
∑

i∈I
αiv

i.



39

By property (2.4) of Proposition 60, we have

L (v) =
∑

i∈I
αiL

(
vi
)
,

and this means that, once we know the values {L (v) : v ∈ S}, we can determine all

the values L (v) of the vectors v ∈ V by exploiting the linearity of the functional L.

We continue with the examples.

Example 61 We saw in Example 42 a market in which there are n assets {xi}ni=1,
whose returns depend on k states of nature {si}ki=1. Each asset can be represented as

a vector of Rk and the set of the returns of the portfolios that can be formed in this

market is given by span (x1, ..., xn), the vector subspace of Rk generated by the set

{xi}ni=1. Each portfolio, and in particular each asset, has a price at which is traded

on the market. Therefore, to each vector v ∈ span (x1, ..., xn) is associated a real

number that represents its market price. In other words, there exists a functional

L : span (x1, ..., xn) → R, called price functional, in which L (v) is the market price

of the portfolio v ∈ span (x1, ..., xn). We often assume that in a financial market

arbitrages cannot exist, and this implies that the price functional is linear.1 By (2.4),

the linearity of the price functional implies that the portfolios
∑n

i=1 αix
i have a price∑n

i=1 αiL (xi). Hence, it is sufficient to know the price of the assets {xi}ni=1 in order

to determine the price of all the portfolios that can be formed with them. This is a

simple, but important, consequence of the hypothesis of no-arbitrages. �

Example 62 Consider again the vector space P. Let {ri}∞i=0 be an arbitrary set of

infinite real numbers (e.g., ri = 2i for i ≥ 0). Since each element f of P has the form∑n
i=0 aix

i with n ∈ N, we can define L : P → R as follows:

L (f) =
n∑

i=0

airi for each f ∈ P .

This functional is linear. In fact, let f (x) =
∑n

i=0 aix
i and g (x) =

∑m
i=0 bix

i be two

elements of P. Without loss of generality, suppose that m ≤ n, so that

(f + g) (x) =
m∑

i=0

(ai + bi) x
i +

n∑

i=m+1

aix
i,

(of course the second sum is superfluous if m = n). We therefore have that:

L (αf + βg) =
m∑

i=0

(αai + βbi) ri +
n∑

i=m+1

αairi

= α
n∑

i=0

airi + β
m∑

i=0

biri = αL (f) + βL (g) .

1See, for instance, H. Varian, “The arbitrage principle in financial economics”, Journal of Economic
Perspectives 1, pp. 55-72, 1987.
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�

2.1 Dual Spaces

Definition 63 The set of all linear functionals L : V → R defined on a vector space

V is called dual space of V and is denoted by V ′.

The space V ′ is therefore the set of all linear functionals defined on the vector space

V . In V ′ it is possible to define in a natural way sum and scalar multiplication. In

fact:

(i) If L1, L2 ∈ V ′, the sum L1 + L2 is the element of V ′ defined as:

(L1 + L2) (v) = L1 (v) + L2 (v) (2.5)

for every v ∈ V.

(ii) If L ∈ V ′ and α ∈ R, the scalar multiplication αL is the element of V ′ defined

as:

(αL) (v) = αL (v) (2.6)

for every v ∈ V and every α ∈ R.

Endowed with these two operations, V ′ becomes a vector space. We state now this

important property, whose simple proof is left as an exercise.

Proposition 64 The dual space V ′ of a vector space V is itself a vector space with

respect to the operations of sum and scalar multiplication defined in (2.5) and (2.6),

and with neutral element the linear functional 0 : V → R such that 0 (v) = 0 for every

v ∈ V .

Given a vector space V , it is not always easy to describe its dual V ′, that is, to say

which form have the elements of V ′. Fortunately, this is possible for some important

vector spaces. For example, consider Rn. We have seen how each vector χ ∈ Rn induces
a linear functional L : V → R defined by L (x) = χ · x for every x ∈ Rn. Next we show
that actually all linear functionals defined on Rn have this form; that is, the dual space

(Rn)′ is constituted by the linear functionals of the form L (x) = χ ·x for some χ ∈ Rn.

Theorem 65 A functional L : Rn → R is linear if and only if there exists a vector

χ ∈ Rn such that L (x) = χ · x for every x ∈ Rn. In particular, such vector is unique.
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Proof We have already seen the “if” part in Example 1. It remains to show the “only

if” part. Let L : Rn → R be a linear functional and consider the standard basis

{e1, ..., en}. Set χ = (L (e1) , ..., L (en)). For each vector x ∈ Rn we have x =
∑n

i=1 xie
i,

and so:

L (x) = L

(
n∑

i=1

xie
i

)
=

n∑

i=1

xiL
(
ei
)
=

n∑

i=1

χixi = χ · x

for every x ∈ Rn.

As to uniqueness, let χ′ ∈ Rn be a vector such that L (x) = χ′ · x for every x ∈ Rn.
Then, for each i = 1, ..., n we have:

χ′i = χ′ · ei = L (x) = χ · ei = χi,

and therefore χ′ = χ. This completes the proof. �

Example 66 Consider again a financial market in which the assets can be represented

as vectors of Rk. Suppose that on the market the assets {ei}ki=1 are available (the asset
ei pays 1 euro if the state of nature si obtains, and 0 otherwise). These assets are

called “Arrow securities” and of course they are nothing else that the standard basis

of Rk, which here represents the set of the returns of the portfolios that can be formed

on this financial market.

Let π =
(
L (e1) , ..., L

(
ek
))

be the vector of prices of Arrow securities assigned by

a given linear functional of price L : Rk → R. Assume that on this financial market

there is no arbitrage and that, therefore, the price functional L is linear. From the

proof of Theorem 65 we know that:

L (x) =
k∑

i=1

πixi = π · x for every x ∈ Rk.

The price of every portfolio is therefore determined by the price of Arrow securities. In

other words, it is enough to know the price of these k “fundamental” assets in order to

determine the price of all infinite portfolios that can be formed on the market, whose

set is given by the whole Rk. This is another important consequence of the hypothesis

of no-arbitrage. �

We saw that V ′ is itself a vector space. It is natural to ask if, for example, it has

finite dimension when V has finite dimension and, in this case, which is the relation

between the dimensions of the vector spaces V and V ′. To satisfy these curiosities we

first have to prove the following result:



42 CHAPTER 2. LINEAR FUNCTIONALS

Proposition 67 Let V be a finite dimensional vector space with basis {v1, ..., vn}, and
let {r1, ..., rn} be a set of n real numbers. There exists one and only one linear functional
L : V → R such that:

L
(
vi
)
= ri for every i = 1, ..., n.

Proof Since {v1, ..., vn} is a basis, for each v ∈ V there exists a unique set of real

coefficients {αi}ni=1 such that v =
∑n

i=1 αiv
i. Define L : V → R as follows:

L (v) =

n∑

i=1

αiri for every v ∈ V.

It is easy to verify that the functional L : V → R defined in this way is linear. In fact,

let v, w ∈ V be such that v =
∑n

i=1 αiv
i and w =

∑n
i=1 βiv

i. For every α, β ∈ R we

have:

L (αv + βw) = L

(
α

n∑

i=1

αiv
i + β

n∑

i=1

βiv
i

)
= L

(
n∑

i=1

(ααi) v
i +

n∑

i=1

(ββi) v
i

)

= L

(
n∑

i=1

(ααi + ββi) v
i

)
=

n∑

i=1

(ααi + ββi) ri

= α
n∑

i=1

αiri + β
n∑

i=1

βiri = αL (v) + βL (w)

and therefore L : V → R is a linear functional. Since the functional L is such that

L (vi) = ri for each i = 1, ..., n, to complete the proof we still have to prove its

uniqueness. Let L′ : V → R be another linear functional such that L′ (vi) = ri for each

i = 1, ..., n. For every v ∈ V we have:

L′ (v) = L′

(
n∑

i=1

αiv
i

)
=

n∑

i=1

αiL
′ (vi

)
=

n∑

i=1

αiri =
n∑

i=1

αiL
(
vi
)
= L

(
n∑

i=1

αiv
i

)
= L (v)

and so L (v) = L′ (v) for every v ∈ V . There exists therefore one and only one linear

functional L : V → R such that L (vi) = ri for every i = 1, ..., n. �

Using Proposition 67, we can now study the relations between the dimensions of V

and V ′. To ease notation, we will use the “delta of Kronecker”:

δij =

{
1 if i = j

0 if i 	= j

Theorem 68 Let V be a finite dimensional vector space with basis {v1, ..., vn}. Then,

dim (V ) = dim (V ′) = n
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and a basis of V ′ is given by the set of linear functionals {L1, ..., Ln} defined by:

Li
(
vj
)
= δij

for every i = 1, ..., n and every j = 1, ..., n.

In other words, the functional Li : V → R assumes the following values on the basis

{v1, ..., vn}:

Li
(
vi
)

= 1,

Li
(
vj
)

= 0 if i 	= j.

By Proposition 67, such functional Li : V → R exists and is unique for every i = 1, ..., n.

Proof As already observed, the linear functionals {L1, ..., Ln} exist and are unique.

It remains to show that {L1, ..., Ln} is indeed a basis of V ′. Begin by show that

it is a linearly independent set. Let {αi}ni=1 be a set of real coefficients such that∑n
i=1 αiLi = 0, where 0 is the linear functional on V such that 0 (v) = 0 for every

v ∈ V (it is the neutral element according to Proposition 64). We therefore have that∑n
i=1 αiLi (v) = 0 for every v ∈ V . In particular, for the vectors of the basis {v1, ...., vn}

we have:
α1L1 (v

1) + α2L2 (v
1) + · · · + αnLn (v1) = 0

α1L1 (v
2) + α2L2 (v

2) + · · · + αnLn (v2) = 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

α1L1 (v
n) + α2L2 (v

n) + · · · + αnLn (vn) = 0

and therefore:
α1 · 1 + α2 · 0 + · · · + αn · 0 = 0

α1 · 0 + α2 · 1 + · · · + αn · 0 = 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

α1 · 0 + α2 · 0 + · · · + αn · 1 = 0

that implies α1 = α2 = · · · = αn = 0. The functionals {L1, ..., Ln} are therefore linearly
independent. It remains to show that V ′ = span (L1, ..., Ln). To do this, we need two

observations:

(i) For each set {αi}ni=1 of real coefficients we have:

Li
(
α1v

1 + · · · + αnv
n
)
= α1Li

(
v1
)
+ · · · + αnLi (v

n) = αiLi
(
vi
)
= Li

(
αiv

i
)

for every i = 1, ..., n.
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(ii) For each L ∈ V ′ we have:

L
(
vi
)
= L

(
vi
)
Li
(
vi
)

for every i = 1, ..., n.

We can now prove that V ′ = span (L1, ..., Ln). Let L ∈ V ′ and set βi = L (vi) for

every i = 1, ..., n. Since {v1, ...., vn} is a basis, there exist real coefficients {αi}ni=1 such
that v =

∑n
i=1 αiv

i for a given v ∈ V . Thanks to observations (i) and (ii), for every

v ∈ V we have:

L (v) = L

(
n∑

i=1

αiv
i

)
=

n∑

i=1

αiL
(
vi
)
=

n∑

i=1

αiβiL
(
vi
)

=
n∑

i=1

βiLi
(
αiv

i
)
=

n∑

i=1

βiLi

(
n∑

i=1

αiv
i

)
=

n∑

i=1

βiLi (v) .

Therefore, L is a linear combination of the linear functionals {L1, ..., Ln}. Hence, we

conclude that L ∈ span (L1, ..., Ln). Since L was an arbitrary element of V ′, this proves

that V ′ = span (L1, ..., Ln), as desired. �

2.2 Extension of Linear Functionals

Let W be a vector subspace of V and let LW : W → R be a linear functional defined

on W . The question we address in this section is whether it is in general possible to

extend LW from W to the whole space V or if, instead, LW can remain “trapped” in

the subspaceW without having any extension on V . In other words, does there exist a

linear functional L : V → R defined on the whole space V and such that L (v) = LW (v)

for every v ∈W?

This is a problem of great importance, not only theoretical, but also for the ap-

plications. For example, suppose that W is the vector subspace of Rk generated by

the assets traded on a financial market and suppose that the price of the portfolios of

this market is given by the linear price functional LW : W → R. Suppose that there

exists the possibility of introducing on the market some new assets that, when added

to the existing ones, would generate the whole space Rk. If the functional LW were not

extendible to Rk, this would mean that a priori the introduction of new assets is not

compatible with the current market prices, which therefore should necessarily change

with the appearance on the market of the new assets.2

2Assuming, of course, that absence of arbitrage keeps to be true in the enlarged market, so that
also the new functional of price is linear.
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If, instead, LW is extendible to Rk, the introduction of new assets does not neces-

sarily lead to a modification of the current prices because there would exist linear price

functionals L : Rk → R compatible with LW , that is, such that L (v) = LW (v) for

each v ∈ W . A positive answer to the question we study in this section is therefore

important in this economic application because, a priori, there is no reason to think

that the introduction of new assets necessarily leads to a variation in the prices of the

portfolios already existing on the market.

Let us begin by considering finite dimensional spaces. In this case the extension is

always possible.

Theorem 69 Let W be a vector subspace of a finite dimensional vector space V . Each

linear functional LW : W → R can be extended to V .

Proof Let dim (V ) = n and dim (W ) = k, with k ≤ n. By Theorem 49, there exist

n − k vectors
{
vk+1, ..., vn

}
such that the whole set {v1, ..., vn} is a basis of V . Let{

rk+1, ..., rn
}
be a set of n−k real numbers and let L : V → R be the linear functional

on V defined by:

L
(
vi
)
=

{
LW (vi) for i = 1, ..., k

ri for i = k + 1, ..., n.

By Proposition 67, this linear functional L : V → R exists and is unique. Further-

more, being
{
v1, ..., vk

}
a basis of the subspace W , for each v ∈ W there exist k real

coefficients {αi}ki=1 such that v =
∑k

i=1 αiv
i. It follows that for each v ∈W we have:

L (v) = L

(
k∑

i=1

αiv
i

)
=

k∑

i=1

αiL
(
vi
)
=

k∑

i=1

αiLW
(
vi
)

= LW

(
k∑

i=1

αiv
i

)
= LW (v) .

Therefore, L : V → R extends to V the linear functional LW : W → R. �

Example 70 We consider R3 and the vector subspace

W = {(x1, x2, 0) : x1, x2 ∈ R}

generated by the vectors e1 and e2. By Theorem 69, each linear functional LW : W → R

can be extended to a linear functional L : R3 → R, that is, there exists a linear

functional L : R3 → R such that L (x) = LW (x) for each x ∈ W . For example, let

LW : W → R be defined by: LW (x) = x1 + x2 for each x ∈ W . A possible extension

of LW on R3 is given by the functional L : R3 → R defined by L (x) = x1 + x2 + x3 for

each x ∈ R3. �
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As it is clear from the proof of Theorem 69, the extension is far from being unique.

For example, a different extension is associated to each set {ri}ni=k+1. This lack of

uniqueness of the extension can be described in a more precise way by using the fol-

lowing result.

Proposition 71 Let W be a vector subspace of a finite dimensional vector space V .

There exists a vector subspace W̃ of V , called complement space of W , such that:

(i) W ∩ W̃ = {0} ,

(ii) W + W̃ = V,

(iii) dim(W ) + dim
(
W̃
)

= dim (V ) .

Proof Let dim (V ) = n and dim (W ) = k, with k ≤ n. Let
{
v1, ..., vk

}
be a basis of

W . By Theorem 49, there exist n − k vectors
{
vk+1, ..., vn

}
such that the whole set

{v1, ..., vn} is a basis of V . These n−k vectors are not inW because, being {v1, ..., vn}
a linearly independent set, the vectors

{
vk+1, ..., vn

}
are not linear combination of

the vectors
{
v1, ..., vk

}
. Let W̃ = span

(
vk+1, ..., vn

)
. If v ∈ W̃ and v 	= 0, then

v /∈ W . In fact, there exist n − k real coefficients {α∗i}ni=k+1, not all zero, such that

v =
∑n

i=k+1 α
∗
i v
i. Since {v1, ..., vn} is a basis of V ,

∑n
i=k+1 α

∗
i v
i is also the only way

in which the vector v can be written as linear combination of the vectors {v1, ..., vn}.
Therefore, v =

∑n
i=1 αiv

i if and only if α1 = ··· = αk = 0 and αi = α∗i for i = k+1, ..., n.

It follows that v /∈ W and therefore we can conclude that 0 	= v ∈ W̃ implies v /∈ W ,

which impliesW ∩W̃ = {0}. The easy proof of points (ii) and (iii) is left to the reader.

�

Thanks to Proposition 71, we can state a more complete version of Theorem 69, in

which the lack of uniqueness of the extension is clear.

Corollary 72 Let W be a vector subspace of a finite dimensional vector space V , and

let LW : W → R be a linear functional defined on W . For each basis {w̃i}i∈I of the
complement space W̃ of W and for each set of real numbers {ri}i∈I, there exists one
and only one linear functional L : V → R such that:

(i) L (v) = LW (v) for every v ∈W,

(ii) L (w̃i) = ri for every i ∈ I.

Proof It is enough to observe that the vectors
{
vk+1, ..., vn

}
used in the proof of

Theorem 69 are a basis of W̃ , as it should be clear from the proof of Lemma 71. �
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Example 73 Consider again R3 and its subspace

W = {(x1, x2, 0) : x1, x2 ∈ R} .

The complement space W̃ is {(0, 0, x3) : x3 ∈ R} and a basis is given by the singleton

{e3}. By Corollary 72, given a real number r, there exists a linear functional L : R3 → R

that extends LW on V and such that L (e3) = r. In particular, for each x ∈ R3 we

have:

L (x) = x1LW
(
e1
)
+ x2LW

(
e2
)
+ x3r.

�

Example 74 Let us go back to the example of the financial market. Let {w̃i}i∈I be the
assets that will be introduced on the market and assume that together with the existing

assets they form a basis of Rk. As W̃ = span
(
{w̃i}i∈I

)
, Corollary 72 guarantees that,

given a set of possible future prices {pi}i∈I of these new assets, there exists a linear

price functional L : Rk → R such that L (w̃i) = pi for each i ∈ I and L (v) = LW (v)

for each v ∈W .

The functional of price L is therefore compatible with the current prices of the port-

folios in W , given by the linear price functional LW : W → R. Therefore, introduction

of new assets does not necessarily modify the current prices. �

We consider now the general case, in which V has not necessarily finite dimension.

To treat this case we must introduce sublinear functionals.

Definition 75 A functional L : V → R defined on a vector space V is sublinear if:

(i) L (αv) = αL (v) for every α ≥ 0 and every v ∈ V,

(ii) L (v + w) ≤ L (v) + L (w) for every v, w ∈ V .

Example 76 Consider in Rn the functional L : Rn → R defined by L (x) = ‖x‖ =√∑n
i=1 x

2
i for every x ∈ Rn. It is easy to verify that L is sublinear. �

We can now state the celebrated Hahn-Banach Theorem, whose proof is omitted.

Theorem 77 (Hahn-Banach) LetW be a vector subspace of a vector space V and let

LW : W → R be a linear functional defined onW . There exists an extension L : V → R

of LW on the whole space V if and only if there exists a sublinear functional L∗ : V → R

such that LW (v) ≤ L∗ (v) for every v ∈W . Moreover, for such an extension L : V → R

we have L (v) ≤ L∗ (v) for every v ∈ V .
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The Hahn-Banach Theorem therefore guarantees the existence of an extension,

provided a condition is met: in the vector space V there must exist a sublinear func-

tional L∗ : V → R that on W “dominates” the functional LW .

Example 78 Consider the vector subspace Pn of P. Let L∗ : P → R be the functional

defined by L∗ (f) = maxr∈[0,1] f (r) for every f ∈ P. By the Weierstrass Theorem, the

functional L∗ is well defined and it is easy to verify that it is sublinear. Therefore, by

Hahn-Banach Theorem each linear functional Ln : Pn → R such that Ln (f) ≤ L∗ (f)

for every f ∈ Pn can be extended on the whole space P, that is, there exists a linear

functional L : P → R such that Ln (f) = L (f) for every f ∈ Pn.
Moreover, we have L (f) ≤ L∗ (f) for every f ∈ P. For example, it is easy to verify

that all this holds for the linear functionals Ln : Pn → R defined by Ln (f) = f (r) for

every f ∈ Pn, where r is a given real number belonging to [0, 1]. �
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Linear Applications

3.1 Definition and First Properties

Definition 79 A function T : V1 → V2 defined on a vector space V1 and with values

in a vector space V2 is called application. An application T : V1 → V2 is linear if

T (αv + βw) = αT (v) + βT (w) (3.1)

for every v, w ∈ V1 and every α, β ∈ R.

The notion of linear application generalizes that of linear functional, which is the

special case where V2 is the real line R. Before considering some examples, we show

that an application is linear if and only if it preserves the operations of sum and scalar

multiplication between the two spaces. We omit the proof, which is similar to that of

Proposition 59.

Proposition 80 An application T : V1 → V2 is linear if and only if

T (v + w) = T (v) + T (w) and (3.2)

T (αv) = αT (v) , (3.3)

for every v, w ∈ V1 and every α ∈ R.

We give few examples of linear applications..

Example 81 Let A = (aij) be a matrix m× n. Given a vector x ∈ Rn, set

Ax =

(
n∑

k=1

a1kxk,
n∑

k=1

a2kxk, ...,
n∑

k=1

amkxk

)
∈ Rm. (3.4)

49
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For example, if x = (1, 2, 6) and

A =




0 2 −1

2 1 5

1 −2 3


 ,

we have

3∑

k=1

a1kxk = 0 · 1 + 2 · 2 + (−1) · 6 = −2,

3∑

k=1

a2kxk = 2 · 1 + 1 · 2 + 5 · 6 = 34,

3∑

k=1

a3kxk = 1 · 1 + (−2) · 2 + 3 · 6 = 15.

Therefore,

Ax = (−2, 34, 15) ∈ R3.

Define the application T : Rn → Rm as

T (x) = Ax (3.5)

for every x ∈ Rn. It is easy to see that T is linear. Theorem 93 will show that all linear

applications T : Rn → Rm have actually this form. �

Example 82 Consider the application D : P → P defined by

D (f) = f ′

for every f ∈ P , where f ′ is the derivative of f . This important application is linear

because, by the properties of the derivatives, we have

D (αf + βg) = (αf + βg)′ = αf ′ + βg′ = αD (f) + βD (g)

for every f, g ∈ P and every α, β ∈ R. �

Example 83 Consider the application T : Rn+1 → Pn defined by

T (α) = α0 + α1x+ · · · + αnx
n

for every α = (α0, α1, ..., αn) ∈ Rn+1. Also in this case it is easy to verify that T is

linear. �
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Example 84 As a final example, consider the application 0 : V1 → V2 defined as

0 (v) = 0

for every v ∈ V . This linear application is called null application. �

An important special case is when V1 = V2, so that we can write T : V → V . The

application T : P → P of Example 2 has this form; let us see another example:

Example 85 Let A = (aij) be a square n × n matrix and, similarly to Example 81,

define the application T : Rn → Rn by

T (x) = Ax

for every x ∈ Rn. Therefore, if in Example 81 we use square n× n matrices, we have

V1 = V2 = Rn. �

Example 86 Among the linear applications T : V → V , an important role is played

by the identity applications I : V → V , defined by

I (v) = v

for every v ∈ V . Clearly, I is a linear application. �

We conclude this first section with some other simple properties of linear applica-

tions, analogous to those stated in Proposition 60 for linear functionals. The simple

proof is left to the reader.

Proposition 87 Let T : V1 → V2 be a linear application. We have T (0) = 0 and

T

(
n∑

i=1

αiv
i

)
=

n∑

i=1

αiT
(
vi
)

(3.6)

for every set of vectors {vi}ni=1 in V1 and every set of real numbers {αi}ni=1.

As we have already seen for linear functionals, property (3.6) has an important

consequence: once we know the values of a linear application T on the elements of a

basis of V1, we can determine the values of T on all the vectors of the vector space V1.
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3.2 Algebra of the Applications

We can define in a natural way the sum and the scalar multiplication for applications.

Definition 88 Given two applications S, T : V1 → V2 and a real number α ∈ R, define:

(S + T ) (v) = S (v) + T (v) for every v ∈ V ,
(αT ) (v) = αT (v) for every v ∈ V.

Let L (V1, V2) be the space of all linear applications T : V1 → V2. In the case of

linear functionals, that is, V2 = R, the space L (V1, V2) is nothing but the dual space

V ′1 , which we studied in detail in the previous chapter. Next we shows that, like dual

spaces, also the space L (V1, V2) of linear applications forms a vector space. The simple

proof is left to the reader.

Proposition 89 The space L (V1, V2) is a vector space with respect to the operations

of sum and scalar multiplication introduced in Definition 88. In particular, the neutral

element is given by the null application 0 : V1 → V2.

We now introduce the fundamental notion of product of applications.

Definition 90 Given two applications T : V1 → V2 and S : V2 → V3, their product is

the transformation ST : V1 → V3 defined by

(ST ) (v) = S (T (v))

for every v ∈ V1.

In other words, the product application ST is the composite function S ◦ T . If the
applications S and T are linear, then also the product ST is. In fact:

(ST ) (αv + βw) = S (T (αv + βw)) = S (αT (v) + βT (w))

= αS (T (v)) + βS (T (w)) = α (ST ) (v) + β (ST ) (w)

for every v, w ∈ V1 and every α, β ∈ R. Therefore, the product of two linear applications
is a new linear application.

Example 91 Consider the differential applicationD : P → P of Example 82, together

with the linear application T : P → P defined by

T (f) (x) = xf (x)
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for every f ∈ P and every x ∈ R. Since in this case we have V1 = V2 = V3 = P, both
products DT and TD are well defined. In particular:

(DT ) (f) (x) =
d

dx
(xf (x)) = f (x) + xf ′ (x) ,

(TD) (f) (x) = xf ′ (x) .

We can observe as DT and TD are two different linear applications, i.e., DT 	= TD.

Therefore, this simple example shows that the product of applications is not, in general,

commutative. �

As we just saw, even when both products ST and TS are well defined, the product

of applications is not in general a commutative operation and, consequently, in the

notation ST it is important the order in which the applications S and T appear.

Apart from this, many of the properties of the multiplication among real numbers

remain true for multiplication among applications. In particular, consider the linear

applications T : V1 → V2, S : V2 → V3, R : V2 → V3, and Q : V4 → V2. The following

properties can be immediately verified:

(S +R)T = ST +RT, (3.7)

Q (S +R) = QS +QR, (3.8)

(QS)T = Q (ST ) . (3.9)

If we consider the identity application I : V2 → V2, we also have SI = S and IT = T .

Finally, it is easy to see how the null application plays in the product of applications

a role analogous to that of zero.

These properties take a particularly simple and compact form in the case of the

linear applications T : V → V . For brevity, we denote by L (V ) in place of L (V, V )

the space of such applications. Let S, T,Q, I, 0 ∈ L (V ); we have:

T0 = 0T = 0,

T I = IT = T,

(Q+ S)T = QT + ST,

T (Q+ S) = TQ+ TS,

(QS)T = Q (ST ) .

These properties allow us to introduce in L (V ) polynomials of applications. In

fact, given an application T : V → V , the associative property of the product allows

us to write:

Tm =

m times︷ ︸︸ ︷
TT · · · T .
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If we set T 0 = I, it follows that given a polynomial p (x) = α0+α1x+α2x
2+ · · ·+αnxn,

it is possible to construct the linear application

p (T ) = α0I + α1T + α2T
2 + · · · + αnT

n,

which can be seen as a polynomial in T .

Example 92 Let D : P → P be the differential application. In this case D2 : P → P
is defined by D2 (f) = D (D (f)) and is therefore the second derivative; in general,

Dk : P → P is the derivative of order k. Therefore, if we take the polynomial

p (x) = α0 + α1x+ α2x
2 + α3x

3, we have

p (D) (f) =
(
α0I + α1D + α2D

2 + α3D
3
)
(f)

= α0f + α1f
′ + α2f

′′ + α3f
′′′

.

�

Besides the lack of commutativity, another curious property of the product of ap-

plications is the existence of the so-called divisors of the zero. For example, consider the

differential applications D1 and D2 on the space P2. It is easy to see that D2D1 = 0.

We therefore have a non null application, D2, for which there exists another non null

application, D1, whose product is the null application 0. Such applications are called

divisors of the zero. It is easy to see as all differential applications are actually divisors

of the zero on the spaces Pn.

3.3 Applications among Euclidean Spaces

In this section we study in more in detail applications among Euclidean spaces, that

is, applications of the form T : Rn → Rm. We start by giving a representation. In

Theorem 65 we saw that a functional L : Rn → R is linear if and only if there exists a

vector χ ∈ Rn such that L (x) = χ · x for every x ∈ Rn. Next we generalize that result
to linear applications.

Theorem 93 An application T : Rn → Rm is linear if and only if there exists a matrix

A
m×n

such that

T (x) = Ax (3.10)

for every x ∈ Rn. In particular, such matrix A is unique.

The matrix A is called the matrix associated to the application T .
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Proof “If.” This direction is essentially proved in Example 81. “Only if.” Let T be a

linear application. Set

A =
[
T
(
e1
)
, T
(
e2
)
, ..., T (en)

]
,

i.e., A is the m×n matrix whose n columns are given by the column vectors T (ei) for

i = 1, ..., n. The set {ei}ni=1 is a basis of Rn and for every x ∈ Rn we have x =
∑n

i=1 xie
i.

Therefore:

T (x) = T

(
n∑

i=1

xie
i

)
=

n∑

i=1

xiT
(
ei
)
= Ax

for every x ∈ Rn.
As to uniqueness, let B be a matrix m× n for which (3.10) holds. We have

(a11, a21, ..., am1) = T
(
e1
)
= Be1 = (b11, b21, ..., bm1) ,

(a12, a22, ..., am2) = T
(
e2
)
= Be2 = (b12, b22, ..., bm2) ,

· · · · · · · · · · · ·
(a1n, a2n, ..., amn) = T (en) = Ben = (b1n, b2n, ..., bmn) .

Therefore, A = B. �

Example 94 Let T : R3 → R3 be defined by

T (x) = (0, x2, x3)

for every x ∈ R3. In other words, T is the projection of each vector in R3 in the plane

{x ∈ R3 : x1 = 0}. For example, T (2, 3, 5) = (0, 3, 5). We have

T
(
e1
)

= (0, 0, 0) ,

T
(
e2
)

= (0, 1, 0) ,

T
(
e3
)

= (0, 0, 1) ,

and therefore

A =
[
T
(
e1
)
, T
(
e2
)
, T
(
e3
)]

=




0 0 0

0 1 0

0 0 1


 .

In conclusion, T (x) = Ax for every x ∈ R3. �

Example 95 Let T : R3 → R2 be defined by

T (x) = (x1 − x3, x1 + x2 + x3)



56 CHAPTER 3. LINEAR APPLICATIONS

for every x ∈ R3. For example, T (2, 3, 5) = (−3, 10). We have

T
(
e1
)

= (1, 1) ,

T
(
e2
)

= (0, 1) ,

T
(
e3
)

= (−1, 1) ,

and therefore

A =
[
T
(
e1
)
, T
(
e2
)
, T
(
e3
)]

=

[
1 0 −1

1 1 1

]
.

It is thus possible to write T (x) = Ax for every x ∈ R3. �

3.3.1 Matrix Representation of Operations

A natural question that arises at this point is what are the representations in terms

of matrices of the operations just introduced, when defined among applications in

L (Rn,Rm).

For sum and scalar multiplication we have the following simple result, whose obvious

proof is omitted.

Proposition 96 Let S, T : Rn → Rm be two linear applications and let α ∈ R. Let A
and B be the two m× n matrices associated to S and T , respectively. Then, A+B is

the matrix associated to the application S+T , while αA is the matrix associated to the

application αS.

Example 97 Let S, T : R3 → R3 be two linear applications defined as:

S (x) = (0, x2, x3) ,

T (x) = (2x1 − x3, x1 + x2 + 3x3, 2x1 − x2) ,

for every x ∈ R3. In Example 94 we saw that

A =




0 0 0

0 1 0

0 0 1




is the matrix associated to the application S. By proceeding in the same way, we can

see that

B =




2 0 −1

1 1 3

2 −1 0
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is the matrix associated to the application T . By Proposition 96,

A+B =




2 0 −1

1 2 3

2 −1 1




is the matrix associated to the application S + T . Moreover, if for example we set

α = 10, by Proposition 96

αA =




0 0 0

0 10 0

0 0 10




is the matrix associated to the application αS. �

After having considered sum and scalar multiplication, we move to the more inter-

esting case of product of applications.

Proposition 98 Consider two linear applications S : Rm → Rq and T : Rn → Rm,

whose associated matrices are, respectively,

A
(q×m)

= (aij) and B
(m×n)

= (bij) .

Then, the matrix associated to the product application ST : Rn → Rq is given by the

matrix AB
(q×n)

= (abij), whose components are defined by

abij =
m∑

k=1

aikbkj (3.11)

for i = 1, ..., q and j = 1, ..., n.

The matrix AB defined through the rule (3.11) is called product matrix of A and

B. To understand this rule, denote by ai· = (ai1, ..., aim) the row vector i of the matrix

A and by b·j = (b1j, ..., bmj) the column vector j of the matrix B. By (3.11), the

component abij of AB is nothing but the inner product of the vectors ai· and b·j, that

is, abij = ai· · b·j.

Proof Let {ei}ni=1 and
{
ei
}m
i=1

be respectively the standard bases of Rn and Rm. We

have

T
(
ej
)

= Bej = (b1j, b2j, ..., bmj)

= b1j (1, 0, ..., 0) + b2j (0, 1, 0, ..., 0) · · · +bmj (0, 0, ..., 1)

=
m∑

k=1

bkje
k.
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Similarly, we have

S
(
ek
)
= Aek = (a1k, ..., aqk) =

q∑

i=1

aike
i.

We can therefore write:

(ST )
(
ej
)

= S
(
T
(
ej
))

= S

(
m∑

k=1

bkje
k

)
=

m∑

k=1

bkjS
(
ek
)

=
m∑

k=1

bkj

(
q∑

i=1

aike
i

)
=

q∑

i=1

(
m∑

k=1

aikbkj

)
ei.

On the other hand, let C be the matrix associated to the application ST . We have:

(ST )
(
ej
)
= Cej = (c1j , ..., cqj) =

q∑

i=1

cije
i.

Therefore, cij =
∑m

k=1 aikbkj and we conclude that C = AB. �

Notice that the product of matrices can be only applied to two matrixes A
(q×m)

and

B
(m×n)

such that the number of columns of A is equal to the number of rows of B.

In general the product is not commutative, which naturally reflects the non com-

mutativity of the product of applications that we saw in the previous section. Example

100 will show a simple case in which both products AB and BA are well defined, but

AB 	= BA.

We now illustrate with few examples this new operation among matrices.

Example 99 Let A and B be defined as:

A
(2×3)

=

[
1 3 1

0 1 4

]
and B

(3×4)
=




1 2 1 0

2 5 2 2

0 1 3 2


 .

The product matrix AB is 2× 4.1 Using rule (3.11), we have

AB =

[
1 3 1

0 1 4

]


1 2 1 0

2 5 2 2

0 1 3 2




=

[
1 · 1 + 3 · 2 + 1 · 0 1 · 2 + 3 · 5 + 1 · 1 1 · 1 + 3 · 2 + 1 · 3 1 · 0 + 3 · 2 + 1 · 2
0 · 1 + 1 · 2 + 4 · 0 0 · 2 + 1 · 5 + 4 · 1 0 · 1 + 1 · 2 + 4 · 3 0 · 0 + 1 · 2 + 4 · 2

]

=

[
7 18 10 8

2 9 14 10

]
.

1 To determine the number of rows and colums of AB, a useful trick to remember is (2 × 4) =
(2× 3)(3× 4).
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�

Example 100 Let A and B be defined as

A =




1 0 3

2 1 0

1 4 6


 and B =




2 1 4

0 3 1

4 2 4


 .

Since A and B are square matrices, both BA and AB exist and they 3× 3 matrices .

Using rule (3.11), we have

BA =




2 1 4

0 3 1

4 2 4







1 0 3

2 1 0

1 4 6




=




2 · 1 + 1 · 2 + 4 · 1 2 · 0 + 1 · 1 + 4 · 4 2 · 3 + 1 · 0 + 4 · 6
0 · 1 + 3 · 2 + 1 · 1 0 · 0 + 3 · 1 + 1 · 4 0 · 3 + 3 · 0 + 1 · 6
4 · 1 + 2 · 2 + 4 · 1 4 · 0 + 2 · 1 + 4 · 4 4 · 3 + 2 · 0 + 4 · 6




=




8 17 30

7 7 6

12 18 36


 ,

while,

AB =




1 0 3

2 1 0

1 4 6







2 1 4

0 3 1

4 2 4




=




1 · 2 + 0 · 0 + 3 · 4 1 · 1 + 0 · 3 + 3 · 2 1 · 4 + 0 · 1 + 3 · 4
2 · 2 + 1 · 0 + 0 · 4 2 · 1 + 1 · 3 + 0 · 2 2 · 4 + 1 · 1 + 0 · 4
1 · 2 + 4 · 0 + 6 · 4 1 · 1 + 4 · 3 + 6 · 2 1 · 4 + 4 · 1 + 6 · 4




=




14 7 16

4 5 9

26 25 32


 .

Notice that AB 	= BA. Therefore, this is an example where the product is not com-

mutative. �

Example 101 Go back to Example 81, in which we associated to a m× n matrix A

and to a vector x ∈ Rn the vector Ax in Rm defined by

Ax =

(
n∑

k=1

a1kxk,
n∑

k=1

a2kxk, ...,
n∑

k=1

amkxk

)
.
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If we consider x as a column vector n × 1, it is easy to see that the vector Ax
(m×1)

so

defined is exactly the product of the matrices

A
(m×n)

= (aij) and x
(n×1)

= (xi1) .

In Example 81 we had x = (1, 2, 6) and

A =




0 2 −1

2 1 5

1 −2 3


 .

In view of what we just said, we can therefore write:

Ax =




0 2 −1

2 1 5

1 −2 3







1

2

6




=




0 · 1 + 2 · 2 + (−1) · 6
2 · 1 + 1 · 2 + 5 · 6

1 · 1 + 2 · (−2) + 3 · 6


 =




−2

34

15


 .

�

3.4 Isomorphisms

As we have seen, a fundamental characteristic of a linear application T : V1 → V2 is to

preserve the operations of sum and scalar multiplication from the space V1 to the space

V2. Suppose now that the application T is injective and surjective, that is, suppose that

T is a bijection between the two spaces V1 and V2. Define its inverse T−1 : V2 → V1

as T−1 (w) = v if and only if T (v) = w for every w ∈ V2. Since T is injective, the

function T−1 is well defined; moreover, being T surjective, the domain of T−1 is the

entire space V2.

Lemma 102 Given two vector spaces V1 and V2, we have T ∈ L (V1, V2) if and only if

T−1 ∈ L (V2, V1).

Proof The simple proof is left to the reader. �

Therefore, the inverse T−1 is itself a linear application and, as such, it preserves

the operations of sum and scalar multiplication from the space V2 to the space V1.

We can thus say that with respect to a linear bijective application T : V1 → V2, the

operations of sum and scalar multiplication in the two spaces V1 and V2 are completely
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interchangeable. For example, if we have to compute the sum v, w ∈ V1, we can make

the operation directly in V1. But, we can also transfer the problem in V2 through the

images T (v) and T (w), and then make the operation in V2 computing T (v) + T (w),

and go back in V1 through the inverse T−1, by considering T−1 (T (v) + T (w)). Since

v + w = T−1 (T (v) + T (w)), also in this way we get the sum v + w. In a similar way,

the operations in V2 can be done in V1, by transferring them in this space through the

inverse T−1.

Sometimes, this “tour” is useful also operationally because it may happen that to

carry out the operations in one of the two spaces is significantly simpler than in the

other one. But, what is most interesting is to observe that all this shows that two

spaces V1 and V2 among which there exists a linear bijective application T : V1 →
V2 are mutually interchangeable with respect to the operations of sum and scalar

multiplication.

All this leads us to the following definition.

Definition 103 Two vector spaces V1 and V2 are called isomorphic if there exists a

linear application T : V1 → V2 that is both injective and surjective. Such application is

called isomorphism.

In light of what just observed, two isomorphic vector spaces behave in a similar

way with respect to the operations of sum and scalar multiplication. That is, they are

similar from the point of view of their vector structure.

We have therefore a criterion to bring some order among all different examples of

vector spaces: isomorphic spaces can be viewed as belonging to the same “category.”

The next remarkable result shows that, for finite dimensional spaces, this classification

is equivalent to the one based on dimension.

Theorem 104 Two finite dimensional vector spaces are isomorphic if and only if they

have the same dimension.

Proof “If.” Let V1 and V2 be two vector spaces such that dim (V1) = dim (V2). Let

{vi}ni=1 and
{
vi
}n
i=1

be bases of V1 and V2, respectively. For each v ∈ V1, there exists

{αi}ni=1 ⊆ R such that v =
∑n

i=1 αiv
i. We can therefore define an application T : V1 →

V2 as follows:

T (v) =
n∑

i=1

αiv
i
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for every v ∈ V . We first verify that T is linear. Let v, w ∈ V be such that v =∑n
i=1 αiv

i and w =
∑n

i=1 βiv
i. For every α, β ∈ R, we have:

T (αv + βw) = T

(
α

n∑

i=1

αiv
i + β

n∑

i=1

βiv
i

)
= T

(
n∑

i=1

(ααi + ββi) v
i

)

=
n∑

i=1

(ααi + ββi) v
i = α

n∑

i=1

αiv
i + β

n∑

i=1

βiv
i = αT (v) + βT (w) .

Therefore, T is linear. It is also injective In fact, let v and w be two vectors in

V with v 	= w and with v =
∑n

i=1 αiv
i and w =

∑n
i=1 βiv

i. Suppose per contra

that T (v) = T (w). By definition, this implies that
∑n

i=1 αiv
i =

∑n
i=1 βiv

i, and so∑n
i=1 (αi − βi) v

i = 0. As the vectors in
{
vi
}n
i=1

are linearly independent, we have

αi = βi for every i = 1, ..., n, which contradicts v 	= w. Therefore, T (v) 	= T (w) and

we conclude that T is injective.

To conclude the proof of the “If,” it remains to prove that T is surjective, that is,

for each v ∈ V2 there exists v∗ ∈ V1 such that T (v∗) = v. Fist notice that for every

i = 1, ..., n we have T (vi) = vi. Let v ∈ V2. As
{
vi
}n
i=1

is a basis of V2, there exists

{αi}ni=1 ⊆ R such that v =
∑n

i=1 αiv
i. Set v∗ =

∑n
i=1 αiv

i. Clearly, v∗ ∈ V1; moreover,

by definition we have

T (v∗) =
n∑

i=1

αiv
i = v,

and therefore T is surjective.

“Only if.” Let V1 and V2 be two isomorphic spaces, that is, there exists a linear

application T : V1 → V2 that is both injective and surjective. Assume that dim (V1) = n

and let {vi}ni=1 be a basis of V1. To prove that dim (V2) = n, it is sufficient to prove

that {T (vi)}ni=1 is a basis of V2. We leave to the reader the easy proof. �

As an immediate consequence of the previous theorem, we have:

Corollary 105 A vector space has dimension n if and only if it is isomorphic to Rn.

Before stating the next result, we introduce some important notions. Given an

application T : V1 → V2, its kernel ker (T ) is the set

ker (T ) = {v ∈ V1 : T (v) = 0} . (3.12)

That is, ker (T ) = T−1 (0). In other words, the kernel is the set of the points in which

the application is null, that is, it takes on as value the null vector 0 of V2.

Another important set is the imagine of T , which is defined in the usual way as:

Im (T ) = {v ∈ V2 : v = T (w) for some w ∈ V1} . (3.13)
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The image is therefore the set of the vectors of V2 that are “reached” by V1 through

the application T .

It is easy to see that, if T is linear, then both ker (T ) and Im (T ) are vector

subspaces. These two subspaces are important to study the properties of injectiv-

ity and surjectivity of the applications. In particular, by definition T is surjective

when Im (T ) = V2, while by exploiting the linearity of T we have the following simple

characterization of injectivity.

Proposition 106 A linear application T is injective if and only if ker (T ) = {0}.

Proof “If.” Let T : V1 → V2 be a linear application such that ker (T ) = {0}. Let

v,w ∈ V1 with v 	= w. Being v − w 	= 0, the hypothesis ker (T ) = {0} implies

T (v − w) 	= 0, and so T (v) 	= T (w).

“Only if.” Let T : V1 → V2 be a linear injective application and let v ∈ ker (T ). If

v 	= 0, we have T (v) 	= T (0) = 0, a contradiction. Therefore v = 0, which implies

ker (T ) = {0}. �

We can now state an important result, which shows that the dimension of V2 is the

sum of the dimensions of the two subspaces ker (T ) and Im (T ). To this end, we first

give a name to these two dimensions.

Definition 107 Let V1 and V2 be two finite dimensional vector spaces. The rank ρ (T )

of a linear application T : V1 → V2 is the dimension of Im (T ), while the nullity ν (T )

is the dimension of ker (T ).

Using this terminology, we can now state and prove the result.

Theorem 108 Let V1and V2 be two finite dimensional vector spaces. Given a linear

application T : V1 → V2, we have

ρ (T ) + ν (T ) = dim (V1) . (3.14)

Proof Setting ρ (T ) = k and ν (T ) = l, let {vi}ki=1 be a basis of the vector subspace

Im (T ) of V2 and {vi}li=1 a basis of the vector subspace ker (T ) of V1. Being {vi}ki=1 ⊆
Im (T ), by definition there exist k vectors {wi}ki=1 in V1 such that T (wi) = vi for every

i = 1, ..., k. Set

S = {w1, ..., wk, v1, ..., vl} .
To prove the theorem it is sufficient to prove that S is a basis of V1. We first show that

S is a linearly independent set. Let {α1, ..., αk, β1, ..., βl} ⊆ R such that

k∑

i=1

αiwi +
l∑

i=1

βivi = 0. (3.15)
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As {vi}li=1 is a basis of ker (T ), we have
∑l

i=1 βiT (vi) = T
(∑l

i=1 βivi

)
= 0. Therefore,

(3.15) implies

k∑

i=1

αiT (wi) +
l∑

i=1

βiT (vi) =
k∑

i=1

αiT (wi) =
k∑

i=1

αivi = 0. (3.16)

Being a basis, {vi}ki=1 is a linearly independent set and so (3.16) implies αi = 0 for

every i = 1, ..., k. Therefore, (3.15) reduces to
∑l

i=1 βivi = 0, which implies βi = 0 for

every i = 1, ..., l because also {vi}li=1, being a basis, is a linearly independent set. In

conclusion, the set S is linearly independent.

It remains to prove that V1 = span (S). Let v ∈ V1 and consider its image T (v).

By definition, T (v) ∈ Im (T ) and therefore, since {vi}ki=1 is a basis of Im (T ), there

exists a set {αi}ki=1 ⊆ R such that T (v) =
∑k

i=1 αivi. Having set vi = T (wi) for every

i = 1, ..., k, this implies

T (v) =
k∑

i=1

αiT (wi) = T

(
k∑

i=1

αiwi

)
.

Consequently, T
(
v −∑k

i=1 αiwi
)

= 0 and therefore
(
v −∑k

i=1 αiwi
)
∈ ker (T ). On

the other hand, {vi}li=1 is a basis of ker (T ), and so there exists a set {βi}li=1 ⊆ R

such that v−∑k
i=1 αiwi =

∑l
i=1 βivi. In conclusion, v =

∑k
i=1 αiwi+

∑l
i=1 βivi, which

proves that v ∈ span (S), as desired. �

Theorem 108 has some important consequences. We begin by analyzing the rela-

tionships with Theorem 104. One of the implications of this theorem is that if the

application T : V1 → V2 is an isomorphism, then dim (V1) = dim (V2). Next corollary

refines this conclusion by considering separately injectivity and surjectivity.

Corollary 109 Let V1 and V2 be two finite dimensional vector spaces. A linear ap-

plication T : V1 → V2 is injective only if dim (V1) ≤ dim (V2), while it is surjective only

if dim (V1) ≥ dim (V2).

Proof Let T be injective, so that ker (T ) = {0}. Since Im (T ) is a vector subspace of

V2, we have ρ (T ) = dim (Im (T )) ≤ dim (V2). Therefore, (3.14) reduces to

dim (V1) = ρ (T ) + dim (0) = ρ (T ) ≤ dim (V2) .

Assume now that T is surjective, that is, Im (T ) = V2. Since ν (T ) ≥ 0, (3.14) implies:

dim (V1) = ρ (T ) + ν (T ) = dim (V2) + ν (T ) ≥ dim (V2) ,

as desired. �
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We can now see an important consequence of Theorem 108. Usually, the properties

of injectivity and surjectivity are very different and altogether independent features of

a function. It is very easy to construct examples of functions that are injective, but not

surjective, and viceversa. Next we shows how that linear applications among spaces of

the same dimension, these two properties are actually equivalent.

Corollary 110 Let V1 and V2 be two finite dimensional vector spaces with dim (V1) =

dim (V2). A linear application T : V1 → V2 is injective if and only if it is surjective. In

particular, the following conditions are equivalent:

(i) T is an isomorphism,

(ii) ker (T ) = {0} ,

(iii) Im (T ) = V2.

Proof We prove that conditions (i)-(iii) are equivalent. By Proposition 106, (i) implies

(ii). Assume (ii), that is, ker (T ) = {0}. Using (3.14) and the hypothesis dim (V1) =

dim (V2), we have:

dim (V2) = dim (V1) = ρ (T )

Being Im (T ) a subspace of V2, the equality dim (V2) = ρ (T ) implies Im (T ) = V2.

Therefore, (ii) implies (iii).

It remains to prove that (iii) implies (i). Assume therefore (iii), that is, Im (T ) = V2.

To prove that T is an isomorphism it is sufficient to prove that it is injective. Using

(3.14) and the hypothesis dim (V1) = dim (V2), we have

ρ (T ) + ν (T ) = dim (V1) = dim (V2) = ρ (T ) .

Therefore, ν (T ) = 0, which implies ker (T ) = {0}. By Proposition 106, T is then

injective, as desired. �

Notice that an equivalent way to state the second part of Corollary 110 is to say

that, setting n = dim (V1) = dim (V2), the following conditions are equivalent:

(i) T is an isomorphism,

(ii) ν (T ) = 0,

(iii) ρ (T ) = n.
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3.5 Invertible Applications

3.5.1 Definitions and Properties

In the previous section we introduced isomorphisms and we saw some important

properties in the finite dimensional case. In particular, by Theorem 104 we have

dim (V1) = dim (V2) and, therefore, to study isomorphisms among finite dimensional

vector spaces it is necessary to consider the case dim (V1) = dim (V2). At this point,

we assume directly that V ≡ V1 = V2, though without assuming a priori that V is

necessarily finite dimensional.

In this case, an application T ∈ L (V ) that is an isomorphism is usually called

invertible. In other words, a linear application T ∈ L (V ) is invertible if it is both

injective and surjective.

Given an invertible application T ∈ L (V ), consider its inverse T−1 : V → V . It is

easy to verify that

T−1T = TT−1 = I, (3.17)

and that the application T−1 is itself linear, that is, T−1 ∈ L (V ).

Example 111 The identity I : V → V is invertible and we have I−1 = I. �

Example 112 Let T : R2 → R2 be defined as T (x) = Ax for every x ∈ R2, where

A =

[
1 0

1 2

]
.

The application T is invertible, with T−1 (x) = Bx for every x ∈ R2, where

B =

[
1 0

−1
2

1
2

]
.

�

Thanks to Corollary 110, we have a first characterization of invertibility on finite

dimensional spaces. In fact, by this corollary the following properties are equivalent

for T ∈ L (V ), when V is finite dimensional:

(i) T is invertible,

(ii) ker (T ) = {0},

(iii) Im (T ) = V .

We can however give another characterization of the invertibility that, unlike the

previous one, holds for any space V , not necessarily finite dimensional.
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Theorem 113 An application T ∈ L (V ) is invertible if and only if there exist S,R ∈
L (V ) such that

TS = RT = I. (3.18)

In this case, S and R are unique and we have S = R = T−1.

Proof “Only if.” Let T be invertible; (3.17) implies that (3.18) holds with S = R =

T−1.

“If.” Assume there exist S,R ∈ L (V ) such that (3.18) holds. Let v,w ∈ V be such

that v 	= w. We have T (v) 	= T (w) and therefore T is injective. In fact, if it were

T (v) = T (w), from (3.18) we would have

v = R (T (v)) = R (T (w)) = w,

which contradicts v 	= w. It remains to prove that T is surjective. Let v ∈ V and set

w = S (v). From (3.18), we have

T (w) = T (S (v)) = v,

and therefore v ∈ Im (T ). This implies V = Im (T ), as desired. In conclusion, T is

invertible.

Using (3.17) and (3.18), we have:

S (v) =
(
T−1 ◦ T

)
(S (v)) = T−1 ((T ◦ S) (v)) = T−1 (v) ,

R (v) = R
((
T ◦ T−1

)
(v)
)
= (R ◦ T )

(
T−1 (v)

)
= T−1 (v) ,

for every v ∈ V , and therefore S = R = T−1. �

In (3.18) we need both TS = I and RT = I. Otherwise, T might not be invertible,

as the following example shows.

Example 114 Let S : P → P be the integral application defined by

S (f) (t) =

∫ t

0

f (s) ds

for every f ∈ P , and let D : P → P be the usual differential operator defined as

D (f) (t) = f ′ (t) for every f ∈ P . As well known, we have DS = I. On the other

hand, neither D nor S are invertible. For example, D is clearly not injective. �
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3.5.2 Inverse matrices and Determinants

Inverse

Consider now the case V = Rn, and let T ∈ L (Rn) be a linear application on Rn

to which is associated the square matrix A. If T is invertible, the matrix A is called

invertible; the matrix associated to the inverse application T−1 is called inverse matrix

of A and is denoted by A−1. Going back to Example 112, we have

A =

[
1 0

1 2

]
and A−1 =

[
1 0

−1
2

1
2

]
.

>From (3.17) we have:

A−1A = AA−1 = I.

More generally, by Theorem 113 we have the following immediate characterization of

the invertibility of matrices.

Corollary 115 A square matrix A
n×n

is invertible if and only if there exist two square

matrices B
n×n

and C
n×n

such that

AB = CA = I.

In this case, these matrices are unique, with B = C = A−1.

So far so good, but now the problem is to compute the inverse of an invertible

matrix, that is, given an invertible matrix A, to find what are the components of its

inverse A−1. To do this, we must stop and introduce determinants.

Determinants

Given a m× n matrix A, the submatrix Aij is the matrix (m− 1) × (n− 1) obtained

from A by cancelling the row i and the column j.

Example 116 Let

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




2 1 4

3 1 0

1 6 3




We have, for example,

A12 =

[
a21 a23

a31 a33

]
=

[
3 0

1 3

]
, A32 =

[
a11 a13

a21 a23

]
=

[
2 4

3 0

]
,

A22 =

[
a11 a13

a31 a33

]
=

[
2 4

1 3

]
, A31 =

[
a12 a13

a22 a23

]
=

[
1 4

1 0

]
.

�
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Using submatrices, we can define recursively the determinants of square matrices.

Definition 117 The determinant is a function det : M (n) → R such that, for every

A ∈M (n), we have:

(i) if n = 1, i.e. A = [a11], we set detA = a11,

(ii) if n > 1, i.e. A = (aij), we set detA =
∑n

j=1 (−1)1+j a1j detA1j.

We now illustrate the computation of determinants with some examples.

Example 118 If n = 2, the determinant of the matrix

A =

[
a11 a12

a21 a22

]

is

detA = (−1)1+1 a11 det ([a22]) + (−1)1+2 a12 det ([a21])

= a11a22 − a12a21.

For example, if

A =

[
2 4

1 3

]

we have detA = 2 · 3− 4 · 1 = 2. �

Example 119 If n = 3, the determinant of the matrix

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33




is given by

detA = (−1)1+1 a11 detA11 + (−1)1+2 a12 detA12 + (−1)1+3 a13 detA13

= a11 detA11 − a12 detA12 + a13 detA13

= a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31) + a13 (a21a32 − a22a31)

= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

For example, suppose we want to compute the determinant of the following matrix:

A =




2 1 4

3 1 0

1 6 3


 .
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First of all we compute the determinants of the three submatrices A11, A12, and A13.

We have

detA11 = 1 · 3− 0 · 6 = 3,

detA12 = 3 · 3− 0 · 1 = 9,

detA13 = 3 · 6− 1 · 1 = 17,

and therefore

detA = 2detA11 − 1 detA12 + 4detA13 = 2 · 3− 1 · 9 + 4 · 17 = 65.

�

Example 120 A matrix of the form



a11 0 0 · · · 0

0 a22 0 · · · 0

0 0 a33 · · · 0

0 0 0 · · · 0

0 0 0 · · · ann




is called diagonal. It is easy to see that in this case detA = a11a22a33 · · · ann. �

Inverse and Determinants

We saw that the determinant of any square matrix can be computed through a well

specified procedure — an algorithm — based on submatrices. There exist different tech-

niques to simplify the computation of determinants, but, for our purposes, it is sufficient

to know that they are quantities that can be computed through algorithms.

Next result, whose proof if omitted, shows the importance of the determinants in

the computation of the inverses.

Theorem 121 A square matrix A is invertible if and only if detA 	= 0. In this case,

the components a−1ij of the inverse matrix A−1 are given by:

a−1ij = (−1)i+j
detAji
detA

. (3.19)

A matrix A for which detA = 0 is called singular. Using this terminology, Theorem

121 states that a matrix is invertible if and only if it is non-singular.

This theorem is important because, through determinants, it gives us an algorithm

that allows both to verify the invertibility of A and to compute the components of the

inverse A−1. Note that in formula (3.19) the subscript of Aji is precisely ji and not ij.
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Example 122 Let A be a square matrix 2× 2. We use formula (3.19) to compute the

inverse A−1. For concreteness, let

A =

[
1 2

3 5

]

We have:

a−111 = (−1)1+1
detA11
detA

=
a22

a11a22 − a12a21
=

5

−1
= −5,

a−112 = (−1)1+2
detA21
detA

= − a12
a11a22 − a12a21

= − 2

−1
= 2,

a−121 = (−1)2+1
detA12
detA

= − a21
a11a22 − a12a21

= − 3

−1
= 3,

a−122 = (−1)2+2
detA22
detA

=
a11

a11a22 − a12a21
=

1

−1
= −1,

and therefore

A−1 =

[
a22
detA

− a12
detA

− a21
detA

a11
detA

]
=

[
−5 2

3 −1

]
.

�

Example 123 Let A be a diagonal matrix. Using formula (3.19), it is possible to

show that

a−1ij =

{
1
aij

if i = j,

0 if i 	= j.

�

Linear Systems

Using inverse matrices it is possible to give a procedure to solve the linear systems of

n equations in n unknowns:





a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

· · ·
an1x1 + an2x2 + · · · + annxn = bn,

Consider the system in matrix form

A
(n×n)

x
(n×1)

= b
n×1
, (3.20)

where A is a square matrix n × n, while x and b are vectors in Rn. We consider two

problems with reference to the system (3.20):
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• Existence: under what conditions the system has solution for each vector b ∈ Rn,
that is, when, for each given b ∈ Rn, there exists x ∈ Rn such that Ax = b.

• Uniqueness: under what conditions such solution is unique, that is, when, for

each given b ∈ Rn, there exists at most a unique x ∈ Rn such that Ax = b.

To set this problem in what we have studied till now, consider the linear application

T : Rn → Rn associated to A, defined as T (x) = Ax for every x ∈ Rn. It is immediate

to see that:

• the system admits solutions for a given b ∈ Rn if and only if b ∈ ImT ; in

particular, the system has a solution for each b ∈ Rn if and only if T is surjective,

that is, ImT = Rn;

• the system admits a unique solution for a given b ∈ Rn if and only if T−1 (b) is

a singleton; in particular, the system admits a unique solution for each b ∈ Rn if
and only if T is injective.2

Since injectivity and surjectivity are, by Corollary 110, equivalent properties, it

follows from this that the two problems of existence and uniqueness are equivalent:

there exists a solution for the system (3.20) for each b ∈ Rn if and only if this solution

is unique.

In particular, a necessary and sufficient condition for this unique solution to exist

for each b ∈ Rn is that the application T is invertible; equivalently, that the matrix A

is invertible.

The desired condition is, therefore, the invertibility of the matrix A. Formally, we

have the following result, often called “Cramer’s Rule,” which therefore easily follows

from what we have seen till now.

Proposition 124 The system (3.20) has one and only one solution for each b ∈ Rn
if and only if the matrix A is invertible. In this case, the solution is given by

x = A−1b.

Proof “If.” Let A be invertible. The associated linear application T : Rn → Rn

is invertible, and so both surjective and injective. Since T is surjective, the system

has solution. Since T is injective, such solution is unique. In particular, the solution

2Remember that a function f : A → B among two generic sets A and B is injective if and only if
all the counterimages f−1 (y) are singletons.
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corresponding to a certain b ∈ Rn is given by T−1 (b). Since T−1 (y) = A−1y for each

y ∈ Rn, it follows that the solution is given by T−1 (b) = A−1b.3

“Only if.” Assume that the system (3.20) admits one and only one solution for each

b ∈ Rn. This means that for each vector b ∈ Rn there exists one and only one vector

x ∈ Rn such that T (x) = b. Therefore, the application T is bijective, and therefore it

is invertible. It follows that also A is invertible. �

Therefore, the system (3.20) admits solution if and only if the matrix A is invertible

and, more importantly, the unique solution can be expressed in terms of A−1. Since

thanks to Theorem 121 we know how to compute A−1 through the determinants, we

have thus derived a solution procedure for linear systems of n equations in n unknowns.

Though we omit the details, this procedure can be easily extended to general systems

of m equations in n unknowns.

Example 125 A special case of the system (3.20) is when b = 0. In this case, the

system is called homogeneous and, by Proposition 124, the unique possible solution is

x = 0. �

Example 126 Consider the following system of 2 equations in 2 unknowns:
{

x1 + 2x2 = b1

3x1 + 5x2 = b2

In this case, we have

A =

[
1 2

3 5

]

From Example 122 we know that A is invertible. By Proposition 124, the unique

solution of the system is given by

x = A−1b =

[
−5 2

3 −1

][
b1

b2

]
=

[
−5b1 + 2b2

3b1 − b2

]
.

�

3Alternatively, it is possible to prove the “If” also in the following way, quite mechanical. Set
x = A−1b; we have

Ax = A
(
A−1b

)
=
(
AA−1

)
b = Ib = b,

and therefore x = A−1b solves the system. It is also the unique solution. In fact, let x̃ ∈ Rn be
another solution. We have

x̃ = Ix̃ =
(
A−1A

)
x̃ = A−1 (Ax̃) = A−1b,

as desired.
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Example 127 Consider the following system of 3 equations in 3 unknowns:




x1 − 2x2 + 2x3 = b1

2x2 − x3 = b2

x2 − x3 = b3

We have

A =




1 −2 2

0 2 −1

0 1 −1




Using the sub-matrices, it is easy (but tedious) to verify that detA = −1 	= 0. There-

fore, A is invertible and, using formula (3.19), it is possible to verify that

A−1 =




1 0 2

0 1 −1

0 1 −2




By Proposition 124, the unique solution of the system is therefore given by

x = A−1b =




1 0 2

0 1 −1

0 1 −2






b1

b2

b3


 =



b1 + 2b3

b2 − b3

b2 − 2b3


 .

For example, if b = (1,−1, 2), we have

x = (1 + 2 · 2,−1− 2,−1− 2 · 2) = (5,−3,−5) .

�



Chapter 4

Differential Calculus in Several

Variables

4.1 Gateaux Differential

4.1.1 Directional Derivatives

We know from Calculus that for a scalar functions f : A ⊆ R→ R defined on an open

set A, the derivative f ′ (x) in the point x ∈ A is given by:

f ′ (x) = lim
h→0

f (x+ h)− f (x)

h
,

when such limit exists and is finite.1 To give a first extension of this notion to the case

of functions of several variables, it is useful to see the derivative from a “directional”

point of view. In order to do this, we remind a basic result concerning bilateral and

unilateral limits: given a scalar function f : A ⊆ R→ R and a point x0 ∈ A, we have

lim
x→x0

f (x) = L if and only if lim
x→x0+

f (x) = lim
x→x0−

f (x) = L. (4.1)

In the case of limits of incremental ratios, (4.1) becomes:

lim
h→0

f (x+ h)− f (x)

h
= f ′ (x) ⇐⇒ lim

h→0+

f (x+ h)− f (x)

h
= lim
h→0−

f (x+ h)− f (x)

h
= f ′ (x) .

On the other hand, it is immediate to see that

lim
h→0−

f (x+ h)− f (x)

h
= − lim

h→0+

f (x− h) − f (x)

h
,

and therefore we have

lim
h→0

f (x+ h)− f (x)

h
= f ′ (x)

1Throughout all the chapter, A will always denote an open set.

75
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if and only if

lim
h→0+

f (x+ h)− f (x)

h
= − lim

h→0+

f (x− h) − f (x)

h
= f ′ (x) .

It is useful to rewrite this equivalence in the following way, which for simplicity we

write as a proposition.

Proposition 128 Given a scalar function f : A ⊆ R→ R, the derivative f ′ (x) exists

if and only if the limits:

lim
t→0+

f (x+ ty)− f (x)

t

exist finite for y = ±1. In particular,we have:

f ′ (x) = lim
t→0+

f (x+ ty)− f (x)

t
for y = 1, (4.2)

and

f ′ (x) = − lim
t→0+

f (x+ ty)− f (x)

t
for y = −1. (4.3)

On the real line R there are two fundamental directions, the positive direction “+”

and the negative one “−.” Given a point x ∈ R, when y = 1 the limit

lim
t→0+

f (x+ ty)− f (x)

t

tells us which is the infinitesimal increment of the function f at the point x when we

move in the direction “+;” in the same way, when y = −1 the limit

lim
t→0+

f (x+ ty)− f (x)

t
(4.4)

tells us which is the infinitesimal increment of the function f at the point x when we

move in the direction “−.” By Proposition 128, the derivative f ′ (x) exists when the

increments considered in both directions coincide, except for the sign.

While on the real line there exist only two directions, this is no longer true in Rn,

where from each point we can move along infinite directions. It becomes therefore

natural to consider the increments along all possible directions. Using the limit (4.4),

we have therefore the following definition for functions of several variables.

Definition 129 Given a function f : A ⊆ Rn → R, the derivative of f at x ∈ A along

the direction y ∈ Rn is given by

f ′ (x; y) = lim
t→0+

f (x+ ty)− f (x)

t
, (4.5)

when such limit exists finite.
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In other words, the derivative f ′ (x; y) represents the infinitesimal increment of the

function f at the point x when we move along the direction determined by the vector

y. Fixed x ∈ Rn, the function f ′ (x; ·) : D ⊆ Rn → R is called the directional derivative

of f at x. Its domain D is the set of all directions along which the limit (4.5) exists

finite.

To better understand this notion, observe that, given any two vectors x, y ∈ Rn,
the segment [x, y] that joins them is given by:

{(1− t)x+ ty : t ∈ [0, 1]} .

On the other hand, going back to (4.5), we have

f (x+ ty) = f ((1− t) x+ t (x+ y)) ,

and therefore the ratio
f (x+ ty)− f (x)

t

tells us which is the “incremental” behavior of the function when we move along the

segment [x, x+ y]. Each y ∈ Rn identifies a segment and therefore gives us a direction

along which we can study the increments of the function.

Not all segments [x, x+ y] identify different directions. In fact, for a fixed vector

y ∈ Rn, all vectors αy, with α > 0, identify the same direction. To see why this is

the case, notice that two different segments [x, x+ y] and [x, x+ y′] identify the same

direction when one of the two is the extension of the other, that is, when

[x, x+ y] ⊆ [x, x+ y′] or [x, x+ y′] ⊆ [x, x+ y] . (4.6)

Proposition 130 Given a point x ∈ Rn, for every y, y′ ∈ Rn we have

[x, x+ y] ⊆ [x, x+ y′] or [x, x+ y′] ⊆ [x, x+ y]

if and only if there exists α > 0 such that y′ = αy.

Proof “If.” Suppose that y′ = αy with α > 0. We assume α ≤ 1. We prove that in

this case we have [x, x+ y′] ⊆ [x, x+ y]. We have

x+ y′ = x+ αy = αx+ (1− α) x+ αy = (1− α)x+ α (x+ y) ,

and therefore, being α ≤ 1, we have x + y′ ∈ [x, x+ y]. This implies [x, x+ y′] ⊆
[x, x+ y], as desired.

Proceeding in a similar way, we prove that if α > 1, we have on the contrary

[x, x+ y] ⊆ [x, x+ y′]. We conclude therefore that if y′ = αy with α > 0, (4.6) holds.
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“Only if”. Suppose that [x, x+ y′] ⊆ [x, x+ y]. Since x + y′ ∈ [x, x+ y], there

exists t ∈ (0, 1) such that x + y′ = (1− t)x + t (x+ y). This implies that y′ = ty and

therefore, setting α = t, we have the result desired. �

As the next corollary shows, this redundancy of the directions is reflected in a simple

and elegant way by the positive homogeneity of the directional derivative, a property

that allows to determine immediately the value of f ′ (x;αy) for every α ≥ 0 once we

know the value of f ′ (x; y).

Corollary 131 Given a point x ∈ A, for every y ∈ D and every α ≥ 0, we have

f ′ (x;αy) = αf ′ (x; y) , (4.7)

that is, the directional derivative f ′ (x; ·) : D ⊆ Rn → R is a positively homogeneous

function.

Proof Let α > 0. Since t→ 0+ if and only if (αt) → 0+, we have:

lim
t→0+

f (x+ (αt) y)− f (x)

αt
= lim

(αt)→0+

f (x+ (αt) y) − f (x)

αt
= f ′ (x; y) .

Dividing and multiplying by α, we therefore have:

lim
t→0+

f (x+ t (αy))− f (x)

t
= α lim

t→0+
f (x+ (αt) y)− f (x)

αt
= αf ′ (x; y) .

It follows that the limit

f ′ (x;αy) = lim
t→0+

f (x+ t (αy))− f (x)

t

exists finite and is equal to αf ′ (x; y), as desired.

On the other hand, if α = 0, we have

f ′ (x;αy) = f ′ (x;0) = lim
t→0+

f (x+ 0)− f (x)

t
= 0,

and therefore f ′ (x;αy) = 0 = αf ′ (x; y), which completes the proof. �

4.1.2 Calculus and Algebra of Directional Derivatives

Thanks to a simple observation, the calculus of directional derivatives can be reduced

to the calculus of ordinary derivatives of scalar functions, which we know very well

from Calculus. In fact, given a point x ∈ Rn and a direction y ∈ Rn, it is possible to
define an auxiliary scalar function φ as φ (t) = f (x+ ty) for every t ∈ R. The domain
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of φ is the set {t ∈ R : x+ ty ∈ A}, which is an open set in R containing the point 0.

By definition of right-side derivative, we have

φ′+ (0) = lim
t→0+

φ (t)− φ (0)

t
= lim
t→0+

f (x+ ty)− f (x)

t
,

and therefore

f ′ (x; y) = φ′+ (0) . (4.8)

The derivative f ′ (x; y) can therefore be seen as the right-side ordinary derivative of

the scalar function φ computed in the point 0. Naturally, when φ can be derived at 0,

(4.8) reduces to f ′ (x; y) = φ′ (0).

Example 132 Let f : R3 → R be defined as f (x1, x2, x3) = x21 + x22 + x23. Compute

the derivative of f at x = (1,−1, 2) in the direction y = (2, 3, 5). We have:

x+ ty = (1 + 2t,−1 + 3t, 2 + 5t) ,

and therefore

φ (t) = f (x+ ty) = (1 + 2t)2 + (−1 + 3t)2 + (2 + 5t)2 .

It follows that φ′ (t) = 76t+ 18 and, by (4.8), we can conclude that

f ′ (x; y) = φ′ (0) = 18.

�

Example 133 Generalize the previous example and consider the function f : Rn → R

defined by f (x) = ‖x‖2 for every x ∈ Rn. We have

φ′ (t) =
d

dt

n∑

i=1

(xi + tyi)
2 = 2

n∑

i=1

yi (xi + tyi) = 2y (x+ ty) ,

and therefore

f ′ (x; y) = φ′ (0) = 2x · y.

The directional derivative of f (x) = ‖x‖2 thus exists at all the points and along all

possible directions. Its general form is f ′ (x; y) = 2x · y. In the special case of the

previous example, we have

f ′ (x; y) = 2 (1,−1, 2) (2, 3, 5) = 2 (2− 3 + 10) = 18.

�
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Example 134 Consider the function f : R2 → R defined as

f (x1, x2) =

{
x1x22
x2
1
+x2

2

if (x1, x2) 	= (0, 0) ,

0 if (x1, x2) = (0, 0) .

Set x = (0, 0). For every y ∈ R2 we have

φ (t) = f (ty) = t
y1y

2
2

y21 + y22
,

and therefore

f ′ (0; y) = φ′ (0) =
y1y

2
2

y21 + y22
.

In conclusion, f ′ (0; y) = f (y) for every y ∈ R2. �

Using the auxiliary functions φ it is easy to prove the next result, which shows that

for directional derivatives the usual algebraic rules hold:

Proposition 135 Let f, g : A ⊆ Rn → R be functions that admit directional derivative

at x along the direction y. Then:

(i) αf+βg admits directional derivative at x along the direction y for every α, β ∈ R,
and we have

(αf + βg)′ (x; y) = αf ′ (x; y) + βg′ (x; y) ,

(ii) fg admits directional derivative at x along the direction y, and we have

(fg)′ (x; y) = f ′ (x; y) g (x) + f (x) g′ (x; y) ,

(iii) f/g admits directional derivative at x along the direction y, and we have

(
f

g

)′
(x; y) =

f ′ (x; y) g (x)− f (x) g′ (x; y)

g2 (x)
,

provided g (x) 	= 0.

Proof Denote by φf the auxiliary function of a function f . It is immediate to verify

that:

φαf+βg = αφf + βφg, φfg = φfφg, and φf/g = φf/φg, (4.9)

where φαf+βg denotes the auxiliary function associated to the function αf + βg, and

so on. For example,

φfg (t) = (fg) (x+ ty) = f (x+ ty) g (x+ ty) = φf (t)φg (t) .
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As a consequence of (4.9), the rules (i)-(iii) follow directly from similar rules that

hold for ordinary right-side derivatives of functions of one variable. For example, let

us verify (ii). By (4.8) and (4.9) we have:

(fg)′ (x; y) = D+φfg (0) = D+

(
φfφg

)
(0)

= D+

(
φf
)
(0)φg (0) + φf (0)D+

(
φf
)
(0)

= f ′ (x; y) g (x) + f (x) g′ (x; y) ,

as desired.2 �

4.1.3 Partial Derivatives

The vectors e1, ..., en represent the fundamental directions in Rn. The directional

derivatives computed along these directions are called partial derivatives and have great

importance. We give now their definition, in which it is required that f ′ (x;−ei) =

−f ′ (x; ei) for every i = 1, ..., n. In other words, it is required that the incremental

behavior of f along the opposite directions ei and −ei is equal, apart from the sign.

Definition 136 Given a function f : A ⊆ Rn → R, the directional derivatives

f ′
(
x; e1

)
, ..., f ′ (x; en)

of f at x ∈ A along the directions e1, ..., en are called partial derivatives when

f ′
(
x;−ei

)
= −f ′

(
x; ei

)
for every i = 1, ..., n. (4.10)

In this case, f ′ (x; ei) is called partial derivative of f with respect to xi.

The partial derivative of f with respect to xi tells us therefore which is the incre-

mental behavior of f when we increment only the variable xi, keeping fixed the other

variables.

Moreover, the existence of the partial derivatives is the counterpart of differentiab-

ility for scalar functions. In fact, in the case n = 1 we have e1 = 1, and it is therefore

immediate to see how (4.10) becomes:

lim
t→0+

f (x+ t)− f (x)

t
= − lim

t→0+
f (x+ t (−1)) − f (x)

t

By Proposition 128, this equality holds if and only if there exists the ordinary derivative

f ′ (x), and in this case:

f ′ (x) = lim
t→0+

f (x+ t)− f (x)

t
= − lim

t→0+
f (x+ t (−1))− f (x)

t
.

2To simplify notation, we used D+φ (0) to denote φ′+ (0).
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Therefore, in the case n = 1 the partial derivative is nothing but the usual ordinary

derivative.

These observations suggest, inter alia, also a simple method to compute partial

derivatives. First of all, we observe that thanks to condition (4.10) the partial derivative

at x with respect to xi is given by the bilateral limit:

f ′
(
x; ei

)
= lim

t→0
f (x+ tei)− f (x)

t
. (4.11)

In fact,

−f ′
(
x;−ei

)
= − lim

t→0+
f (x+ t (−ei))− f (x)

t
= lim
t→0+

f (x+ t (−ei))− f (x)

−t
= lim

t→0−
f (x+ tei)− f (x)

t
,

so that (4.10) implies:

lim
t→0+

f (x+ tei)− f (x)

t
= lim
t→0−

f (x+ tei)− f (x)

t
.

Being equal, the two unilateral limits are in turn equal to the bilateral limit

lim
t→0

f (x+ tei)− f (x)

t
,

and therefore (4.11) holds.

Consider the scalar auxiliary function φi defined by

φi (xi) = f (x1, ..., xi−1, xi, xi+1, ...xn) .

Notice that φi is a function of only the i-th variable xi, while the other variables are

considered as constants. Using the function φi, (4.11) becomes:

f ′
(
x; ei

)
= lim

t→0
φi (xi + t)− φi (xi)

t
= φ′i (xi) .

Therefore, the partial derivative f ′ (x; ei) is nothing but the ordinary derivative φ′i of

the function φi computed in the point xi, that is, in the i-th coordinate of the vector

x.

Notation. To denote the partial derivative different notations are used, among which
∂f
∂xi

and Dif . The vector (
∂f

∂x1
(x) , ...,

∂f

∂xn
(x)

)

of the partial derivatives at x is called gradient of f at x and is denoted by ∇f (x).
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Example 137 Let f : R3 → R be defined by f (x1, x2, x3) = x1x2x3. We compute the

partial derivatives of f at x = (1,−1, 2). We have:

φ1 (x1) = f (x1,−1, 2) = −2x1,

φ2 (x2) = f (1, x2, 2) = 2x2,

φ3 (x3) = f (1,−1, x3) = −x3,

and therefore

φ′1 (x1) = −2, φ′2 (x2) = 2, φ′3 (x3) = −1.

More generally, we have:

φ′1 (x1) = x2x3, φ′2 (x2) = x1x3, φ′3 (x3) = x1x2,

and therefore

∂f

∂x1
(x) = x2x3,

∂f

∂x2
(x) = x1x3,

∂f

∂x3
(x) = x1x2,

that is,

∇f (x) = (x2x3, x1x3, x1x2) .

�

Example 138 Let f : R4 → R be defined as f (x1, x2, x3, x4) = x1 + ex2x3 + 2x24. It is

immediate to verify that:

∂f

∂x1
(x) = 1,

∂f

∂x2
(x) = x3e

x2x3 ,
∂f

∂x3
(x) = x2e

x2x3 ,
∂f

∂x4
(x) = 4x4,

and therefore ∇f (x) = (1, x3e
x2x3 , x2e

x2x3, 4x4). �

4.1.4 Gateaux Differential

Corollary 131 shows that the directional derivative f ′ (x; ·) : Rn → R is a positively

homogeneous function, that is, f ′ (x;αy) = αf ′ (x; y) for every α ≥ 0. We observed

how this reflected a redundancy in the directions identified by the vectors y.

We now consider two other properties that are desirable for the directional derivat-

ive. The first property is that it be “symmetric” with respect to the opposite directions

y and −y, in the sense that:

f ′ (x;−y) = −f ′ (x; y) . (4.12)

In other terms, the incremental behavior of the function is the same in the two opposite

directions, changing only the sign.
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This property was already assumed along the fundamental directions in defining

partial derivatives. More in general, it is a property that is desirable for the direc-

tional derivatives along each direction. Together with the positive homogeneity, (4.12)

implies:

f ′ (x;αy) = αf ′ (x; y) for every α ∈ R, (4.13)

as it is immediate to verify by observing that with α = −1 we get exactly (4.12).

A second desirable property of the directional derivative is that it be additive along

the directions, that is:

f ′ (x; y1 + y2) = f ′ (x; y1) + f ′ (x; y2) (4.14)

for every y1, y2 ∈ Rn. In this case, the incremental behavior of the function along the

direction y1+y2 can be decomposed in the sum of the behaviors along the two directions

y1 and y2. The utility of this property consists in the possibility of reconstructing the

behavior along “compound” directions, such as y1 + y2, starting from the elementary

directions y1 and y2.

When the directional derivative f ′ (x; y) “behaves well” and satisfies both (4.13)

and (4.14), it becomes a linear functional. In this case we have the following definition,

in which together with the linearity we also assume D = Rn, i.e., we assume that the

directional derivative f ′ (x; y) exists along all possible directions y ∈ Rn.

Definition 139 A function f : A ⊆ Rn → R is called differentiable according to

Gateaux at x ∈ A if D = Rn and if the directional derivative f ′ (x; ·) : Rn → R is a

linear functional.

When f : A ⊆ Rn → R is differentiable according to Gateaux at x ∈ A, the linear

functional f ′ (x; ·) : Rn → R is called the Gateaux differential.

By Theorem 65, each linear functional on Rn admits a representation as scalar

product. The next result, which follows immediately from Theorem 65, shows that

this representation assumes a particularly interesting form in our case.

Theorem 140 A function f : A ⊆ Rn → R is differentiable according to Gateaux at

x ∈ A if and only if there exists χ ∈ Rn such that

f ′ (x; y) = χ · y =
n∑

i=1

χiyi, ∀y ∈ Rn.

In this case, χ = ∇f (x).
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Proof The “If” is obvious. As to the “only if”, go back to the proof of Theorem

65. In that case we showed that for a linear functional L : Rn → R, if we put

χ = (L (e1) , ..., L (en)) we have L (x) = χ · x for every x ∈ Rn. In our case, we have

therefore

χ =
(
f ′
(
x; e1

)
, ..., f ′ (x; en)

)
= ∇f (x) ,

as desired. �

Therefore, the vector χ ∈ Rn in the representation is nothing but the gradient

∇f (x); that is,

f ′ (x; y) = ∇f (x) · y =
n∑

i=1

∂f

∂xi
(x) yi, ∀y ∈ Rn.

The differentiability according to Gateaux guarantees that, once we know the value of

the gradient ∇f (x), we can reconstruct the incremental behavior of the function along

all directions, that is, the value of the directional derivative f ′ (x; y) along each y ∈ Rn.

Example 141 Consider again the function f (x) = ‖x‖2 of Example 133. We showed

that f ′ (x; y) = 2x · y for every x, y ∈ Rn, and therefore the function is Gateaux

differentiable in each x ∈ Rn. As to the gradient, we have:

∇f (x) =

(
∂f

∂x1
(x) = 2x1, ...,

∂f

∂xn
(x) = 2xn

)
= 2x,

and therefore

f ′ (x; y) = ∇f (x) · y,
as in Theorem 140. �

Example 142 Go back to the function f : R2 → R of Example 134 defined as

f (x1, x2) =

{
x1x22
x2
1
+x2

2

if (x1, x2) 	= (0, 0) ,

0 if (x1, x2) = (0, 0) .

Let x = (0, 0). We showed that f ′ (0; y) = f (y) for every y ∈ R2. Therefore, being f
non-linear, the directional derivative f ′ (0; y) is not a linear functional and the function

f is not Gateaux differentiable in (0, 0). In particular, notice that f ′ (x, y) satisfies

property (4.13), but not (4.14). As to the last one, take y1 = (1, 0) and y2 = (0, 1).

We have f ′ (x, y1) = f ′ (x, y2) = 0, while f ′ (x, y1 + y2) = 1/2. �

The last example has shown that the existence of all partial derivatives (indeed of

all directional derivatives) at a given point does not imply in general that the function

is Gateaux differentiable at this point. It is important to observe how, on the other

hand, this is true in the special case n = 1.
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Proposition 143 A scalar function f : A ⊆ R→ R is Gateaux differentiable at x ∈ A
if and only if it has a derivative at this point.

Proof “Only if.” By Proposition 128, f ′ (x) exists if the directional derivatives f ′ (x; 1)

and f ′ (x;−1) exist, and therefore if f is Gateaux differentiable at x.

“If.” Let f has a derivative at x. Setting h = ty we have:

f ′ (x; y) = lim
t→0+

f (x+ ty)− f (x)

t
= y lim

t→0+
f (x+ ty)− f (x)

ty

= y lim
h→0

f (x+ h)− f (x)

h
= yf ′ (x) ,

and therefore f ′ (x; y) = f ′ (x) y for every y ∈ R. According to Theorem 140, f is

Gateaux differentiable at x. �

We conclude the section by observing that, as an immediate consequence of Pro-

position 135, for Gateaux differentiability the usual algebraic rules hold:

Corollary 144 Let f, g : A ⊆ Rn → R be differentiable according to Gateaux at x ∈ A.
Then:

(i) αf + βg is differentiable according to Gateaux at x for every α, β ∈ R, and we

have

∇ (αf + βg) (x) = α∇f (x) + β∇g (x) ,

(ii) fg is differentiable according to Gateaux at x, and we have

∇ (fg) (x) = g (x)∇f (x) + f (x)∇g (x) ,

(iii) f/g is differentiable according to Gateaux at x, and we have

∇
(
f

g

)
(x) =

g (x)∇f (x)− f (x)∇g (x)

g2 (x)
,

provided g (x) 	= 0.

4.2 Frechet Differential

Two are the fundamental aspects of the derivative f ′ (x) of a scalar function f : A ⊆
R→ R at a point x ∈ A. On the one hand, the derivative f ′ (x) represents the

incremental behavior of the function at x; on the other hand, through the differential

df (x) (h) = f ′ (x) h the derivative gives a linear approximation of the function at x.

Although strictly linked, these two aspects of the notion of derivative are conceptually

different.
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The first aspect motivated the notion of differential according to Gateaux, as we

detailed in the previous section. The second aspect, of linear approximation, leads to

the notion of differential according to Frechet, which we will treat in this section.

To introduce the Frechet differential it is necessary to go back to the differential

df (x) of a scalar function f : A ⊆ R→ R. As known, such a function is called

differentiable at x if there exists a function df (x) : R→ R of the form df (x) (h) = χ ·h
for every h ∈ R, such that

f (x+ h) = f (x) + df (x) (h) + o (h) . (4.15)

In other words, f is differentiable at x if it can be approximated in a linear way at x.

The term o (h) indicates the degree accuracy of the approximation, which is the better

the smaller is h.

Expression (4.15) can be rewritten as

lim
h→0

f (x+ h)− f (x)− df (x) (h)

h
= 0,

or, equivalently, as

lim
h→0

|f (x+ h)− f (x)− df (x) (h)|
|h| = 0. (4.16)

On the other hand, the differential df (x) = χ ·h is a linear functional on R. Therefore,

we can equivalently say that a function f : A ⊆ R→ R is differentiable atx ∈ A when

there exists a linear functional df (x) : R→ R such that

lim
h→0

|f (x+ h)− f (x)− df (x) (h)|
|h| = 0.

This formulation is the most useful to generalize the notion of differential to functions

of several variables. In fact, at this point it is natural to give the following definition:

Definition 145 A function f : A ⊆ Rn→ R is called differentiable according to Frechet

at x ∈ A if there exists a linear functional df (x) : Rn→ R such that

lim
h→0

|f (x+ h)− f (x)− df (x) (h)|
‖h‖ = 0. (4.17)

The functional df (x) is called differential according to Frechet of f at x.

Expression (4.17) is the version for functions of several variables of (4.16), in which

the absolute value in the denominator is replaced by the Euclidean norm. Apart from

this, the idea is the same: a function is differentiable according to Frechet at x if there

exists a linear functional that approximates the function, with accuracy given here by

o (‖h‖). Expression (4.15) becomes:

f (x+ h) = f (x) + df (x) (h) + o (‖h‖) . (4.18)

We now give a first important property of Frechet differentials.
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Proposition 146 When it exists, the differential df (x) : Rn → R is unique.

Proof To prove the uniqueness it is enough to prove that df (x) (y) = f ′ (x; y) for every

y ∈ Rn. Given y ∈ Rn, in (4.17) set h = ty. In this case, (4.17) implies:

lim
t→0

|f (x+ ty)− f (x)− df (x) (ty)|
‖ty‖ = 0,

and therefore,

lim
t→0

∣∣∣∣
f (x+ ty)− f (x)

t
− df (x) (y)

∣∣∣∣ = 0,

which implies

lim
t→0

f (x+ ty)− f (x)

t
= df (x) (y) .

It follows that df (x) (y) = f ′ (x; y) . �

Before going on, we remind the fundamental result for differentials of functions

of one variable: a function f : A ⊆ R → R is differentiable at x if and only if

it has a derivative at this point; in this case, χ = f ′ (x). Therefore, derivability

and differentiability according to Frechet are equivalent properties for functions of one

variable and the differential, when it exists, is given by the function df (x) (h) = f ′ (x) h

for each h ∈ R.
We saw in the previous section that in the case of scalar functions also the differ-

entiability according to Gateaux is equivalent to the ordinary derivability. It follows

from this that in the case n = 1 the notions of differentiability according to Gateaux

and Frechet are equivalent notions. In the case of functions of several variables things

become more complicated. We begin with a first result.

Theorem 147 Let f : A ⊆ Rn→ R be differentiable according to Frechet at x. Then,

it is Gateaux differentiable at this point and the two notions of differential coincide.

That is, we have

df (x) (h) = f ′ (x;h) = ∇f (x) · h =
n∑

i=1

∂f

∂xi
(x)hi (4.19)

for every h ∈ Rn.

Proof In the proof of Proposition 146 we saw that, when it exists, we have df (x) (h) =

f ′ (x;h) for each h ∈ Rn (here we use h instead of y, but in any case they are mute

variables). Since df (x) is by hypothesis a linear functional, it follows that the direc-

tional derivative f ′ (x; ·) : Rn → R is itself a linear functional. The function is therefore

differentiable according to Gateaux in x and, thanks to Theorem 140, we have

df (x) (h) = f ′ (x;h) = ∇f (x) · h
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for every h ∈ Rn. �

Therefore, the differentiability according to Frechet implies the one according to

Gateaux. The gradient ∇f (x) is the vector that gives the representation in terms of

scalar product of the differential df (x). In an imprecise, but expressive, way (4.19) is

often denoted by:

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn, (4.20)

which is often called the formula of the total differential. This formula shows how the

total effect df on f can be decomposed in the sum of the effects that the infinitesimal

variations dxi of the single variables have on f .

For example, if f : Rn → R is a production function with n inputs, (4.20) tells

us that the total variation df of the output is the result of the sum of the effects

(∂f/∂xi) dxi that the infinitesimal variations dxi of the single inputs have on the pro-

duction function. In a more economic language, the total variation of the output df is

given by the sum of the infinitesimal variations of the factors dxi, multiplied by their

respective marginal productivites ∂f/∂xi.

By Theorem 147, expression (4.18) becomes:

f (x+ h) = f (x) +∇f (x) · h+ o (‖h‖) , (4.21)

which in the scalar case n = 1 reduces to the well known formula:

f (x+ h) = f (x) + f ′ (x) · h+ o (h) .

Together with Corollary 144, Theorem 147 also implies that for the Frechet differ-

entiability the usual algebraic rules, that for brevity we do not state explicitly, hold.

The converse of Theorem 147 is false when n ≥ 2: next example shows that there ex-

ist functions of several variables that are differentiable at a point according to Gateaux,

but not according to Frechet. This is an important observation because it indicates a

first fundamental difference of the case of several variables with respect to the scalar

case.

Example 148 Let f : R2 → R be defined as

f (x1, x2) =

{
x41x

2
2

x8
1
+x4

2

if (x1, x2) 	= (0, 0) ,

0 if (x1, x2) = (0, 0) .

If we set x = 0 = (0, 0), for every y ∈ R2 we have:

f ′ (0; y) = lim
t→0+

f (ty)

t
= lim
t→0+

(ty1)
4 (ty2)

2

t
[
(ty1)

8 + (ty2)
4]

= lim
t→0+

t6y41y
2
2

t5 (t4y81 + y42)
= lim
t→0+

ty41y
2
2

t4y81 + y42
= 0.
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Therefore, f ′ (0; y) = 0 for every y ∈ R2 and the directional derivative in (0, 0) is

consequently the null linear functional. It follows that f is Gateaux differentiable at

(0, 0). However, it is not Frechet differentiable at (0, 0). In fact, f is not continuous

at (0, 0), and this implies that f cannot be differentiable at (0, 0) because, as Theorem

149 will show, continuity is implied by Frechet differentiability. We show therefore that

f is not continuous at (0, 0). Consider the points (t, t2) ∈ R2 that lie on the graphic of

the parabola x2 = x21. We have

f
(
t, t2
)
=

t4 (t2)
2

t8 + (t2)4
=

t4t4

t8 + t8
=

1

2
,

and therefore along these points the function is constant and takes the value 1/2. It

follows that limt→0 f (t, t2) = 1/2 and, since f (0, 0) = 0, the function is discontinuous

at (0, 0). �

One of the classic results in the case of functions of one variable is that differenti-

ability implies continuity. In the case of functions of several variables, it is necessary

to distinguish between the two notions of differentiability that we have seen. Example

148 has just exhibited a function that is Gateaux differentiable at a point, even if it

is discontinuous at this point. Therefore, differentiability according to Gateaux does

not imply continuity, a second fundamental difference with respect to the scalar case,

in which differentiability implied continuity.

On the contrary, it is true that Frechet differentiability implies continuity, as the

following result shows.

Theorem 149 If a function f : A ⊆ Rn→ R is Frechet differentiable at a point of A,

then it is continuos at this point.

Proof Let f be Frechet differentiable at x0 ∈ A. Set x = x0 + h and therefore

h = x − x0. We have x → x0 if and only if x− x0 → 0; therefore, using (4.21) we can

write:

lim
x→x0

(f (x)− f (x0)) = lim
x→x0

∇f (x0) (x− x0) + lim
x→x0

o (‖x− x0‖)
= lim

x−x0→0
∇f (x0) (x− x0) + lim

x−x0→0
o (‖x− x0‖) = 0.

Since

lim
x→x0

(f (x)− f (x0)) = lim
x→x0

f (x)− lim
x→x0

f (x0) = lim
x→x0

f (x)− f (x0) ,

it follows that limx→x0 f (x) = f (x0), as desired. �
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4.3 Classes C1

In the previous sections we introduced two notions of differentiability. The first one, a

la Gateaux, is linked to the incremental behavior of the function at a point, while the

second one, a la Frechet, is motivated by the desire to approximate in a linear way the

function at a point. The most significant characteristics that we found are:

• Frechet differentiability implies Gateaux differentiability (Theorem 147), but the

converse is false when n ≥ 2 (Example 148).

• Frechet differentiability implies continuity (Theorem 149), while when n ≥ 2 this

is not true for Gateaux differentiability (Example 148).

It is now important to give simple sufficient conditions that imply that a function is

differentiable according to these notions, something otherwise difficult to verify using

directly the definitions (especially in the case of Frechet).

The most important result of this type gives a simple sufficient condition for Frechet

differentiability, and therefore also according to Gateaux. To state it, observe that

partial derivatives ∂f/∂xi can be seen as functions ∂f/∂xi : Ai ⊆ Rn → R, where Ai
is the set in which these partial derivatives exist. Being functions, it is meaningful to

talk of continuity of the partial derivatives at a point x ∈ Ai. In Example 137 we saw

that the partial derivatives of f (x1, x2, x3) = x1x2x3 are the functions x2x3, x1x3 and

x1x2. In this case, each of the partial derivatives is continuous on all R3.

Theorem 150 Let f : A ⊆ Rn → R be a function that has partial derivatives in a

neighborhood of the point x ∈ A. If these derivatives are continuos at x, then f is

Frechet differentiable at x.

Proof For simplicity of notation, we consider the case in which n = 2, f is defined on

all R2, and the partial derivatives ∂f/∂x1 and ∂f/∂x2 exist on all R2. Apart from the

complication of notation, the general case can be proved in a similar way.

Let therefore f : R2 → R and x ∈ R2. Assume that ∂f/∂x1 and ∂f/∂x2 are both

continuous at x. Adding and subtracting f (x1 + h1, x2), for each h ∈ R2 we have:

f (x+ h)− f (x) (4.22)

= f (x1 + h1, x2)− f (x1, x2) + f (x1 + h1, x2 + h2)− f (x1 + h1, x2) .

The partial derivative ∂f/∂x1 (x) is the derivative of the function φ1 : R→ R defined

as φ1 (x1) = f (x1, x2), in which x2 is considered as a constant. By the Mean Value



92 CHAPTER 4. DIFFERENTIAL CALCULUS IN SEVERAL VARIABLES

Theorem, there exists z1 ∈ (x1, x1 + h1) ⊆ R such that

φ′1 (z1) =
φ1 (x1 + h1)− φ1 (x1)

x1 + h1 − x1
=
φ1 (x1 + h1) − φ1 (x1)

h1

=
f (x1 + h1, x2)− f (x1, x2)

h1
.

Similarly, the partial derivative ∂f/∂x2 (x+ h) is the derivative of the function φ2 :

R→ R defined as φ2 (x2) = f (x1 + h1, x2), in which x1+h1 is considered as a constant.

Again by the Mean Value Theorem, there exists z2 ∈ (x2, x2 + h2) ⊆ R such that

φ′2 (z2) =
φ2 (x2 + h2)− φ2 (x2)

x2 + h2 − x2
=
φ2 (x2 + h2) − φ2 (x2)

h2

=
f (x1 + h1, x2 + h2)− f (x1 + h1, x2)

h2
.

Since by construction ∂f/∂x1 (z1, x2) = φ′1 (z1) and ∂f/∂x2 (x1 + h1, z2) = φ′2 (z2), we

can rewrite (4.22) as:

f (x+ h)− f (x) =
∂f

∂x1
(z1, x2) h1 +

∂f

∂x2
(x1 + h1, z2)h2.

On the other hand, by definition ∇f (x) · h = ∂f/∂x1 (x1, x2) h1 + ∂f/∂x2 (x1, x2)h2.

Thus:

lim
h→0

|f (x+ h)− f (x)−∇f (x) · h|
‖h‖

= lim
h→0

∣∣∣ ∂f∂x1 (z1, x2)h1 + ∂f
∂x2

(x1 + h1, z2) h2 −
(
∂f
∂x1

(x1, x2)h1 + ∂f
∂x2

(x1, x2) h2
)∣∣∣

‖h‖

= lim
h→0

∣∣∣
(
∂f
∂x1

(z1, x2)− ∂f
∂x1

(x1, x2)
)
h1 +

(
∂f
∂x2

(x1 + h1, z2)− ∂f
∂x2

(x1, x2)
)
h2

∣∣∣
‖h‖

≤ lim
h→0

∣∣∣
(
∂f
∂x1

(z1, x2)− ∂f
∂x1

(x1, x2)
)
h1

∣∣∣
‖h‖ + lim

h→0

∣∣∣
(
∂f
∂x2

(x1 + h1, z2)− ∂f
∂x2

(x1, x2)
)
h2

∣∣∣
‖h‖

= lim
h→0

∣∣∣∣
(
∂f

∂x1
(z1, x2)−

∂f

∂x1
(x1, x2)

)∣∣∣∣
|h1|
‖h‖ + lim

h→0

∣∣∣∣
(
∂f

∂x2
(x1 + h1, z2)−

∂f

∂x2
(x1, x2)

)∣∣∣∣
|h
‖h

≤ lim
h→0

∣∣∣∣
(
∂f

∂x1
(z1, x2)−

∂f

∂x1
(x1, x2)

)∣∣∣∣+ lim
h→0

∣∣∣∣
(
∂f

∂x2
(x1 + h1, z2)−

∂f

∂x2
(x1, x2)

)∣∣∣∣ ,

where the last inequality holds because

0 ≤ |h1|
‖h‖ ≤ 1 and 0 ≤ |h2|

‖h‖ ≤ 1.

On the other hand, since z1 ∈ (x1, x1 + h1) and z2 ∈ (x2, x2 + h2), we have z1 → x1 for

h1 → 0 and z2 → x2 for h2 → 0. Therefore, being ∂f/∂x1 and ∂f/∂x2 both continuous

at x, we have

lim
h→0

∂f

∂x1
(z1, x2) =

∂f

∂x1
(x1, x2) and lim

h→0

∂f

∂x2
(x1 + h1, z2) =

∂f

∂x2
(x1, x2) ,
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which implies

lim
h→0

∣∣∣∣
(
∂f

∂x1
(z1, x2)−

∂f

∂x1
(x1, x2)

)∣∣∣∣ = 0,

lim
h→0

∣∣∣∣
(
∂f

∂x2
(x1 + h1, z2)−

∂f

∂x2
(x1, x2)

)∣∣∣∣ = 0.

In conclusion, we have proved that

lim
h→0

|f (x+ h)− f (x)−∇f (x) · h|
‖h‖ = 0,

and the function f is thus Frechet differentiable at x. �

The importance of the sufficient condition given by Theorem 150 lies in its easy

verifiability. In fact, it is sufficient to compute the partial derivatives and to verify

their continuity at the given point, something much easier than to verify directly the

definition of Frechet differentiability, as shown by the next examples.

Example 151 Going back again to the function f (x1, x2, x3) = x1x2x3 of Example

137, we already saw that the partial derivatives

∂f

∂x1
(x) = x2x3,

∂f

∂x2
(x) = x1x3,

∂f

∂x3
(x) = x1x2,

are continuous functions on allR3. By Theorem 150, f is therefore Frechet differentiable

at each point of R3. �

Example 152 Consider the function f (x1, x2, x3, x4) = x1 + ex2x3 + 2x24 of Example

138. We saw that

∂f

∂x1
(x) = 1,

∂f

∂x2
(x) = x3e

x2x3 ,
∂f

∂x3
(x) = x2e

x2x3 ,
∂f

∂x4
(x) = 4x4,

and therefore the partial derivatives are continuous on all R4. By Theorem 150, f is

Frechet differentiable at each point of R4. �

Example 153 Consider the function f (x1, x2) = lg (x1 − x2), whose domain is the

open set A = {x ∈ R2 : x1 > x2}. For each x ∈ A, we have:
∂f

∂x1
(x) =

1

x1 − x2
and

∂f

∂x2
(x) =

1

x2 − x1
.

The partial derivatives are therefore continuous on the entire domain A; by Theorem

150, f is Frechet differentiable at each point of A. �

Before going on, we give an example that shows how the condition contained in

Theorem 150 is indeed only sufficient.
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Example 154 Consider the function f : R→ R defined as:

f (x) =

{
x2 sin 1

x
x 	= 0,

0 x = 0.

As the reader can verify, we have

f ′ (x) =

{
2x sin 1

x
− cos 1

x
x 	= 0,

0 x = 0.

Consider the point x = 0. The first derivative f ′ is discontinuous at 0, and so the

condition of Theorem 150 is violated. Nevertheless, the function has a derivative at 0

and it is therefore Frechet differentiable at this point. �

Many functions of interest have continuous derivative on their entire domain and,

by Theorem 150, are therefore Frechet differentiable at each point of their domain.

They are therefore functions that behave very well with respect to differentiability

and, for this reason, it is useful to give a name to this class of functions.

Definition 155 A function f : A ⊆ Rn → R is called of class C1 if it has partial

derivatives that are continuous on its domain A. The set of all these functions is

denoted by C1 (A).

By Theorem 150, each function of class C1 is Frechet differentiable at each point of

A. For example, all the functions seen in Examples 9, 10 and 11 are of class C1.

The way we stated Theorem 150 is the one operationally useful when the Frechet

differentiability of a function has to be checked. But, we can restate Theorem 150 in a

different form, which is conceptually important. To see it, observe that an application

f : A ⊆ Rn → Rm can be regarded as a m-tuple (f1, ..., fm) of functions defined on A

and with values in R:

y1 = f1 (x1, ..., xn) ,

y2 = f2 (x1, ..., xn) ,

· · ·
ym = fm (x1, ..., xn) .

In particular, an application f = (f1, ..., fm) : A ⊆ Rn → Rm is continuous at x ∈ A if

and only if each fi : A ⊆ Rn → R is continuous at x ∈ A.
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Example 156 Let f : R2 → R2 be defined by f (x1, x2) = (x1, x1x2) for each vector

(x1, x2) ∈ R2. For example, if (x1, x2) = (2, 5), then f (x1, x2) = (2, 2 · 5) = (2, 10) ∈
R2. In this case we have:

f1 (x1, x2) = x1,

f2 (x1, x2) = x1x2.

Since both f1 and f2 are continuous on R2, the function f is also continuous on R2. �

Suppose f : A ⊆ Rn → R has partial derivatives in a neighborhood Bε (x) of the

point x ∈ A. Then, we can write

∇f =

(
∂f

∂x1
, ...,

∂f

∂xn

)
: Bε (x) ⊆ Rn → Rn,

that is, the gradient can be regarded as a function from a subset of Rn to Rn that has

the partial derivatives as its components. In particular, ∇f is continuous at x if and

only if each partial derivative ∂f/∂xi : Bε (x) ⊆ Rn → R is continuous.

In view of all this we can restate Theorem 150 as follows, where the sufficient

condition for Frechet differentiability is viewed as a continuity condition of the gradient

mapping.

Theorem 157 Let f : A ⊆ Rn → R be a function such that its gradient ∇f is well

defined in a neighborhood of the point x ∈ A. If ∇f is continuous at x, then f is

Frechet differentiable at x.

In a similar vein, we can say that a function f : A ⊆ Rn → R is of class C1 if its
gradient mapping ∇f is well defined and continuous on its domain A.

4.4 Differential of Applications

The notions of Gateaux and Frechet differentials can be easily extended to functions

f : A ⊆ Rn → Rm, that is, to applications. For brevity, we limit here to study the

Frechet differential, as the Gateaux case can be studied along similar lines.

4.4.1 Definition and Representation

We start by giving the extension of the definition of Frechet differential to the case of

applications.
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Definition 158 An application f : A ⊆ Rn → Rm is said to be differentiable according

to Frechet at x ∈ A if there exists a linear application df (x) : Rn→ Rm such that

lim
h→0

‖f (x+ h)− f (x) − df (x) (h)‖
‖h‖ = 0. (4.23)

The application df (x) is said to be Frechet differential of f at x.

This definition generalizes Definition 145, that is, the special case m = 1. The

linear approximation is now given by a linear application with values in Rm, while at

the numerator of the incremental ratio in (4.23) we find the Euclidean norm instead of

the absolute value because we now have to deal with vectors in Rm.

The Frechet differential for applications satisfies properties that are similar to those

seen in the case m = 1 in Proposition 146 and in Theorems 149 and 150. Naturally,

instead of the vector representation of Theorem 147 we have now a more general matrix

representation. To see its form, we introduce the Jacobian matrix. Recall how we just

observed that an application f : A ⊆ Rn → Rm can be regarded as am-tuple (f1, ..., fm)

of functions defined on A and with values in R. The Jacobian matrix Df (x) of an

application f : A ⊆ Rn → Rm at x ∈ A is then a matrix m× n given by:

Df (x) =




∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)

· · · · · · · · · · · ·
∂fm
∂x1

(x) ∂fm
∂x2

(x) · · · ∂fm
∂xn

(x)




that is,

Df (x) =




∇f1 (x)
∇f2 (x)
· · ·
∇fm (x)


 . (4.24)

In Example 156 we have

Df (x) =

[
1 0

x2 x1

]
.

We can now give the matrix representation of Frechet differentials, which shows

that the Jacobian matrix Df (x) is the matrix associated to the linear application

df (x). This representation generalizes the vector representation given in Theorem 147

because it is immediate to see from (4.24) that the Jacobian matrix Df (x) reduces to

the gradient ∇f (x) in the special case m = 1.

Theorem 159 Let f : A ⊆ Rn→ Rm be Frechet differentiable at x ∈ A. Then,

df (x) (h) = Df (x) h, ∀h ∈ Rn.
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Proof We begin by observing a property of the Euclidean norm. Let x = (x1, ..., xn) ∈
Rn. For every j = 1, .., n we have:

|xj| =
√
x2j ≤

√√√√
n∑

j=1

x2j = ‖x‖ . (4.25)

Assume that f is differentiable at x ∈ A. Set h = tej with j = 1, .., n. By definition,

lim
t→0

‖f (x+ tej)− f (x)− df (x) (tej)‖
‖tej‖ = 0,

and therefore, being ‖tej‖ = |t|, we have

lim
t→0

∥∥∥∥
f (x+ tej)− f (x)

|t| − df (x)
(
ej
)∥∥∥∥ = 0. (4.26)

>From inequality (4.25), for each i = 1, ...,m we have
∣∣∣∣
fi (x+ tej) − fi (x)

|t| − dfi (x)
(
ej
)∣∣∣∣ ≤

∥∥∥∥
f (x+ tej) − f (x)

|t| − df (x)
(
ej
)∥∥∥∥ .

Together with (4.26), this implies

lim
t→0

∣∣∣∣
fi (x+ tej)− fi (x)

|t| − dfi (x)
(
ej
)∣∣∣∣ = 0

for each i = 1, ...m. We can therefore conclude that for every i = 1, ...,m and every

j = 1, ..., n we have:

∂fi
∂xj

(x) = lim
t→0

fi (x+ tej)− fi (x)

t
= dfi (x)

(
ej
)
. (4.27)

In the proof of Theorem 93 of the previous chapter we showed that the matrix

associated to a linear application f : Rn → Rm was

A =
[
f
(
e1
)
, f
(
e2
)
, ..., f (en)

]
.

In our case, thanks to (4.27) we therefore have

A =
[
df (x)

(
e1
)
, ..., df (x) (en)

]

=




df1 (x) (e
1) df1 (x) (e

2) · · · df1 (x) (e
n)

df2 (x) (e
1) df2 (x) (e

2) · · · df2 (x) (e
n)

· · · · · · · · · · · ·
dfm (x) (e1) dfm (x) (e2) · · · dfm (x) (en)




=




∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)

· · · · · · · · · · · ·
∂fm
∂x1

(x) ∂fm
∂x2

(x) · · · ∂fm
∂xn

(x)


 = Df (x) ,
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as desired. �

We have thus shown how the Jacobian matrixDf (x) is the matrix associated to the

linear application df (x). We have observed that whenm = 1 we haveDf (x) = ∇f (x),

and so Theorem 159 generalizes Theorem 147 to the case of applications. We illustrate

what we have done til now with some examples.

Example 160 Let f : R3 → R2 be defined by f (x1, x2, x3) = (2x21 + x2 + x3, x1 − x42)

for each vector x ∈ R3. For example, if x = (2, 5,−3), then f (x1, x2, x3) = (2 · 4 + 5− 3, 2−
(10,−623) ∈ R2. We have:

f1 (x1, x2, x3) = 2x21 + x2 + x3,

f2 (x1, x2, x3) = x1 − x42.

and therefore

Df (x) =

[
4x1 1 1

1 −4x32 0

]
.

By Theorem 159, the Frechet differential at x is given by the linear application df (x) :

R3 → R2 defined by

df (x) (h) = Df (x) h =
(
4x1h1 + h2 + h3, h1 − 4x32h2

)

for each h ∈ R3. For example, at x = (2, 5,−3) we have:

df (x) (h) = (8h1 + h2 + h3, h1 − 500h2) .

�

Example 161 Let f : R → R3 be defined by f (x) = (x, sin x, cosx) for each x ∈ R.
For example, if x = π, then f (x) = (π, 0,−1) ∈ R3. We have:

f1 (x) = x,

f2 (x) = sin x,

f3 (x) = cos x,

and so

Df (x) =




1

cosx

− sin x




By Theorem 159, the Frechet differential at x is given by the linear application df (x) :

R→ R3 defined by

df (x) (h) = Df (x)h = (h, h cosx,−h sin x)
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for each h ∈ R. For example, at x = π we have:

df (x) (h) = (h,−h, 0) .

�

Example 162 Let f : Rn → Rm be the linear application defined as f (x) = Ax for

each x ∈ Rn, with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




Let a1, ..., am be the row vectors, that is a1 = (a11, a12, ..., a1n) , ...., am = (am1, am2, ..., amn).

We have:

f1 (x1, ..., xn) = a1 · x = a11x1 + · · · + a1nxn,

f2 (x1, ..., xn) = a2 · x = a21x1 + · · · + a2nxn,

· · ·
fm (x1, ..., xn) = am · x = am1x1 + · · · + amnxn,

which implies Df (x) = A. Hence, the Jacobian matrix of a linear application coincides

with the associated matrix A. By Theorem 159, the Frechet differential at x is therefore

given by the linear application Ah itself. This naturally generalizes the well known

result that for scalar functions of the form f (x) = ax, with a ∈ R, the differential is

df (x) (h) = ah. �

4.4.2 Chain Rule

One of the most useful rules of derivation in Calculus is that about compound scalar

functions f ◦ g, which says that (f ◦ g)′ (x) = f ′ (g (x)) g′ (x). We now to generalize

this rule to the case of composition of applications. In this more general context, it is

known as the chain rule.

Theorem 163 Let g : A ⊆ Rn → Rm and f : B ⊆ Rm → Rq with g (A) ⊆ B. If g

is Frechet differentiable at x ∈ A and if f is Frechet differentiable at g (x), then the

composition f ◦ g : A ⊆ Rn → Rq is Frechet differentiable at x, with:

D (f ◦ g) (x) = Df (g (x))Dg (x) . (4.28)

The proof is based on this lemma.
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Lemma 164 Given a linear application T : Rn → Rm, there exists a constant k > 0

such that ‖T (x)‖ ≤ k ‖x‖ for every x ∈ Rn.

Proof Set k =
∑n

i=1 ‖T (ei)‖. We have:

‖T (x)‖ =

∥∥∥∥∥T
(

n∑

i=1

xie
i

)∥∥∥∥∥ =

∥∥∥∥∥

n∑

i=1

xiT
(
ei
)
∥∥∥∥∥ ≤

n∑

i=1

|xi| ·
∥∥T
(
ei
)∥∥ .

By (4.25), we have |xi| ≤ ‖x‖ for each i = 1, ..., n. Therefore,

n∑

i=1

|xi| ·
∥∥T
(
ei
)∥∥ ≤

n∑

i=1

‖x‖ ·
∥∥T
(
ei
)∥∥ = ‖x‖

n∑

i=1

∥∥T
(
ei
)∥∥ = k ‖x‖ ,

which implies ‖T (x)‖ ≤ k ‖x‖, as desired. �

We can now prove Theorem 163.

Proof It is sufficient to prove that

d (f ◦ g) (x) = df (g (x)) dg (x) , (4.29)

where the right-hand side is the product of the linear applications df (g (x)) and dg (x).

In fact, by Theorem 98 of the previous chapter, the matrix representation of the product

linear application df (g (x)) dg (x) is given by the product matrix Df (g (x))Dg (x).

Therefore, (4.29) implies (4.28).

We show therefore that (4.29) holds. In other words, we must show that

lim
h→0

‖(f ◦ g) (x+ h)− (f ◦ g) (x)− (df (g (x)) dg (x)) (h)‖
‖h‖ = 0. (4.30)

Set

φ (h) = g (x+ h) − g (x)− dg (x) (h) ,

ψ (k) = f (g (x) + k)− f (g (x))− df (g (x)) (k) .

We have

(f ◦ g) (x+ h)− (f ◦ g) (x)− (df (g (x)) dg (x)) (h)

= f (g (x+ h))− f (g (x))− df (g (x)) (dg (x) (h))

= f (g (x+ h))− f (g (x))− df (g (x)) (g (x+ h)− g (x)− φ (h))

= f (g (x+ h))− f (g (x))− df (g (x)) (g (x+ h)− g (x)) + df (g (x)) (φ (h))

= ψ (g (x+ h)− g (x)) + df (g (x)) (φ (h)) .
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To prove (4.30) thus amounts to proving that

lim
h→0

‖ψ (g (x+ h)− g (x)) + df (g (x)) (φ (h))‖
‖h‖ = 0. (4.31)

Consider the linear application df (g (x)). By Lemma 164, there exists k > 0 such

that ‖df (g (x)) (h)‖ ≤ k ‖h‖ for each h ∈ Rm. Since φ (h) ∈ Rm for each h ∈ Rn, we
therefore have ‖df (g (x)) (φ (h))‖ ≤ k ‖φ (h)‖. On the other hand, g is differentiable

at x, and so

lim
h→0

‖φ (h)‖
‖h‖ = 0.

It follows that

lim
h→0

‖df (g (x)) (φ (h))‖
‖h‖ ≤ k lim

h→0

‖φ (h)‖
‖h‖ = 0. (4.32)

Since f is differentiable at g (x), we have

lim
k→0

‖ψ (k)‖
‖k‖ = 0. (4.33)

Fix ε > 0. By (4.33), there exists δε > 0 such that ‖k‖ ≤ δε implies ‖ψ (k)‖ / ‖k‖ ≤ ε.

In other words, there exists δε > 0 such that ‖g (x+ h) − g (x)‖ ≤ δε implies

‖ψ (g (x+ h)− g (x))‖
‖g (x+ h)− g (x)‖ ≤ ε.

On the other hand, since g is continuous at x, there exists δ1 > 0 such that ‖h‖ ≤ δ1

implies ‖g (x+ h)− g (x)‖ ≤ δε. Therefore, for ‖h‖ sufficiently small we have

‖ψ (g (x+ h)− g (x))‖ ≤ ε ‖g (x+ h)− g (x)‖ .

By applying Lemma 164 to the linear application dg (x), there exists k > 0 such that

‖ψ (g (x+ h)− g (x))‖ ≤ ε ‖g (x+ h)− g (x)‖ (4.34)

≤ ε ‖φ (h) + dg (x) (h)‖
≤ ε ‖φ (h)‖+ ε ‖dg (x) (h)‖ ≤ ε ‖φ (h)‖+ εk ‖h‖ .

Go back to (4.31). Using (4.32) and (4.34), we have:

lim
h→0

‖ψ (g (x+ h)− g (x)) + df (g (x)) (φ (h))‖
‖h‖

≤ lim
h→0

‖ψ (g (x+ h)− g (x))‖
‖h‖ + lim

h→0

‖df (g (x)) (φ (h))‖
‖h‖

≤ ε lim
h→0

‖φ (h)‖
‖h‖ + εk lim

h→0

‖h‖
‖h‖ = εk.
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Since ε was fixed arbitrarily, it can be taken as small as we like. Therefore:

lim
h→0

‖ψ (g (x+ h)− g (x)) + df (g (x)) (φ (h))‖
‖h‖ ≤ k lim

ε→0
ε = 0,

as desired. �

In the scalar case n = m = q = 1, (4.28) reduces to the classic rule

(f ◦ g)′ (x) = f ′ (g (x)) g′ (x) .

Another important special case is when q = 1. In this case we have f : B ⊆ Rm → R

and g = (g1, ..., gm) : A ⊆ Rn → Rm, with g (A) ⊆ B. For the compound function

f ◦ g : A ⊆ Rn → R the chain rule (4.28) takes the form:

∇ (f ◦ g) (x)
= ∇f (g (x))Dg (x)

=

(
∂f

∂x1
(g (x)) , ...,

∂f

∂xm
(g (x))

)



∂g1
∂x1

(x) ∂g1
∂x2

(x) · · · ∂g1
∂xn

(x)
∂g2
∂x1

(x) ∂g2
∂x2

(x) · · · ∂g2
∂xn

(x)

· · · · · · · · · · · ·
∂gm
∂x1

(x) ∂gm
∂x2

(x) · · · ∂gm
∂xn

(x)




=

(
m∑

i=1

∂f

∂xi
(g (x))

∂gi
∂x1

(x) , ...,
m∑

i=1

∂f

∂xi
(g (x))

∂gi
∂xn

(x)

)
.

As to the differential, for each h ∈ Rn we have

d (f ◦ g) (x) (h) = ∇ (f ◦ g) (x) · h

=
m∑

i=1

∂f

∂xi
(g (x))

∂gi
∂x1

(x)h1 + · · · +
m∑

i=1

∂f

∂xi
(g (x))

∂gi
∂xn

(x) hn.

Grouping the terms for ∂f/∂xi, we get the following equivalent form:

d (f ◦ g) (x) (h) =

n∑

i=1

∂f

∂x1
(g (x))

∂g1
∂xi

(x) hi + · · · +
n∑

i=1

∂f

∂xm
(g (x))

∂gm
∂xi

(x) hi,

which can be reformulated in the following imprecise, but expressive way:

d (f ◦ g) =
n∑

i=1

(
∂f

∂g1

∂g1
∂xi

dxi + · · · + ∂f

∂gm

∂gm
∂xi

dxi

)
. (4.35)

This is the formula of the total differential for the compound function f ◦ g. The total
variation d (f ◦ g) of f ◦ g is the result of the sum of the effects on the function f of

the variations of the single functions gi determined by infinitesimal variations dxi of

the different variables.

In the next two examples we consider two important subcases of the case q = 1.
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Example 165 Suppose that, besides q = 1, we have n = 1. Let f : B ⊆ Rm→ R and

g : A ⊆ R→ Rm, with g (A) ⊆ B. The compound function f ◦g : A ⊆ R→ R is scalar

and for this function we have:

(f ◦ g)′ (x) = ∇f (g (x))Dg (x) =

(
∂f

∂x1
(g (x)) , ...,

∂f

∂xm
(g (x))

)



dg1
dx

(x)

· · ·
dgm
dx

(x)




=
m∑

i=1

∂f

∂xi
(g (x))

dgi
dx

(x) .

The differential is

d (f ◦ g) (x) (h) =
m∑

i=1

∂f

∂xi
(g (x))

dgi
dx

(x) h

for each h ∈ R, and the total differential (4.35) becomes:

d (f ◦ g) =
∂f

∂g1

dg1
dx
dx+ · · ·+ ∂f

∂gm

dgm
dx

dx.

For example, let f : Rm → R be a production function whose m inputs depend on a

common parameter, the time t, which indicates the availability of the different inputs

at t.

Inputs are therefore represented by the function g = (g1, ..., gm) : R→ Rm, where

gi (t) denotes what is the quantity of input i at time t. The composition f ◦ g : R→ R

is a scalar function that tells us how the output varies according to the parameter t.

We have

d (f ◦ g) =
∂f

∂g1

dg1
dt
dt+ · · ·+ ∂f

∂gm

dgm
dt

dt, (4.36)

that is, the total variation d (f ◦ g) of the output is the result of the sum of the ef-

fects that the variations of the availability of the different inputs due to infinites-

imal variations dt of time have on the production function. In this example, (4.36)

has therefore a clear economic interpretation. More concretely, let g : R→ R3 be

defined as g (t) = (1/t, 3/t, e−t) for t 	= 0, and let f : R3 → R be defined as

f (x1, x2, x3) = 3x21 − x1x2 + 6x1x3. We have:

(f ◦ g)′ (t) =
∂f

∂x1
(g (t))

dg1
dt

(t) +
∂f

∂x2
(g (t))

dg2
dt

(t) +
∂f

∂x3
(g (t))

dg3
dt

(t)

= 6e−t
(
− 1

t2
− 1

t

)
.

Therefore,

d (f ◦ g) (t) (h) =

(
6e−t

(
− 1

t2
− 1

t

))
h for every h ∈ R,
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and the total differential (4.36) is:

d (f ◦ g) =

(
6e−t

(
− 1

t2
− 1

t

))
dt.

�

Example 166 Here assume that besides q = 1 we have m = 1. Let f : B ⊆ R→ R

and g : A ⊆ Rn → R, with the usual condition g (A) ⊆ B. For the compound function

f ◦ g : A ⊆ Rn → R we have

∇ (f ◦ g) (x) = f ′ (g (x))∇g (x) =

(
f ′ (g (x))

∂g

∂x1
, ..., f ′ (g (x))

∂g

∂xn

)
,

to which it corresponds the differential

d (f ◦ g) (x) (h) =
n∑

i=1

f ′ (g (x))
∂g

∂xi
hi

for each h ∈ Rn. In this case the total differential (4.35) becomes:

d (f ◦ g) =
df

dg

∂g

∂x1
dx1 + · · · + df

dg

∂g

∂xn
dxn. (4.37)

Let f : R→ R be defined by f (x) = e2x for each x ∈ R and let g : R2 → R be defined

by g (x1, x2) = x1x
2
2 for each x ∈ R2. We have ∇ (f ◦ g) (x) =

(
2x22e

2x1x22 , 4x1x2e
2x1x22

)

and therefore

d (f ◦ g) (x) (h) = 2e2x1x
2
2

(
x22h1 + 2x1x2h2

)

for each h ∈ R2, while (4.37) is:

d (f ◦ g) = 2e2x1x
2
2

(
x22dx1 + 2x1x2dx2

)
.

�

We conclude this section with a chain rule example with q 	= 1.

Example 167 Consider the applications seen in Examples 156 and 160. Therefore,

let g : R3 → R2 be defined by g (x1, x2, x3) = (2x21 + x2 + x3, x1 − x42) for each x ∈ R3,
while f : R2 → R2 is defined by f (x1, x2) = (x1, x1x2) for each x ∈ R2. Since both

f and g are Frechet differentiable at each point of their domain, by Theorem 163 the

composition f ◦ g : R3 → R2 is itself Frechet differentiable at each point of its domain

R3. By the chain rule (4.28), the Jacobian matrix of f ◦ g : R3 → R2 is given by:

D (f ◦ g) (x) = Df (g (x))Dg (x) .
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In Example 160 we saw that

Dg (x) =

[
4x1 1 1

1 −4x32 0

]
.

On the other hand, we also know that:

Df (x) =

[
1 0

x2 x1

]
,

and therefore

Df (g (x)) =

[
1 0

x1 − x42 2x21 + x2 + x3

]
.

It follows that:

Df (g (x))Dg (x)

=

[
1 0

x1 − x42 2x21 + x2 + x3

][
4x1 1 1

1 −4x32 0

]

=

[
4x1 1 1

6x21 − 4x1x
4
2 + x2 + x3 x1 − 8x21x

3
2 − 5x42 − 4x32x3 x1 − x42

]
,

which implies that the Frechet differential at x of f ◦g is given by the linear application

df (x) : R3 → R2 defined as

d (f ◦ g) (x) (h)

=

[
4x1 1 1

6x21 − 4x1x
4
2 + x2 + x3 x1 − 8x21x

3
2 − 5x42 − 4x32x3 x1 − x42

]

h1

h2

h3


 .

For example, at x = (2, 1,−1) we have:

d (f ◦ g) (x) (h) = (8h1 + h2 + h3, 16h1 − 31h2 + h3) .

Naturally, though it is in general more complicated, the Jacobian matrix of the com-

position f ◦ g can be computed directly, without using the chain rule, by writing

explicitly the form of f ◦ g and by computing its partial derivatives. In this example,

f ◦ g : R3 → R2 is given by

(f ◦ g) (x1, x2, x3) =
(
2x21 + x2 + x3,

(
x1 − x42

) (
2x21 + x2 + x3

))

=
(
2x21 + x2 + x3, 2x

3
1 + x1x2 + x1x3 − 2x21x

4
2 − x52 − x42x3

)
.

Therefore,

(f ◦ g)1 (x) = 2x21 + x2 + x3,

(f ◦ g)2 (x) = 2x31 + x1x2 + x1x3 − 2x21x
4
2 − x52 − x42x3,
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and we have:

∂ (f ◦ g)1
∂x1

= 4x1,
∂ (f ◦ g)1
∂x2

= 1,
∂ (f ◦ g)1
∂x3

= 1,

∂ (f ◦ g)2
∂x1

= 6x21 − 4x1x
4
2 + x2 + x3,

∂ (f ◦ g)2
∂x2

= x1 − 8x21x
3
2 − 5x42 − 4x32x3,

∂ (f ◦ g)2
∂x3

= x1 − x42,

The Jacobian matrix [
∂(f◦g)

1

∂x1

∂(f◦g)
1

∂x2

∂(f◦g)
1

∂x3
∂(f◦g)

2

∂x1

∂(f◦g)
2

∂x2

∂(f◦g)
2

∂x3

]

coincides with the one found through the chain rule. �

4.5 Subsequent Differentials

4.5.1 Derivatives

Till now we always talked of differentials, never of derivatives. It is time to see which

form takes this important notion in our general case.

Definition 168 Given a function f : A ⊆ Rn → Rm, let Ω ⊆ A be the set of the points

at which f is Frechet differentiable. The function f ′ : Ω ⊆ Rn → L (Rn,Rm) defined by

f ′ (x) = df (x) , ∀x ∈ Ω,

is called (Frechet) derivative of f . In particular, the value f ′ (x) is called derivative of

f at x.

In other words, the derivative is a function that associates to each point x of Ω the

Frechet differential df (x) at x. This differential is an element of the space L (Rn,Rm)

since by definition it is a linear application defined on Rn and with values in Rm.

Example 169 Let f : R3 → R2 be defined by f (x1, x2, x3) = (2x21 + x2 + x3, x1 − x42)

for each x ∈ R3. In Example 160 we saw that the Frechet differential at each x ∈ R3
is given by the linear application df (x) : R3 → R2 defined by

df (x) (h) = Df (x) h =
(
4x1h1 + h2 + h3, h1 − 4x32h2

)

for each h ∈ R3. Therefore, Ω = R3 and the derivative f ′ : R3 → L (R3,R2) of f is the

function that associates to each x ∈ R3 the linear application df (x) (h), which is

x �−→ df (x) (h) =
(
4x1h1 + h2 + h3, h1 − 4x32h2

)
.
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For example, the derivative of f at x = (2, 5,−3) is given by

f ′ (x) = df (x) (h) = (8h1 + h2 + h3, h1 − 500h2) .

�

Example 170 Let f : R → R3 be defined by f (x) = (x, sin x, cosx) for each x ∈ R.
In Example 161 we saw that in this case the Frechet differential at each x ∈ R is given

by the linear application df (x) : R→ R3 defined by

df (x) (h) = (h, h cosx,−h sin x)

for each h ∈ R. Therefore, Ω = R and the derivative f ′ : R → L (R,R3) of f is the

function that associates to each x ∈ R the linear application df (x) (h), which is

x �−→ df (x) (h) = (h, h cosx,−h sin x) .

For example, the derivative of f at x = π is given by

f ′ (x) = df (x) (h) = (h,−h, 0) .

�

By Theorem 159, each differential df (x) (h) admits a matrix representation df (x) (h) =

Df (x) h through the Jacobian matrix Df (x). Thanks to this representation we can

identify the derivative f ′ : Ω ⊆ Rn → L (Rn,Rm) with the function that associates to

each x ∈ Ω the corresponding Jacobian matrix Df (x), which is:

x �−→ Df (x) , ∀x ∈ Ω.

For this reason, from now on for (Frechet) derivative of f we will mean the function,

always denoted by f ′, defined by f ′ (x) = Df (x) for each x ∈ Ω. It is therefore a

function defined on Rn and with values in the space of the matrices m × n; that is,

f ′ : Ω ⊆ Rn →M (m,n).

In the special case m = 1, we simply have f ′ : Ω ⊆ Rn → Rn since in this case

f ′ (x) = ∇f (x) ∈ Rn. In the even more special case m = n = 1 the derivative at x is

given by the ordinary derivative f ′ (x).

Example 171 Let f : R4 → R be defined by f (x1, x2, x3, x4) = 4x1x4 + 3x22x3 + 2x24.

In each x ∈ R4 we have:
∂f

∂x1
(x) = 4x4,

∂f

∂x2
(x) = 6x2x3,

∂f

∂x3
(x) = 3x22,

∂f

∂x4
(x) = 4x1 + 4x4.

Therefore, Ω = R4 and the derivative f ′ : R4 → R4 is defined by

f ′ (x) = ∇f (x) =
(
4x4, 6x2x3, 3x

2
2, 4x1 + 4x4

)
, ∀x ∈ R4.

At the point x = (0, 1, 3, 2) ∈ R4, the derivative is given by f ′ (x) = (8, 18, 3, 8). �
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Example 172 Let f : R3 → R2 be defined by f (x1, x2, x3) = (2x21 + x2 + x3, x1 − x42)

for each x ∈ R3. In Example 160 we showed that

Df (x) =

[
4x1 1 1

1 −4x32 0

]

at each x ∈ R3. Therefore, Ω = R3 and the derivative f ′ : R3 → M (2, 3) of f is the

function that associates to each x ∈ R3 the Jacobian matrix Df (x), that is ,

x �−→ Df (x) =

[
4x1 1 1

1 −4x32 0

]
.

The derivative of f at x = (2, 5,−3) is given by

f ′ (x) = Df (x) =

[
8 1 1

1 −500 0

]
.

�

4.5.2 Second-Order Differentials

We can now introduce the second-order differential of a function f : A ⊆ Rn → R.

Definition 173 A function f : A ⊆ Rn → R is said to be twice Frechet differentiable

at x ∈ Ω if the derivative f ′ : Ω ⊆ Rn → Rn is Frechet differentiable at x. The second

differential of f at x is given by

d2f (x) (h) = df ′ (x) (h) , ∀h ∈ Rn.

We give right away an example.

Example 174 Let f : R4 → R be defined by f (x1, x2, x3, x4) = 4x1x4 + 3x22x3 + 2x24.

In Example 171 we saw that in this case the derivative f ′ : R4 → R4 is defined by

f ′ (x) =
(
4x4, 6x2x3, 3x

2
2, 4x1 + 4x4

)
, ∀x ∈ R4.

To find out the differential df ′ (x) it is necessary to compute the Jacobian matrix

Df ′ (x) of f ′. We have:

f ′1 (x) = 4x4, f ′2 (x) = 6x2x3, f ′3 (x) = 3x22, f ′4 (x) = 4x1 + 4x4,

and therefore
∂f ′1
∂x1

(x) = 0,
∂f ′1
∂x2

(x) = 0,
∂f ′1
∂x3

(x) = 0,
∂f ′1
∂x4

(x) = 4,

∂f ′2
∂x1

(x) = 0,
∂f ′2
∂x2

(x) = 6x3,
∂f ′2
∂x3

(x) = 6x2,
∂f ′2
∂x4

(x) = 0,

∂f ′3
∂x1

(x) = 0,
∂f ′3
∂x2

(x) = 6x2,
∂f ′3
∂x3

(x) = 0,
∂f ′3
∂x4

(x) = 0,

∂f ′4
∂x1

(x) = 4,
∂f ′4
∂x2

(x) = 0,
∂f ′4
∂x3

(x) = 0,
∂f ′4
∂x4

(x) = 4.
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Consequently, the Jacobian matrix is

Df ′ (x) =




0 0 0 4

0 6x3 6x2 0

0 6x2 0 0

4 0 0 4


 ,

which implies:

df ′ (x) (h) = Df ′ (x)h =




0 0 0 4

0 6x3 6x2 0

0 6x2 0 0

4 0 0 4







h1

h2

h3

h4


 .

Making the computations, by Definition 173 we therefore get that the second differential

d2f (x) : R4 → R4 is defined by:

d2f (x) (h) = (4h4, 6x3h2 + 6x2h3, 6x2h2, 4h1 + 4h4) for each h ∈ R4.
�

In the example just seen, the matrix Df ′ (x) has been computed taking the de-

rivatives of the functions f ′i that form the application f ′ : Ω ⊆ Rn → Rn. Since

f ′ (x) = ∇f (x), these functions are nothing but the partial derivatives of f , that is,

f ′i (x) =
∂f

∂xi
(x) for i = 1, ..., n.

Therefore, for each i, j = 1, ..., n we have

∂f ′i
∂xj

(x) =
∂
(
∂f
∂xi

)

∂xj
(x) .

In other words, ∂f ′i/∂xj is the partial derivative with respect to xj of the partial

derivative ∂f/∂xi. The usual notation for such partial derivatives of the second order

is
∂2f

∂xi∂xj
. (4.38)

In particular, when i = j we write ∂2f/∂x2i instead of ∂
2f/∂xi∂xi.3 Using this notation,

the general form of the Jacobian Df ′ (x) becomes:



∂2f
∂x2

1

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xn

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x2
2

(x) · · · ∂2f
∂x2∂xn

(x)

· · · · · · · · · · · ·
∂2f

∂xn∂x1
(x) ∂2f

∂xn∂x2
(x) · · · ∂2f

∂x2n
(x)



. (4.39)

3Note that with this notation the order of i and j is inverted. For this reason, instead of (4.38)
sometimes the notation ∂2f/∂xj∂xi is used. On the other hand, thanks to Theorem 180 this choice
of notation is irrelevant in most of the cases of interest.
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This matrix of second-order partial derivatives is called the Hessian matrix of f and

is denoted by ∇2f (x). The Hessian Matrix is therefore the matrix that gives us the

matrix representation of the linear application d2f (x), that is,

d2f (x) (h) = ∇2f (x)h, ∀h ∈ Rn.

Example 175 Let f : R3 → R be defined by f (x) = ex1x2 + 3x2x3 for each x ∈ R3.
Compute the Hessian matrix. We have:

∂f

∂x1
(x) = x2e

x1x2 ,
∂f

∂x2
(x) = x1e

x1x2 + 3x3,
∂f

∂x3
(x) = 3x2,

and therefore

∂2f

∂x21
(x) = x22e

x1x2 ,
∂2f

∂x1∂x2
(x) = (1 + x1x2) e

x1x2 ,
∂2f

∂x1∂x3
(x) = 0,

∂2f

∂x2∂x1
(x) = (1 + x1x2) e

x1x2 ,
∂2f

∂x22
(x) = x21e

x1x2,
∂2f

∂x2∂x3
(x) = 3,

∂2f

∂x3∂x1
(x) = 0,

∂2f

∂x3∂x2
(x) = 3,

∂2f

∂x23
(x) = 0.

We can conclude that the Hessian matrix of f is given by:

∇2f (x) =



x22e

x1x2 (1 + x1x2) e
x1x2 0

(1 + x1x2) e
x1x2 x21e

x1x2 3

0 3 0


 . (4.40)

Consequently, the matrix representation of d2f (x) : R3 → R3 is given by:

d2f (x) (h) =



x22e

x1x2 (1 + x1x2) e
x1x2 0

(1 + x1x2) e
x1x2 x21e

x1x2 3

0 3 0






h1

h2

h3


 .

�

As to the differentials of order higher than two, it is possible to proceed in a similar

way. Let Ω2 ⊆ Rn be the set on which f is twice Frechet differentiable. Using the

identification seen above for first-order derivatives, we can define the second derivative

f ′′ : Ω2 ⊆ Rn → M (n, n) as the function that associates to each point x ∈ Rn the

matrix n×n associated to the linear application d2f (x). At this point, the third-order

differential d3f (x) (h) is defined as d3f (x) (h) = df ′′ (x) (h) for each h ∈ Rn. And so

on for the differentials of order n generic.

The problem of all this is that we still do not know what it means to differentiate

an application of the form f : A ⊆ Rn → M (n, n), what is the second derivative. Til

now, in fact, we only studied differentials of applications f : A ⊆ Rn → Rm among
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Euclidean spaces. However, conceptually the differentials of applications of the type

f : A ⊆ Rn →M (n, n) can be defined similarly to how we did for applications among

Euclidean spaces. Because of the limited conceptual novelty involved, for brevity we

do not enter into details and we do not go beyond differentials of order two.

For the same reason in Definition 173 we limited ourselves to the case f : A ⊆
Rn → R. In fact, to define second differentials of applications f : A ⊆ Rn → Rm it

is necessary to talk of differentials of functions of the type f : A ⊆ Rn → M (n, n),

something we do not pursue in these lecture notes.

4.5.3 Symmetry of Hessian Matrices

Though we do not go beyond second-order Frechet differentials, it is however possible to

consider partial derivatives of whatever order. In fact, second-order partial derivatives

can be regarded as functions of their variables and we can therefore look for their

partial derivatives, which (if they exist) become the partial derivatives of third order.

On the other hand, also third-order partial derivatives can be seen as functions of their

variables, whose partial derivatives (if they exist) become the derivatives of fourth

order, and so on.

For example going back to Example 175 consider the partial derivative (∂2f/∂x1∂x2) (x) =

(1 + x1x2) e
x1x2 . We have the following third-order derivatives:

∂3f

∂x1∂x2∂x1
(x) =

∂
(

∂2f
∂x1∂x2

)

∂x1
(x) =

(
2x2 + x1x

2
2

)
ex1x2 ,

∂3f

∂x1∂x22
(x) =

∂
(

∂2f
∂x1∂x2

)

∂x2
(x) =

(
2x1 + x21x2

)
ex1x2 ,

and so on for the fourth-order partial derivatives, etc.

Using the successive partial derivatives we can extend in a natural way Definition

155.

Definition 176 A function f : A ⊆ Rn → R is said of class Ck, with k ≥ 1, if it has

partial derivatives up to the order k and if such partial derivatives are continuos on

their domain A. The set of all these functions is denoted by Ck (A).

Clearly,

Ck (A) ⊆ Ck−1 (A) ⊆ · · · ⊆ C1 (A) ,

that is, each function of class Ck is also of class Ck−1, and so on. Of particular interest

is the set
⋂∞
k=1 Ck (A), denoted by C∞ (A). It is the class of the functions that have

continuous partial derivatives of each order k ≥ 1.
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Example 177 Let f : R2 → R be defined as f (x1, x2) = x1x2. It is immediate to see

that f has continuous partial derivatives of any order and therefore belongs to Ck (R2)
for each k ≥ 1. Consequently, f ∈ C∞ (R2). More generally, the polynomials in several

variables are all functions of class C∞. �

Example 178 Let f : R2 → R be defined by:

f (x1, x2) =

{
x1x2

x2
1
−x2

2

x2
1
+x2

2

if (x1, x2) 	= (0, 0) ,

0 if (x1, x2) = (0, 0) .

Making the computations, the reader can verify that: (i) f has partial derivatives

∂f/∂x1 and ∂f/∂x2 continuous on R2; (ii) f has second-order partial derivatives

∂2f/∂x1∂x2 and ∂2f/∂x2∂x1 defined on all R2, but discontinuous at (0, 0). We can

therefore conclude that f ∈ C1 (R2), but f /∈ C2 (R2). �

The introduction of the functions of class C1 was motivated by Theorem 150, which

showed that such functions are well behaved with respect to differentiability. Similar

results hold for the classes Ck and for higher order differentials. For our purposes it is

sufficient to consider the case k = 2.

Theorem 179 Let f : A ⊆ Rn → R be a function that has second-order partial

derivatives on a neighborhood of the point x ∈ A. If these derivatives are continuous

at x, then f is twice Frechet differentiable at x.

Proof The Hessian matrix of f at x was the Jacobian matrix Df ′ (x) associated to the

derivative f ′ : Rn → Rn, whose components we saw in (4.39) to be the second-order

partial derivatives of f. As we observed after Definition 158, Theorem 150 holds also

for applications. In our case this means that the derivative f ′ is Frechet differentiable

at x if the components of Df ′ (x) are continuos at x, that is, if the second-order partial

derivatives of f are continuous at x. �

A straightforward consequence of this result is that the functions of class C2 are

twice Frechet differentiable at each point of their domain. For these functions the

following fundamental theorem holds at each point of their domain.

Theorem 180 Let f : A ⊆ Rn → R be a function that has second-order partial

derivatives on a neighborhood of the point x ∈ A. If these derivatives are continuous

at x, then
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(4.41)

for each i, j = 1, ..., n.
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For the functions of class C2, like for example polynomials in several variables, it

therefore does not matter the order in which partial derivatives are considered: we

can indifferently compute first the partial derivative with respect to xi and then the

one with respect to xj, or do the contrary. The result does not change, and we can

therefore choose the way that seems easier to compute, thus obtaining “for free” also

the other second partial derivative. All this simplifies considerably the computation

of derivatives and, moreover, gives an elegant property of symmetry to the Hessian

matrix, as we will see after the proof.

Proof For simplicity we consider the case n = 2. In this case, (4.41) reduces to:

∂2f

∂x1∂x2
=

∂2f

∂x2∂x1
. (4.42)

Always for simplicity, we also assume that the domain A is the whole space R2, so that

we can consider a function f : R2 → R. By definition,

∂f

∂x1
(x) = lim

h1→0

f (x1 + h1, x2)− f (x1, x2)

h1

and therefore:

∂2f

∂x1∂x2
(x) = lim

h2→0

∂f
∂x1

(x1, x2 + h2)− ∂f
∂x1

(x1, x2)

h2

= lim
h2→0

1

h2

(
lim
h1→0

f (x1 + h1, x2 + h2) − f (x1, x2 + h2)

h1

− lim
h1→0

f (x1 + h1, x2)− f (x1, x2)

h1
.

)

Let ψ : R2 → R be an auxiliary function defined by:

ψ (h1, h2) = f (x1 + h1, x2 + h2)− f (x1, x2 + h2)− f (x1 + h1, x2) + f (x1, x2) ,

for each (h1, h2) ∈ R2. Using the function ψ, we can write:

∂2f

∂x1∂x2
(x) = lim

h2→0
lim
h1→0

ψ (h1, h2)

h2h1
. (4.43)

Consider the scalar auxiliary function φ1 : R→ R defined by φ1 (x) = f (x, x2 + h2)−
f (x, x2) for each x ∈ R. We have:

φ′1 (x) =
∂f

∂x1
(x, x2 + h2)−

∂f

∂x1
(x, x2) . (4.44)

Moreover, by the Mean Value Theorem there exists z1 ∈ (x1, x1 + h1) such that

φ′1 (z1) =
φ1 (x1 + h1)− φ1 (x1)

h1
=
ψ (h1, h2)

h1
,
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and therefore, by (4.44), such that

∂f

∂x1
(z1, x2 + h2)−

∂f

∂x1
(z1, x2) =

ψ (h1, h2)

h1
. (4.45)

Let φ2 : R → R be a new auxiliary scalar function defined by φ2 (x) = ∂f
∂x1

(z1, x) for

each x ∈ R. We have:

φ′2 (x) =
∂2f

∂x2∂x1
(z1, x) . (4.46)

By the Mean Value Theorem there exists z2 ∈ (x2, x2 + h2) such that

φ′2 (z2) =
φ2 (x2 + h2)− φ2 (x2)

h2
=

∂f
∂x1

(z1, x2 + h2)− ∂f
∂x1

(z1, x2)

h2
,

and therefore, by (4.46), such that

∂2f

∂x2∂x1
(z1, z2) =

∂f
∂x1

(z1, x2 + h2)− ∂f
∂x1

(z1, x2)

h2
.

Together with (4.45), this implies that

∂2f

∂x2∂x1
(z1, z2) =

ψ (h1, h2)

h2h1
. (4.47)

Go back now to (4.43). Thanks to (4.47), expression (4.43) becomes:

∂2f

∂x1∂x2
(x) = lim

h2→0
lim
h1→0

∂2f

∂x2∂x1
(z1, z2) . (4.48)

On the other hand, since zi ∈ (xi, xi + hi) for i = 1, 2, we have zi → xi when hi → 0.

Being ∂2f/∂x1∂x2 continuous by hypothesis at x = (x1, x2), we therefore have

lim
h2→0

lim
h1→0

∂2f

∂x2∂x1
(z1, z2) =

∂2f

∂x2∂x1
(x1, x2) . (4.49)

Putting together (4.48) and (4.49) we get (4.42), as desired. �

Example 181 Let f : R3 → R be defined by f (x1, x2, x3) = x21x2x3 + ex2x3 . We have

f ∈ C∞ (R3) and, with some simple algebra, it is possible to verify that:

∂2f

∂x1∂x2
(x) = 2x1x3 and

∂2f

∂x2∂x1
(x) = 2x1x3,

as granted by Theorem 180. �

A square matrix n× n A is called symmetric if aij = aji for each i, j = 1, ..., n. For

example,

A =




1 3 −2 0

3 5 9 2

−2 9 −4 −3

0 2 −3 3
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is a symmetric matrix 4× 4.

An important consequence of Theorem 180 is that the Hessian matrix ∇2f (x) of

a function f : A ⊆ Rn → R of class C2 is symmetric at each point of the domain. For

instance, in Example 175 we considered a function of class C∞ and in fact its Hessian

matrix (4.40) is symmetric. Consider now another example.

Example 182 Let f : R3 → R be defined by f (x1, x2, x3) = cos (x1x2) + e−x3 . It is a

function of class C∞, whose Hessian matrix is

∇2f (x) =




−x22 cos (x1x2) − sin (x1x2)− x1x2 cos (x1x2) 0

− sin (x1x2)− x1x2 cos (x1x2) −x21 cos (x1x2) 0

0 0 e−x3


 .

As Theorem 180 guarantees, this matrix is symmetric. �

To conclude, we show a case not covered by Theorem 180.

Example 183 Consider the function f : R2 → R seen in Example 178. We saw how

the second-order partial derivatives ∂2f/∂x1∂x2 and ∂2f/∂x2∂x1 are defined on all R2,

but are discontinuous at (0, 0). Therefore, the hypothesis of continuity of the second-

order partial derivatives, required in Theorem 180, does not hold at the point (0, 0).

Theorem 180 can therefore tell nothing about the behavior of such derivatives at (0, 0).

If we compute them, we discover that:

∂2f

∂x1∂x2
(0, 0) = 1 and

∂2f

∂x2∂x1
(0, 0) = −1,

and therefore
∂2f

∂x1∂x2
(0, 0) 	= ∂2f

∂x2∂x1
(0, 0) .

The hypothesis of continuity of the second-order partial derivatives is therefore essential

for the validity of equality (4.41). �

4.6 Taylor’s Formula

Using successive differentials, we can give a version of the fundamental Taylor’s For-

mula for functions of several variables. Before doing this, it is necessary to introduce

quadratic forms.
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4.6.1 Quadratic Forms

A function f : Rn → R of the form

f (x1, ..., xn) = k (xα11 x
α2
2 · · · xαnn )

with k ∈ R and αi ∈ N, is called a monomial of degree m ∈ N if
∑n

i=1 αi = m. For

example, f (x1, x2) = 2x1x2 is a second-degree monomial, while f (x1, x2, x3) = 5x1x
3
2x
4
3

is an eight-degree monomial.

Definition 184 A function f : Rn → R is a quadratic form if it is the sum of second-

degree monomials.

For example, f (x1, x2, x3) = 3x1x3−x2x3 is a quadratic form because it is the sum

of the second-degree monomials 3x1x3 and −x2x3. It is easy to see that the following

functions are quadratic forms:

f (x) = x2,

f (x1, x2) = x21 + x22 − 4x1x2,

f (x1, x2, x3) = x1x3 + 5x2x3 + x23,

f (x1, x2, x3, x4) = x1x4 − 2x21 + 3x2x3.

There is a one-to-one correspondence between quadratic forms and symmetric matrices,

as the following result, whose proof we omit, shows.

Proposition 185 There exists a one-to-one correspondence between quadratic forms

f : Rn → R and symmetric matrices A
n×n

, determined by:

f (x) = x · Ax =
n∑

i=1

n∑

j=1

aijxixj for every x ∈ Rn. (4.50)

Therefore, given a symmetric matrix A
n×n

there exists a unique quadratic form f : Rn →
R for which (4.50) holds; viceversa, given a quadratic form f : Rn → R there exists a

unique symmetric matrix A
n×n

for which (4.50) holds.

The matrix A is called matrix associated to the quadratic form f . We see some

examples.

Example 186 The matrix associated to the quadratic form f (x1, x2, x3) = 3x1x3 −
x2x3 is given by:

A =




0 0 3
2

0 0 −1
2

3
2

−1
2

0


 .
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In fact, for each x ∈ R3 we have:

x · Ax = (x1, x2, x3) ·




0 0 3
2

0 0 −1
2

3
2

−1
2

0






x1

x2

x3




= (x1, x2, x3) ·
(

3

2
x3,−

1

2
x3,

3

2
x1 −

1

2
x2

)

=
3

2
x1x3 −

1

2
x2x3 +

3

2
x1x3 −

1

2
x2x3 = 3x1x3 − x2x3.

Notice that also the matrices

A =




0 0 3

0 0 −1

0 0 0


 and A =




0 0 0

0 0 0

3 −1 0


 (4.51)

are such that f (x) = x · Ax, though they are not symmetric. What we loose without

symmetry is the one-to-one correspondence between quadratic forms and matrices. In

fact, while given the quadratic form f (x1, x2, x3) = 3x1x3− x2x3 there exists a unique

symmetric matrix such that (4.50) holds, this is no longer true if we do not require

the symmetry of the matrix, as shown by the two matrices in (4.51), for which (4.50)

holds. �

Example 187 Concerning the quadratic form f (x1, x2) = x21 + x22 − 4x1x2, we have:

A =

[
1 −2

−2 1

]
.

In fact, for each x ∈ R2 we have:

x · Ax = (x1, x2) ·
[

1 −2

−2 1

][
x1

x2

]

= (x1, x2) · (x1 − 2x2,−2x1 + x2)

= x21 − 2x1x2 − 2x1x2 + x22 = x21 + x22 − 4x1x2.

�

Example 188 Let f : Rn → R be defined by f (x) = ‖x‖2 =
∑n

i=1 x
2
i for each x ∈ Rn.

The symmetric matrix associated to this quadratic form is the identity matrix I. In

fact,

x · Ix = x · x =
n∑

i=1

x2i .
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More generally, let f (x) =
∑n

i=1 αix
2
i with αi ∈ R for every i = 1, ..., n. It is easy to

see that the matrix associated to f is the diagonal matrix



α1 0 0 · · · 0

0 α2 0 · · · 0

0 0 α3 · · · 0

0 0 0 · · · 0

0 0 0 · · · αn



.

�

For our purposes it is important to classify quadratic forms according to their sign.

Definition 189 A quadratic form f : Rn → R is called:

(i) positive (negative) semidefinite if f (x) ≥ 0 (≤ 0) for every x ∈ Rn,

(ii) positive (negative) definite if f (x) > 0 (< 0) for every x ∈ Rn with x 	= 0,

(iii) indefinite if there exist x, x′ ∈ Rn such that f (x) < 0 and f (x′) > 0.

By Proposition 185, we have a similar classification for symmetric matrices, where

the matrix is called positive semidefinite if the corresponding quadratic form is, and so

on.

In some cases it is easy to verify the sign of a quadratic form. For example, it is

immediate to see that the quadratic form f (x) =
∑n

i=1 αix
2
i of Example 35 is positive

(negative) semidefinite if and only if αi ≥ 0 (αi ≤ 0) for every i = 1, ..., n, while it is

positive (negative) definite if and only if αi > 0 (αi < 0) for every i = 1, ..., n.

In general, however, it is not simple to establish directly what is the sign of a

quadratic form and therefore some methods have been developed in order to facilitate

this task. Among them, we present, as an example, the Sylvester-Jacobi criterion.

Given a symmetric matrixA, construct the following sequence of square submatrices

A1, A2, ..., An:

A1 = [a11] , A2 =

[
a11 a12

a21 a22

]
, A3 =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 , ..., An = A.

Using this sequence, we have the following criterion of Sylvester-Jacobi.

Proposition 190 A symmetric matrix A is:

(i) positive definite if and only if detAi > 0 for every i = 1, ..., n;
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(ii) negative definite if and only if detAi alternate in sign starting with the first

negative (i.e. detA1 < 0,detA2 > 0, detA3 < 0 and so on).

Example 191 Let f (x1, x2, x3) = x21+2x22+x
2
3+(x1 + x3)x2. The matrix associated

to f is:

A =




1 1
2

0
1
2

2 1
2

0 1
2

1


 .

In fact,

x · Ax = (x1, x2, x3) ·




1 1
2

0
1
2

2 1
2

0 1
2

1






x1

x2

x3




= (x1, x2, x3) ·
(
x1 +

1

2
x2,

1

2
x1 + 2x2 +

1

2
x3,

1

2
x2 + x3

)

= x21 + 2x22 + x23 + (x1 + x3)x2.

Let us study the sign of this quadratic form with Sylvester-Jacobi criterion. We have:

detA1 = 1,

detA2 = det

[
1 1

2
1
2

2

]
=

7

4
> 0,

detA3 = detA =
3

2
> 0.

By the Sylvester-Jacobi criterion, we can conclude that this quadratic form is positive

definite. �

There exist versions of the Sylvester-Jacobi criterion able to determine whether

a symmetric matrix is positive semidefinite, negative semidefinite, or if it is instead

indefinite. For brevity, we omit the details of these versions and we move, instead, to

Taylor’s Formula.

4.6.2 Taylor’s Formula

As we already know, when a function f : A ⊆ Rn → R is Frechet differentiable at a

point x ∈ A, then it can be linearly approximated at this point. In particular, we have

f (x+ h) = f (x) + df (x) (h) + o (‖h‖) (4.52)

= f (x) +∇f (x) h+ o (‖h‖)
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for each h ∈ Rn. With a change in notation, denote by x0 the point at which f is

Frechet differentiable and set h = x − x0. With this notation, (4.52) assumes the

following equivalent, but more expressive, form:

f (x) = f (x0) + df (x0) (x− x0) + o (‖x− x0‖) (4.53)

= f (x0) +∇f (x0) (x− x0) + o (‖x− x0‖)

for each x ∈ Rn.
We can now present Taylor’s formula for functions of several variables; as in the

scalar case, also in this more general case Taylor’s formula refines the approximation

(4.53). We limit ourselves to an approximation up to the second order both because

we have seen Frechet differentials only up to such order (and because this is enough

for our purposes). We also assume the standard hypothesis that the function is of

class C2, which thanks to Theorem 179 guarantees that the function is twice Frechet

differentiable on its domain.

Theorem 192 Let f : A ⊆ Rn → R be a function of class C2. Then, at each x0 ∈ A

we have:

f (x) = f (x0) + df (x0) (x− x0) +
1

2
(x− x0) · d2f (x0) (x− x0) + o

(
‖x− x0‖2

)

= f (x0) +∇f (x0) (x− x0) +
1

2
(x− x0) · ∇2f (x0) (x− x0) + o

(
‖x− x0‖2

)

for every x ∈ Rn.

The expression

f (x0) +∇f (x0) (x− x0) +
1

2
(x− x0) · ∇2f (x0) (x− x0)

is called the Taylor polynomial of second degree at x0. The term of second degree is

a quadratic form, whose associated matrix — the Hessian ∇2f (x) — is symmetric since

f is of class C2. Naturally, if arrested to the first order, Taylor’s formula reduces to

(4.52). Moreover, observe that in the scalar case the Taylor polynomial assumes the

well-known form:

f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0) (x− x0)

2 .

For, in this case we have ∇2f (x0) = [f ′′ (x0)] and therefore

(x− x0) · ∇2f (x0) (x− x0) = f ′′ (x0) (x− x0)
2 . (4.54)

Like in the scalar case, also here we have a trade-off between the simplicity of the

approximation and its accuracy. In fact, the approximation arrested to the first order
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(4.52) has the advantage of simplicity with respect to that arrested to the second order

- we approximate with a linear function rather than with a second-degree polynomial

- but with a loss in the degree of accuracy of the approximation, which is given by

o (‖x− x0‖) rather than by the better o
(
‖x− x0‖2

)
.

The choice of the order to which arrest Taylor’s formula thus depends on the partic-

ular use which we are interested in, which determines what aspect of the approximation

is more important in it, simplicity or accuracy.

Proof of Theorem 192 For simplicity, assume that the domain of f is all Rn. Fixed

a point y ∈ Rn, introduce the auxiliary scalar functions φ,ψ : R → R defined as

φ (t) = f (x0 + ty) and ψ (t) = x0 + ty for each t ∈ R. We have φ (t) = f (ψ (t)) for

every t ∈ R, i.e., φ = f ◦ ψ. In particular,

φ (0) = f (ψ (0)) = f (x0) . (4.55)

Since f is of class C2, it is easy to see that by Theorem 163 the function φ is twice

differentiable on R. In particular, Taylor’s formula for scalar functions gives us:

φ (t) = φ (0) + φ′ (0) t+
1

2
φ′′ (0) t2 + o

(
t2
)

(4.56)

for each t ∈ R. Since φ = f ◦ ψ, by the chain rule (Theorem 163) and recalling what

we saw in Example 165, we have:

φ′ (t) =
n∑

i=1

∂f

∂xi
(ψ (t))ψ′i (t) =

n∑

i=1

∂f

∂xi
(x0 + ty) yi (4.57)

for each t ∈ R. In particular,

φ′ (0) =
n∑

i=1

∂f

∂xi
(x0) yi = ∇f (x0) y. (4.58)

Consider now the auxiliary scalar function ϕi : R→ R defined as ϕi (t) = (∂f/∂xi) (x0 + ty)

for each t ∈ R and each i = 1, .., n. We have ϕi = (∂f/∂xi) ◦ ψ, and so by the chain

rule we have:

ϕ′i (t) =
n∑

j=1

∂
(
∂f
∂xi

)

∂xj
(ψ (t))ψ′j (t) =

n∑

j=1

∂2f

∂xi∂xj
(x0 + ty) yj .

Together with (4.57), this implies:

φ′′ (t) =
n∑

i=1

ϕ′i (t) yi =
n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(x0 + ty) yjyi,
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and therefore

φ′′ (0) =
n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(x0) yjyi = y · ∇2f (x0) y. (4.59)

Till now y was an arbitrary point of Rn. Set now y = (x− x0) / ‖x− x0‖ in (4.55),

(4.58) and (4.59). When computed at t = ‖x− x0‖, the expansion (4.56) becomes:

φ (‖x− x0‖) = f (x0) +∇f (x0)
x− x0

‖x− x0‖
‖x− x0‖

+
1

2

x− x0
‖x− x0‖

· ∇2f (x0)
x− x0

‖x− x0‖
‖x− x0‖2 + o

(
‖x− x0‖2

)

By definition,

φ (‖x− x0‖) = f

(
x0 + ‖x− x0‖

x− x0
‖x− x0‖

)
= f (x) ,

and therefore we can conclude that:

f (x) = f (x0) +∇f (x0) (x− x0) +
1

2
(x− x0) · ∇2f (x0) (x− x0) + o

(
‖x− x0‖2

)
,

as desired. �

Example 193 Let f : R2 → R be defined as f (x1, x2) = 3x21e
x22 . Making the compu-

tations, we get:

∇f (x) =
(
6x1e

x2
2 , 6x21x2e

x2
2

)
,

∇2f (x) =

[
6ex

2
2 12x1x2e

x2
2

12x1x2e
x22 6x21e

x22 (1 + 2x22)

]
.

By Theorem 192, Taylor’s formula at x0 = (1, 1) is

f (x) = f (1, 1) +∇f (1, 1) (x1 − 1, x2 − 1)

+
1

2
(x1 − 1, x2 − 1) · ∇2f (1, 1) (x1 − 1, x2 − 1) + o

(
‖(x1 − 1, x2 − 1)‖2

)

= 3e+ (6e, 6e) (x1 − 1, x2 − 1) +

1

2
(x1 − 1, x2 − 1) ·

[
6e 12e

12e 18e

][
x1 − 1

x2 − 1

]
+ o

(
(x1 − 1)2 + (x2 − 1)2

)

= 3e
(
x21 − 4x1 + 5 − 8x2 + 4x1x2 + 3x22

)
+ o

(
(x1 − 1)2 + (x2 − 1)2

)
.

Therefore, the function f (x1, x2) = 3x21e
x22 is approximated at the point (1, 1) by the

second-degree Taylor’s polynomial

3e
(
x21 − 4x1 + 5 − 8x2 + 4x1x2 + 3x22

)
,

with a level of accuracy given by o
(
(x1 − 1)2 + (x2 − 1)2

)
. �



Chapter 5

Free Classic Optimization

>From Calculus we know that, given a function f : A ⊆ Rn → R, a point x0 ∈ A

is called point of local (or relative) maximum if there exists a neighborhood Bx0 (ε)

of x0 such that f (x0) ≥ f (x) for each x ∈ Bx0 (ε) ∩ A. In particular, when we have

f (x0) > f (x) for each x ∈ Bx0 (ε) ∩ A with x 	= x0, the point x0 is called of strong

local maximum. Finally, the point x0 is called of global (or absolute) maximum if

f (x0) ≥ f (x) for each x ∈ A. In a similar way it is possible to define the points of

local and global minimum.

Like in the scalar case, also for functions of several variables a fundamental ap-

plication of the differential calculus is the research of the points of local maximum

and minimum. Conceptually, there are not many novelties relative to the scalar case,

though the analysis is more complicated because of the greater sophistication of dif-

ferential calculus in several variables with respect to the scalar one. In any case, also

in this more general case we will divide the analysis between first-order conditions and

second-order conditions.

5.1 First-Order Conditions

For functions that have an open set as their domain, the first-order condition is based

on the next result.1

Theorem 194 Let f : A ⊆ Rn → R and let x0 ∈ A be a point of local maximum or

minimum. If f is Gateaux differentiable at x0, then ∇f (x0) = 0.

Proof Assume that x0 is a point of local maximum (a similar argument holds if is a local

minimum). By definition, there exists a neighborhood Bx0 (ε) such that f (x0) ≥ f (x)

for each x ∈ Bx0 (ε) ∩ A. Since x0 is an interior point, there exists a neighborhood

1Throughout the chapter, A will always denote an open set.

123
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Bx0 (ε
′) such that Bx0 (ε

′) ⊆ A. Set B = Bx0 (ε) ∩ Bx0 (ε′). Clearly, we have f (x0) ≥
f (x) for each x ∈ B.

For each fundamental versor ei, there exists ki > 0 sufficiently small such that

x0 + tei ∈ B if t ∈ (−ki, ki). Being x0 a point of local maximum, we thus have

f (x0) ≥ f (x0 + tei) for each t ∈ (−ki, ki). Consequently,

lim
t→0+

f (x0 + tei)− f (x0)

t
≤ 0 ≤ lim

t→0−
f (x0 + tei)− f (x0)

t
.

On the other hand, by definition of partial derivative the bilateral limit

∂f

∂xi
(x0) = lim

t→0
f (x0 + tei)− f (x0)

t
,

holds, and therefore we conclude that (∂f/∂xi) (x0) = 0, as desired. �

By Theorem 194, a necessary condition for a point to be a local maximum or

minimum is that in this point the gradient vanishes. This is the so-called first order

condition (often abbreviated as FOC) and the points that satisfy it are called stationary

(or critical) points.

Observe that the condition ∇f (x0) = 0 is only necessary, but not sufficient, as the

next simple example shows.

Example 195 Consider the function f : R→ R given by f (x) = x3. At the point

x = 0 we have f ′ (x) = 0, but this point is neither a local minimum nor a local

maximum. �

By Theorem 194, the search of points of relative maximum or minimum can be

restricted only to stationary points, that is, to points x ∈ A such that ∇f (x) = 0.

This amounts to solving the system

∂f

∂x1
(x) = 0, ...,

∂f

∂xn
(x) = 0. (5.1)

We illustrate the first order condition with some examples.

Example 196 Let f : R2 → R be defined as f (x1, x2) = x21 − x22. We have:

∇f (x) = (2x1,−2x2)

and the system (5.1) has the form
{

2x1 = 0

−2x2 = 0
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The only solution of this system is x = (0, 0), which is therefore the only stationary

point of f . It is easy to see that this point is neither a maximum nor a minimum. In

fact, consider a generic point (0, x2), different from the origin, on the vertical axis and

a generic point (x1, 0), also different from the origin, on the horizontal axis. By the

definition of f , we have:

f (0, x2) = −x22 < 0 and f (x1, 0) = x21 > 0,

and therefore in each neighborhood of the point (0, 0) there are both points in which

the function is strictly positive and points in which it is strictly negative.

As f (0, 0) = 0, this implies that x = (0, 0) cannot be neither a point of maximum

nor a point of minimum. Therefore, this example shows how, like in the scalar case,

also for functions of several variables there can be stationary points that are neither

maxima nor minima. �

Example 197 Let f : Rn → R be defined as f (x) =
∑n

i=1 x
2
i for each x ∈ Rn. We

have:

∇f (x) = 2x,

and therefore the system (5.1) has the form:

2x1 = 0, ..., 2xn = 0,

whose only solution is clearly x = 0. Therefore, the function f has the only stationary

point x = 0. Since we have f (x) ≥ 0 for each x ∈ Rn, it is a point of global minimum.

�

Example 198 More generally, let f : Rn → R be defined as f (x) =
∑n

i=1 αix
2
i for

each x ∈ Rn, with 0 	= αi ∈ R for i = 1, ..., n. We have:

∇f (x) = (2α1x1, ..., 2αnxn) ,

and therefore the system (5.1) has the form:

2α1x1 = 0, ..., 2αnxn = 0,

whose only solution is given by x = 0. Also in this more general case, x = 0 is therefore

the only stationary point of f .

When for each i = 1, ..., n we have αi > 0, then it is immediate to see that x = 0

would be a point of global minimum. Similarly, if instead we have αi < 0 for each

i = 1, ..., n, then x = 0 would be a point of global maximum. When some α′i are

positive, while others are negative, we cannot conclude anything for the moment: we

have to wait for the second order conditions in order to be able to say something more.

�
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Example 199 Let f : R2 → R be defined as f (x1, x2) = 2x21 + x22 − 3 (x1 + x2) +

x1x2 − 3. We have:

∇f (x) = (4x1 − 3 + x2, 2x2 − 3 + x1) .

To find the stationary points it is necessary to solve the system (5.1), which here takes

the form: {
4x1 − 3 + x2 = 0

2x2 − 3 + x1 = 0

It is easy to see that x = (3/7, 9/7) is the only solution of this system and so is the

only stationary point of f . By Theorem 194, x = (3/7, 9/7) is therefore the only point

that could be of local minimum or maximum. Also in this case, in order to be able to

say something more about the nature of this point we have to wait for the second-order

conditions. �

Example 200 Let f : R3 → R be defined as f (x1, x2, x3) = x31+x
3
2+3x23−2x3+x

2
1x
2
2.

We have:

∇f (x) =
(
3x21 + 2x1x

2
2, 3x

2
2 + 2x21x2, 6x3 − 2

)
.

In this case, the system (5.1) becomes:





3x21 + 2x1x
2
2 = 0

3x22 + 2x21x2 = 0

6x3 − 2 = 0

It is a nonlinear system and therefore to solve it we cannot use the methods seen in

Section 3.5.2. Let us try to solve it directly. We start by observing that x3 is alone in

the third equation; therefore in each solution we have x3 = 1/3. To find the values of

x1 and x2 it remains to consider the subsystem
{

3x21 + 2x1x
2
2 = 0

3x22 + 2x21x2 = 0

A solution is given by x1 = x2 = 0. This is also the unique solution in which either

variable, x1 and x2, vanishes. In fact, if x1 = 0, then the second equation implies

x2 = 0, and, similarly, x2 = 0 implies x1 = 0.

Therefore, if besides (0, 0) there exists another solution (x1, x2) of the subsystem,

in this solution we must have x1 	= 0 and x2 	= 0. In view of all this, we can rewrite

the system as {
x1 (3x1 + 2x22) = 0

x2 (3x2 + 2x21) = 0
(5.2)
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Since we saw that, except for (0, 0), the solutions (x1, x2) of the subsystem are such

that x1 	= 0 and x2 	= 0, (5.2) implies that for these solutions it holds:
{

3x1 + 2x22 = 0

3x2 + 2x21 = 0

From the first equation we get x1 = (−2/3)x22 and, substituting it in the second

equation, we find x32 = −27/8. Consequently, x2 = −3/2, and so x1 = −3/2. Hence

we conclude that (−3/2,−3/2) is the other solution of the system besides (0, 0).

In conclusion, the two stationary points of this function are

x = (0, 0, 1/3) and x = (−3/2,−3/2, 1/3) .

Using the second-order conditions later we will try to determine if they are indeed

points of local maximum or minimum. �

5.2 Second-Order Conditions

Theorem 192 showed that a function f : A ⊆ Rn → R of class C2 can be locally

approximated at a point x0 ∈ A with a second-degree polynomial, as follows:

f (x) = f (x0) +∇f (x0) (x− x0) +
1

2
(x− x0) · ∇2f (x0) (x− x0) + o

(
‖x− x0‖2

)
.

If x0 is a point of local maximum or minimum, from Theorem 194 we have∇f (x0) = 0.

Therefore, the approximation becomes:

f (x) = f (x0) +
1

2
(x− x0) · ∇2f (x0) (x− x0) + o

(
‖x− x0‖2

)
. (5.3)

By working on this simple observation we obtain the second order conditions, which

are based on the sign of the quadratic form x · ∇2f (x0)x.

Theorem 201 Let f : A ⊆ Rn → R be a function of class C2 and let x0 ∈ A be a

stationary point of this function. We have:

(i) If x0 is a point of local maximum (minimum), then the quadratic form x·∇2f (x0)x

is negative (positive) semidefinite.

(ii) If the quadratic form x · ∇2f (x0)x is negative (positive) definite, then x0 is a

point of strong local maximum (minimum).

In the scalar case we get back to the usual second order conditions, based on the

sign of the second derivative f ′′ (x0). In fact, we already observed in (4.54) that in
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the scalar case we have x · ∇2f (x0) x = f ′′ (x0)x2, so that in this case the sign of the

quadratic form depends only on the sign of f ′′ (x0); that is, it is negative (positive)

definite if and only if f ′′ (x0) < 0 (> 0) and it is negative (positive) semidefinite if and

only if f ′′ (x0) ≤ 0 (≥ 0).

Naturally, like in the scalar case, also in the present more general case condition

(i) is only necessary for x0 to be a local maximum or minimum. In fact, consider the

scalar function f (x) = x3. We have ∇2f (x) = [f ′′ (x)] and therefore at x0 = 0 we

have ∇2f (x0) = [0]. The corresponding quadratic form x ·∇2f (x0)x is identically null

and it is therefore both negative semidefinite and positive semidefinite. Nevertheless,

x0 = 0 is neither a point of local maximum nor a point of local minimum.

Similarly, condition (ii) is only sufficient for x0 to be a point of local maximum or

minimum. Consider the scalar function f (x) = −x4. The point x0 = 0 is clearly a

point of maximum (even absolute) for the function f . But, ∇2f (x0) = [0] and therefore

the corresponding quadratic form x · ∇2f (x0) x is not negative definite.

Proof of Theorem 201. We first show (ii). Let x · ∇2f (x0)x be negative definite

(the positive definite case is similarly handled). We want to prove that x0 is a point of

strong local maximum.

Let U ≡ {x ∈ Rn : ‖x‖ = 1} be the unit ball of Rn, that is, the set of vectors that

have unit norm. It is a compact set because it is easy to see that it is both closed and

bounded. Let Q (x) = x · ∇2f (x0) x for each x ∈ U . The function Q is therefore the

restriction of the quadratic form x ·∇2f (x0)x on the unit ball U . As U is compact, by

the Weierstrass Theorem the function Q has a point of absolute maximum in U and

we can therefore set M = maxx∈U Q (x). In particular, M < 0 because Q (x) < 0 for

each x ∈ U , since by hypothesis x · ∇2f (x0)x is definite negative.

Let now x be a generic point of Rn. Clearly,
∥∥∥∥
x− x0
‖x− x0‖

∥∥∥∥ =
‖x− x0‖
‖x− x0‖

= 1,

and therefore the vector (x− x0) / ‖x− x0‖ belongs to the unit ball U . It follows that,
using (4.50), we can write:

M ≥ (x− x0)

‖x− x0‖
· ∇2f (x0)

(x− x0)

‖x− x0‖
=

n∑

i=1

n∑

j=1

xi − x0,i
‖x− x0‖

∂2f

∂xi∂xj

xj − x0,j
‖x− x0‖

=
1

‖x− x0‖2
n∑

i=1

n∑

j=1

(xi − x0,i)
∂2f

∂xi∂xj
(xj − x0,j)

=
1

‖x− x0‖2
(x− x0) · ∇2f (x0) (x− x0) ,
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so that
1

2
(x− x0) · ∇2f (x0) (x− x0) ≤

M

2
‖x− x0‖2 .

By (5.3), it then follows that:

f (x)− f (x0) =
1

2
(x− x0) · ∇2f (x0) (x− x0) + o

(
‖x− x0‖2

)

≤ M

2
‖x− x0‖2 + o

(
‖x− x0‖2

)

= ‖x− x0‖2
(
M

2
+
o
(
‖x− x0‖2

)

‖x− x0‖2

)
.

Set φ (x) = M/2 + o
(
‖x− x0‖2

)
/ ‖x− x0‖2 for each x ∈ Rn. Clearly, limx→x0 φ (x) =

M/2 < 0. Therefore, by the Theorem of the Permanence of the Sign there exists a

neighborhood Bx0 (ε) of x0 such that φ (x) < 0 for each x ∈ Bx0 (ε). It follows that

f (x)− f (x0) = ‖x− x0‖2 φ (x) < 0

for each x ∈ Bx0 (ε) and we conclude that x0 is a point of strong local maximum.

To complete the proof it remains to show (i). Also here we limit ourselves to the

case of x0 local maximum (the argument for the local minimum is analogous). Let

x0 be a point of local maximum and let Bx0 (ε) be a neighborhood of x0 such that

f (x0) ≥ f (x) for each x ∈ Bx0 (ε).
Fixed x ∈ Rn, set φ (t) = f (x0 + tx). Let Aφ = {t : φ (t) ∈ Bx0 (ε)}. It is easy to

see that Aφ is an open set containing 0. As x0 is a point of local maximum, we have

φ (t) = f (x0 + tx) ≤ f (x0) = φ (0) for each t ∈ Aφ. Consequently, 0 is a point of

local maximum for φ and therefore φ′′ (0) ≤ 0. On the other hand, (4.59) showed that

φ′′ (0) = x · ∇2f (x0)x.2 Therefore, the quadratic form x · ∇2f (x0) x ≤ 0 is negative

semidefinite, as desired. �

Since f is of class C2, the Hessian matrix ∇2f (x0) is the symmetric matrix associ-

ated to the quadratic form x · ∇2f (x0) x; we can therefore equivalently state Theorem

201 in the following way:

• a necessary condition for x0 to be a point of maximum (minimum) is that the

Hessian matrix ∇2f (x0) be negative (positive) semidefinite,

• a sufficient condition for x0 to be a point of strong maximum (minimum) is that

such matrix be negative (positive) definite.

2Notice that in (4.59) the generic point of Rn was denoted by y instead of x.
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Operationally, this is an important observation because there exist some criteria,

like Sylvester-Jacobi, able to determine whether a symmetric matrix is positive/negative

definite or semidefinite.

Example 202 As in Example 199, let f : R2 → R be defined as f (x1, x2) = 2x21 +

x22 − 3 (x1 + x2) + x1x2 − 3. We have:

∇f (x) = (4x1 − 3 + x2, 2x2 − 3 + x1) ,

and therefore

∇2f (x) =

[
4 1

1 2

]

The only stationary point is x = (3/7, 9/7). By the Sylvester-Jacobi criterion, the

Hessian matrix ∇2f (x) is positive definite. By Theorem 201, we can conclude that

(3/7, 9/7) is a point of strong local minimum. �

Example 203 Going back to Example 200, let f : R3 → R be defined as f (x1, x2, x3) =

x31 + x32 + 3x23 − 2x3 + x21x
2
2. We have:

∇f (x) =
(
3x21 + 2x1x

2
2, 3x

2
2 + 2x21x2, 6x3 − 2

)
,

and therefore

∇2f (x) =




6x1 + 2x22 4x1x2 0

4x1x2 6x2 + 2x21 0

0 0 6


 .

The stationary points are x = (−3/2,−3/2, 1/3) and x = (0, 0, 1/3). In x = (−3/2,−3/2, 1/

we have

∇2f (x) =




−9
2

9 0

9 −9
2

0

0 0 6


 ,

and therefore

det

[
−9

2

]
< 0, det

[
−9
2

9

9 −9
2

]
< 0, det∇2f (x) < 0.

Consequently, by the Sylvester-Jacobi criterion (Proposition 190) this Hessian matrix is

neither positive definite nor negative definite (and it is also neither positive semidefinite

nor negative semidefinite). By Theorem 201, we can conclude that the point x =

(−3/2,−3/2, 1/3) is neither a local minimum nor a local maximum. At the point

x = (0, 0, 1/3) we have

∇2f (x) =




0 0 0

0 0 0

0 0 6


 ,
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and so all the determinants of the matrices used in the Sylvester-Jacobi criterion are

null. By Proposition 190, the Hessian matrix is therefore neither positive definite nor

negative definite and the second-order sufficient condition does not tell us anything in

this case. �
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Chapter 6

Metric Spaces

6.1 Definition

In Calculus the distance d (a, b) between two points a and b of the real line R is given

by |a− b|, while for two vectors x and y of Rn their distance d (x, y) is given by√∑n
i=1 (xi − yi)

2.1

Our aim in this chapter is to extend the notion of distance to abstract spaces. To

this end, the first thing to observe is that the distance among vectors just mentioned is

certainly not the only possible one. For example, consider two vectors x = (x1, x2) and

y = (y1, y2) in the plane R2. Suppose that these two vectors give us the coordinates of

two places of Torino, for example x corresponds to Piazza Carlina while y corresponds

to Piazza Carlo Felice. As the historic center of Torino is essentially at square plan,

the length of the shortest way for a pedestrian to move between these two squares is

certainly not given by
√∑n

i=1 (xi − yi)
2, that is, by the length of the segment that joins

the points x and y (a segment that could be covered only by an hypothetical subway

joining the two squares). Looking at the map, it is easy to see that the effective distance

is given by |x1 − y1| + |x2 − y2|. Formally, given two vectors x, y ∈ Rn, we define the
distance d (x, y) as

∑n
i=1 |xi − yi|. In the case n = 2 we find again the “pedestrian”

distance d (x, y) = |x1 − y1|+ |x2 − y2| just discussed.
To see another example of distance, suppose that two vectors x and y in Rn denote

the allocations of income in a society composed by n individuals. Therefore, xi is the

income that individual i has under allocation x, while yi is his income under allocation

y. How we measure the “distance” between the allocations x and y? A possibility is to

evaluate the individual differences of income |xi − yi| among the two allocations, and to

take the quantitymax1≤i≤n |xi − yi| as the distance between the two allocations x and y.

1For this basic notions, see for instance Ambrosetti and Musu (1988) chapters II and III.

133
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In other words, we evaluate the distance between the two allocations by considering the

individual whose income is subject to the greatest variation (in absolute value). Given

two vectors x, y ∈ Rn, we define therefore the distance d (x, y) = max1≤i≤n |xi − yi|.

We try now to abstract from the particular examples, in order to arrive at a general

definition of distance. We observe that the distances just discussed have the following

properties:

• The distance between two vectors is always non-negative: d (x, y) ≥ 0.

• Two vectors have zero distance if and only if they coincide: d (x, y) = 0 if and

only if x = y.

• The distance between two vectors is symmetric: d (x, y) = d (y, x).

• Given three vectors, the triangular inequality holds: d (x, y) ≤ d (x, z) + d (z, y).

All this leads us to the following definition, in which X is a general set.

Definition 204 A space X is called metric if there exists a function d : X×X → R+,

called distance (or metric), such that, for each x, y, z ∈ X,

(i) d (x, y) = 0 if and only if x = y,

(ii) d (x, y) = d (y, x)

(iii) d (x, y) ≤ d (x, z) + d (z, y).

Naturally, on the same setX different metrics can be defined, each corresponding to

a different concept of distance, relevant according to the different problems considered.

We illustrate this definition with few examples.

Example 205 We already saw different distances that make Rn a metric space. We

will denote them as follows:

d1 (x, y) =
n∑

i=1

|xi − yi| ,

d2 (x, y) =

√√√√
n∑

i=1

(xi − yi)
2,

d∞ (x, y) = max
1≤i≤n

|xi − yi| .

In the case n = 1, all these different distances reduce to the standard distance |x− y|
among real numbers x, y ∈ R. �
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Example 206 Let X = C ([0, 1]) be the space of continuous functions f : [0, 1] → R

defined on the interval [0, 1]. Define d∞ : C ([0, 1]) × C ([0, 1]) → R+ by

d∞ (f, g) = max
t∈[0,1]

|f (t)− g (t)| , ∀f, g ∈ C ([0, 1]) . (6.1)

In other words, we consider for each t ∈ [0, 1] the distance |f (t)− g (t)| between the

two functions at that point, and we then take the maximum among all these distances.

The idea is similar to that used in defining d∞ on Rn and for this reason we denote

also this metric by d∞.

Observe that the max in (6.1) exists. In fact, set h (t) = |f (t)− g (t)| for each

t ∈ [0, 1]. The function h is continuous, and so by the Weierstrass Theorem it assume

a maximum value. We now verify that d∞ is indeed a distance. By the definition of

absolute value, we have |f (t)− g (t)| = 0 if and only if f (t) = g (t). On the other

hand, maxt∈[0,1] |f (t)− g (t)| = 0 if and only if |f (t)− g (t)| = 0 for each t ∈ [0, 1],

and so d∞ (f, g) = 0 if and only if f (t) = g (t) for each t ∈ [0, 1]. It follows that

d∞ (f, g) = 0 if and only if f = g, which verifies property (i) of Definition 204.

Property (ii) is obvious. As to (iii), observe that, given a generic h ∈ C ([0, 1]), for

each t ∈ [0, 1] we have:

|f (t)− g (t)| = |f (t)− h (t) + h (t)− g (t)| (6.2)

≤ |f (t)− h (t)| + |h (t)− g (t)| .

Therefore,

d∞ (f, g) = max
t∈[0,1]

|f (t)− g (t)|

≤ max
t∈[0,1]

(|f (t) − h (t)| + |h (t) − g (t)|)

≤ max
t∈[0,1]

|f (t)− h (t)| + max
t∈[0,1]

|h (t)− g (t)|

= d∞ (f, h) + d∞ (h, g) ,

and (iii) is consequently satisfied. The function d∞ is therefore a distance and the pair

(C ([0, 1]) , d∞) is a metric space. �

Example 207 Let again X = C ([0, 1]) and define d1 : C ([0, 1])× C ([0, 1]) → R+ by

d1 (f, g) =

∫ 1

0

|f (t)− g (t)| dt, ∀f, g ∈ C ([0, 1]) . (6.3)

We used the notation d1 because, mutatis mutandis, this definition is similar to that

of the distance d1 in Rn. We now verify property (i) of Definition 204. It is obvious

that f = g implies d1 (f, g) = 0. To show the converse, suppose that f 	= g, that

is, that there exists t∗ ∈ [0, 1] such that f (t∗) 	= g (t∗). For simplicity, suppose that
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t∗ ∈ (0, 1).2 Setting again h (t) = |f (t)− g (t)|, this is equivalent to h (t∗) > 0. Since h

is continuous, by the Theorem of the Permanence of Sign there exists a neighborhood

Bε (t
∗) = (t∗ − ε, t∗ + ε) ⊆ [0, 1] such that h (t) > 0 for each t ∈ Bε (t∗). It follows that∫ t∗+ε

t∗−ε h (t) dt > 0, and therefore:

d1 (f, g) =

∫ 1

0

|f (t)− g (t)| dt ≥
∫ t∗+ε

t∗−ε
h (t) dt > 0,

and this verifies property (i).

Property (ii) is obvious. As to (iii), using (6.2) we have:

d1 (f, g) =

∫ 1

0

|f (t)− g (t)| dt

≤
∫ 1

0

|f (t)− h (t)| dt+
∫ 1

0

|h (t)− g (t)| dt

= d1 (f, h) + d1 (h, g) .

The function d1 is therefore a distance and also the pair (C ([0, 1]) , d1) is a metric space.

�

Example 208 Let X be any set and define d : X ×X → R+ by

d (x, y) =

{
0 if x = y,

1 if x 	= y.
(6.4)

It is easy to see that this function is a metric, usually called the discrete metric. Clearly,

it a very “coarse” metric, which is however well defined on any set X. �

6.2 Topology

Having defined the notion of distance for general spaces, we can now topologize such

spaces, that is, we can introduce the notions of closed and open sets.

We start by introducing neighborhoods. Let (X, d) be a metric space.

Definition 209 Given a point x ∈ X, the neighborhood Bε (x) of x of width ε is given

by:

Bε (x) = {y ∈ X : d (x, y) < ε} .

In other words, Bε (x) is the set of all points of X whose distance from the given

point x is lower than ε .

2It is easy to see that the case in which t∗ is a boundary point of [0, 1], that is, t∗ = 0 or t∗ = 1,
can be similarly studied.
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Example 210 When X = Rn is endowed with the Euclidean distance d2, we have

Bε (x) =



y ∈ R

n :

√√√√
n∑

i=1

(xi − yi)
2 < ε



 ,

and therefore we find again the notion of spheric neighborhood seen in the basic courses.

With respect to the distance d1 we have:

Bε (x) =

{
y ∈ Rn :

n∑

i=1

|xi − yi| < ε

}
,

while with respect to d∞ we have:

Bε (x) =

{
y ∈ Rn : max

1≤i≤n
|xi − yi| < ε

}
.

�

Example 211 Consider X = C ([0, 1]) and the distance d∞ defined by (6.1). Given

f ∈ C ([0, 1]), we have:

Bε (f) =

{
g ∈ C ([0, 1]) : max

t∈[0,1]
|f (t)− g (t)| < ε

}
.

Consider the two functions f + ε and f − ε. Both belong to C ([0, 1]), and we have:

Bε (f) = {g ∈ C ([0, 1]) : f − ε < g < f + ε} .

In fact, maxt∈[0,1] |f (t)− g (t)| < ε if and only if |f (t) − g (t)| < ε for each t ∈ [0, 1],

that is, if and only if f (t)− ε < g (t) < f (t) + ε for each t ∈ [0, 1]. �

Example 212 For X = C ([0, 1]) with the distance defined by (6.3), we have:

Bε (f) =

{
g ∈ C ([0, 1]) :

∫ 1

0

|f (t)− g (t)| dt < ε

}
.

�

The notion of neighborhood for general metric spaces is conceptually similar to that

studied in Calculus courses; the only novelty is given by the general notion of distance

that is now available. The same similarity holds also for the other notions that we will

now introduce, that is, interior points, accumulation points, open sets, etc. They are

in fact defined in a completely analogous way to that seen in Calculus courses for Rn.

For this reason, we will now introduce them quite briefly.
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• Given a set A ⊆ X, a point x ∈ A is an interior point of A if there exists a

neighborhood Bε (x) included in A, that is, Bε (x) ⊆ A. A point x ∈ A is called

an isolated point of A if it is not of accumulation point, that is, if there exists a

neighborhood Bε (x) such that Bε (x)∩A = {x}. The set of all interior points of
A is denoted by

◦
A.

• Given a set A ⊆ X, a point x ∈ X is called a frontier (or boundary) point of A if

it is neither an interior point of A nor an interior point of Ac. A point x ∈ X is

called an accumulation point of A if each neighborhood Bε (x) contains a point

y ∈ A different from x. The set of the frontier points of A is denoted by ∂A,

while A′ denotes the set of the accumulation points of A (A′ is usually called the

derived set of A).

• A set whose points are all interior is called open.

• A set A is called closed if its complement Ac is open.

• A set A is called bounded if there exists ε > 0 and x ∈ X such that A ⊆ Bε (x).

We now illustrate these notions with some examples.

Example 213 The sets ∅ and X are both open and closed. �

Example 214 Let A be a singleton in a metric space. We have
◦
A = A′ = ∅ and

∂A = A. More generally, for each finite set we have
◦
A = A′ = ∅ and ∂A = A. �

Example 215 Let X = R and A = (0, 1). We have A =
◦
A, i.e., A is an open set.

Furthermore, ∂A = {0, 1} and A′ = [0, 1]. �

Example 216 Let X = R and A = (0, 1]. We have
◦
A = (0, 1), ∂A = {0, 1}, and

A′ = [0, 1]. In this case A is neither open nor closed. �

Example 217 Let A = [0, 1]. We have
◦
A = (0, 1), ∂A = {0, 1} and A′ = [0, 1]. Since

Ac = (−∞, 0) ∪ (1,+∞) is open, it follows that A is closed. �

Example 218 Let X = R and A = [0, 1) ∪ {3}. We have
◦
A = (0, 1), A′ = [0, 1], and

∂A = {0, 1, 3}. Note that the point x = 3 is isolated. The set A is neither open nor

closed. �

Example 219 Let X = R2 and A =
{
x ∈ R2+ : x1 + x2 = 1

}
. We have

◦
A = ∅ and

∂A = A′ = A. �
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We now present some basic properties of metric spaces. First of all we observe that

the neighborhoods are actually open sets.

Proposition 220 Neighborhoods are open sets.

Proof. Let Bε (x) be a neighborhood of a given point x ∈ X. Let y ∈ Bε (x). We want

to show that y is an interior point of Bε (x). By definition, d (x, y) < ε. Let ε′ > 0

such that d (x, y) = ε − ε′, and consider the neighborhood Bε′ (y) of y. We want to

show that Bε′ (y) ⊆ Bε (x). Let z ∈ Bε′ (y). We have:

d (x, z) ≤ d (x, y) + d (y, z) < ε− ε′ + ε′ = ε,

and therefore z ∈ Bε (x), as desired. �

The next important property of accumulation points shows that each of their neigh-

borhoods contains a great number of elements of the reference set.

Proposition 221 Let x be an accumulation point of a set A. Then, each neighborhood

of x contains infinite points of A.

Proof Suppose per contra that there exists a neighborhood Bε (x) of x that contains

a finite number of points {x1, ..., xn} of A, all distinct from x. As {x1, ..., xn} is a finite

set, mini=1,...,n d (x, xi) exists and it is strictly positive, i.e., mini=1,...,n d (x, xi) > 0. Set

ε′ = mini=1,...,n d (x, xi) and consider the neighborhood Bε′ (x). By construction, we

have Bε′ (x) ∩ A ⊆ {x}. Therefore, the only point of A that Bε (x) can contain is, at

most, x itself. But this contradicts the hypothesis that x is an accumulation point of

A. �

The next result describes the behavior of the open sets with respect to the basic

set operations.

Proposition 222 If {Gi}i∈I is a collection of open sets, then
⋃
i∈I Gi is an open set.

If I is a finite set {1, ..., n}, then ⋂ni=1Gi is an open set.

In other words, the union of any number of open sets is an open set, while only the

intersection of a finite number of open sets is still an open set.

Proof We start by proving that the set
⋃
i∈I Gi is open. Let x ∈ ⋃i∈I Gi. By definition,

there exists i ∈ I such that x ∈ Gi. As Gi is open, there exists a neighborhood Bε (x)

of x such that Bε (x) ⊆ Gi. A fortiori, Bε (x) ⊆
⋃
i∈I Gi and therefore x is an interior

point of
⋃
i∈I Gi. It follows that

⋃
i∈I Gi is an open set.
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Consider now
⋂n
i=1Gi. Let x ∈ ⋂ni=1Gi. By definition, for each i ∈ I there exists

a neighborhood Bεi (x) of x such that Bεi (x) ⊆ Gi. Set ε = mini=1,...,n εi. Since the

collection {εi}ni=1 is finite, such minimum exists and ε > 0. Consider now Bε (x). By

definition, Bε (x) ⊆
⋂n
i=1Bεi (x) ⊆

⋂n
i=1Gi. Therefore, x is an interior point of

⋂n
i=1Gi,

which is therefore an open set. �

To derive the corresponding properties of the closed sets we need the following

result.

Lemma 223 Given any collection {Ai}i∈I of sets, we have
(
⋃

i∈I
Ai

)c
=
⋂

i∈I
Aci .

Proof We show that
(⋃

i∈I Ai
)c ⊆ ⋂i∈I Aci . Let x ∈

(⋃
i∈I Ai

)c
. Therefore, x /∈ Ai for

each i ∈ I, that is, x ∈ Aci for each i ∈ I. It follows that x ∈ ⋂i∈I Aci , as desired.
To show that

⋂
i∈I A

c
i ⊆

(⋃
i∈I Ai

)c
, consider x ∈ ⋂i∈I Aci . Therefore, x ∈ Aci for

each i ∈ I, that is, x /∈ Ai for each i ∈ I. It follows that x /∈ ⋃
i∈I Ai, that is,

x ∈
(⋃

i∈I Ai
)c
. This completes the proof. �

The next result is, at this point, an obvious consequence of Proposition 222 and of

Lemma 223.

Corollary 224 If {Fi}i∈I is a collection of closed sets, then
⋂
i∈I Fi is a closed set. If

I is a finite set {1, ..., n}, then ⋃ni=1 Fi is a closed set.

The behavior of closed sets is therefore specular relative to that of open sets: the

intersection of a any number of closed sets is a closed set, while only the union of a

finite number of closed sets is still a closed set.

Example 225 Let Gn = (−1/n, 1/n). We have
⋂
i≥1Gn = {0}, that is, the intersec-

tion of the infinite collection of open sets Gn is the singleton {0}. Since this singleton
is not open, this shows that the hypothesis that I is finite is essential in Proposition

222. Similarly, consider for example Fn = [1/n, 1− (1/n)]. We have
⋃
n≥1 Fn = (0, 1),

and therefore an infinite union of closed sets may not be a closed set. �

In general, the collection of open sets (and so of closed sets) of a given metric space

can be complicated to describe. For this reason, the metric spaces where this collection

can be described explicitly are of special interest. For instance, this is the case for the

discrete metric, as Exercise13.0.30 shows. A much more important example is given

by the open sets of the real line, whose structure is described in the following result

(whose proof we omit).
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Theorem 226 Each open set of the real line is the union, finite or infinite, of open

intervals that are pairwise disjoint.

In other words, given an open set G of R, there exists a collection of open intervals

{(ai, bi)}i∈I such that G =
⋃
i∈I (ai, bi), with (ai, bi) ∩ (ai′, bi′) = ∅ for each i, i′ ∈ I.3

6.2.1 A Closer Look at Closed Sets

The definition we gave of closed set is a little bit “mechanical”: a set is closed if its

complement is open. We now have a more close look at closed sets, in order to better

understand their nature.

Theorem 227 A set is closed if and only if it contains all its accumulation points.

This theorem gives us a characterizing property of closed sets: a set is closed if it

contains all its accumulation points, and, among all the subsets of a metric space, only

the closed ones satisfy this property. In other words, the property of containing all its

own accumulation points is a property that distinguishes closed sets among all subsets

of a metric space.

Proof Let A be closed. We prove that A′ ⊆ A. By contradiction, assume that this is

not true, i.e., that there exists x ∈ A′ such that x /∈ A. As A is closed, Ac is open. The

point x ∈ Ac is therefore an interior point of Ac, and so there exists a neighborhood

Bε (x) of x such that Bε (x) ⊆ Ac, that is, such that Bε (x)∩A = ∅. But this contradicts
the definition of accumulation point. We conclude that A′ ⊆ A.

Viceversa, assume that A′ ⊆ A. We want to show that A is closed, i.e., that Ac is

open. Let x ∈ Ac. As A′ ⊆ A, the point x is not an accumulation point of A. There

exists therefore a neighborhood Bε (x) of x such that Bε (x) ∩ A ⊆ {x}. As x /∈ A, it

follows that Bε (x) ∩ A = ∅, that is, Bε (x) ⊆ Ac. The point x is therefore an interior

point of Ac and, since x was an arbitrary point of Ac, the set Ac is open. �

Example 228 The inclusion A′ ⊆ A in Theorem 227 can be strict, and the set A−A′
is formed by the isolated points of A. For example, let A = [0, 1] ∪ {−1, 4}. The set

A is closed and we have A′ = [0, 1]. Therefore, A′ is strictly included in A and the set

A− A′ = {−1, 4} is formed by the isolated points of A. �

Theorem 229 A set is closed if and only if it contains all its frontier points.

3In Theorem 226 we can have a = −∞ and b = +∞. The collection {(ai, bi)}i∈I can therefore
contain the open intervals (−∞, b), (a,+∞) and (−∞,+∞).
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The property of containing all its frontier points is therefore a further property that

characterizes closed sets among all the subsets of a metric space.

Proof Let A be closed. We prove that ∂A ⊆ A. Let x ∈ ∂A. By definition of frontier

point, x is not an interior point neither of A nor of Ac. As Ac is open, all its points

are interior and therefore x cannot belong to such set. It follows that x ∈ A, and so

∂A ⊆ A.

Viceversa, assume that ∂A ⊆ A. We want now to show that A is closed, i.e., that

Ac is open. Let x ∈ Ac. As ∂A ⊆ A, x /∈ ∂A. Therefore, either x is an interior point

of A or it is an interior point of Ac. Since x ∈ Ac, the point x is an interior point of

Ac, which is therefore an open set. �

Example 230 Also in this case the inclusion ∂A ⊆ A in Theorem 229 can be strict.

The set A−∂A consists of all interior points of A, that is, A−∂A =
◦
A. Consider again

the closed set A = [0, 1]∪{−1, 4}. We have ∂A = {−1, 0, 1, 4} ; the set A−∂A = (0, 1)

is formed by the interior points of A. �

Until now, to prove that a set A is closed we had to consider its complement Ac,

and to prove that it is an open set. Thanks to the characterizations given in Theorems

227 and 229, we now have two criteria that can be used to establish directly whether

a set A is closed (the choice among the two criteria is only a matter of convenience: in

some cases it may be easier to use one of the two criteria).

Example 231 Let A = [0, 1)∪ [2, 3]. We have A′ = [0, 1]∪ [2, 3] and therefore A′ � A.

By Theorem 227, A is not closed. We can get the same result using Theorem 229. In

fact, ∂A = {0, 1, 2, 3} � A. �

Example 232 Let A be a finite set of a metric space. In Example 214 we saw that

A′ = ∅. Therefore, by Theorem 227 the set A is closed. On the other hand, ∂A = A

and therefore we can arrive at the same conclusion via Theorem 229. �

6.2.2 Closure

Given a set A, it is easy to see that the set of the interior points
◦
A is an open set and

that
◦
A is actually the largest open set contained in A. That is, if G is an open set such

that G ⊆ A, we have G ⊆
◦
A (see Exercise 13.0.32). In a similar way, it is possible to

ask which is the smallest closed set that contains A. The next definition is motivated

by this question.

Definition 233 Given a set A, its closure A is given by the set A ∪ ∂A.
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The closure A of A is therefore the union of the set itself with all its frontier points.

Example 234 Let A = (0, 1) ∪ [2, 3] ∪ {−10, 10}. As ∂A = {−10, 0, 1, 2, 3, 10}, we
have

A = A ∪ ∂A = (0, 1) ∪ [2, 3] ∪ {−10, 0, 1, 2, 3, 10}
= [0, 1] ∪ [2, 3] ∪ {−10, 10} .

�

The next result collects the most important properties of the closure. In particular,

by (i) the set A is closed and, by (iii), is the smallest closed set that contains A.

Theorem 235 Given a set A, we have:

(i) A is closed,

(ii) A = A if and only if A is closed,

(iii) A ⊆ F for each closed set F such that A ⊆ F ,

(iv) A = A ∪ A′.

Proof (i) We prove that A is closed, i.e., that A
c
is open. To this end we prove

that A
c

=
◦
Ac, where

◦
Ac is the set of the interior points of Ac. Let x ∈ A

c
. As

A
c
= (A ∪ ∂A)c = Ac ∩ ∂ (Ac), we have x ∈ Ac and x /∈ ∂A. From x /∈ ∂A it follows

that either x is an interior point of A or it is an interior point of Ac. Since x ∈ Ac, x

is therefore an interior point of Ac, that is, x ∈
◦
Ac. This proves that A

c ⊆
◦
Ac.

Viceversa, let x ∈
◦
Ac. We have x ∈ Ac. Furthermore, x /∈ ∂A because x is an

interior point of Ac. It follows that x ∈ Ac ∩ ∂ (Ac) and therefore x ∈ A
c
. In sum,

A
c
=

◦
Ac and therefore A

c
is an open set.

(ii) The “only if” is an immediate consequence of (i). Consider the “if.” Let A be

a closed set. We want to prove that A = A. By Theorem 229, ∂A ⊆ A and therefore

A = A ∪ ∂A = A, as desired.

(iii) Let F be a closed set such that A ⊆ F . Since A = A∪∂A, to prove that A ⊆ F

we have to show that ∂A ⊆ F . Suppose per contra that there exists x ∈ ∂A such that

x /∈ F . Since F is closed, its complement F c is open and therefore x is an interior

point of F c. There exists therefore a neighborhood Bε (x) of x such that Bε (x) ⊆ F c.

From A ⊆ F it follows that F c ⊆ Ac, and so Bε (x) ⊆ F c ⊆ Ac. The point x is thus

an interior point also of Ac, and this implies ∂A ⊆
◦
Ac. But, this is a contradiction
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because by definition frontier points are neither interior points of A nor interior points

of Ac. Therefore, ∂A ⊆ F .

(iv) We begin by proving that A ∪ A′ ⊆ A. Since A ⊆ A, what we have to prove

is that A′ ⊆ A. Let x ∈ A′. If x ∈ A, then we trivially have x ∈ A. Suppose x /∈ A.

We prove that x ∈ ∂A, and so x ∈ A. As x ∈ A′, for each neighborhood Bε (x) of x

there exists y ∈ A such that y ∈ Bε (x). Therefore, x cannot be an interior point of

Ac. On the other hand, being x /∈ A, x is not an interior point of A. We conclude that

x ∈ ∂A, as desired.
It remains to prove that A ⊆ A ∪ A′. In view of point (iii), it is enough to prove

that A ∪ A′ is closed. Let x ∈ (A ∪ A′)c = Ac ∩ (A′)c. As x ∈ (A′)c, x is not an

accumulation point of A and there exists therefore a neighborhood Bε (x) of x such

that Bε (x)∩A = ∅. On the other hand, we have also Bε (x)∩A′ = ∅. In fact, suppose

that this is not true and let y ∈ Bε (x)∩A′. By Proposition 220, Bε (x) is an open set

and so there exists a neighborhood Bε (y) of y such that Bε (y) ⊆ Bε (x). As y ∈ A′,

we have

∅ 	= Bε (y) ∩ A ⊆ Bε (x) ∩A,
which contradicts Bε (x) ∩ A = ∅. Therefore, Bε (x) ∩ A′ = ∅, and we conclude that

Bε (x) ⊆ Ac ∩ (A′)c. The set (A ∪ A′)c is open, and so A ∪A′ is closed. �

Point (iv) shows that a possible alternative definition of closure, sometimes actually

adopted in the literature, is as union of A with its derived set A′.

The closure of a set A thus contains three types of points:

• the points of accumulation of A that belong to A (i.e., the set A′ ∩A);

• the points of accumulation of A that do not belong to A (i.e., the set A′ ∩Ac);

• the isolated points of A (i.e., the set A− A′).

In Example 234, these three types of points are respectively given by:

A′ ∩ A = (0, 1) ∪ [2, 3] , A′ ∩ Ac = {0, 1} , and A− A′ = {−10, 10} .

6.3 Sequences

6.3.1 Definition

>From basic Calculus courses we know that sequences of real numbers are defined as

functions f : N−{0} → R that associate to each natural number n ≥ 1 a real number

f (n). For brevity, the image f (n) is typically denoted by xn.
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Example 236 The sequence of odd numbers

{1, 3, 5, 7, ...} (6.5)

has as generic element xn = 2 (n− 1) + 1 for n ≥ 2, while the sequence
{
1,

1√
2
,

1√
4
,

1√
8
, ...

}
(6.6)

has as generic element xn = 1/
√

2n−1 for n ≥ 2.

Formally, the sequence (6.5) corresponds to the function f : N−{0} → R given

by f (n) = 2 (n− 1) + 1 for each n ≥ 1, while the sequence (6.6) corresponds to the

function f : N−{0} → R given by f (n) = 1/
√

2n−1 for each n ≥ 1. �

Example 237 The sequence with generic element xn = (−1)n is given by

{−1, 1,−1, 1, ...} .

Therefore, in a sequence the same value can appear several times. For example, the

constant sequence

{2, 2, 2, ...}

is formed only by numbers 2 and its generic element is xn = 2 for each n ≥ 1 (the

corresponding function f is therefore the constant f (n) = 2 for each n ≥ 1). �

Still from basic calculus we know that a sequence of real numbers {xn}n≥1 converges
to a real number x if, for each ε > 0, there exists n ≥ 1 such that

|xn − x| < ε (6.7)

for each n ≥ n. In this case, we write limn→∞ xn = x or xn → x. In other words, we

have limn→∞ xn = x if the elements xn become, when n grows, closer and closer to x.

Example 238 The sequence
{
1, 1√

3
, 1√

5
, 1√

7
, ...
}
converges to x = 0, while the sequence

{2, 2, 2, ...} converges to x = 2. �

Sequences may well not converge to any real number. For example, neither the

sequence {1, 3, 5, 7, ...} nor the sequence {−1, 1,−1, 1, ...} converge; the first diverges

to +∞, while the second continues to alternate between the values −1 and 1.

These elementary notions can be extended in a natural way from R to a generic

metric spaceX. Formally, a sequence in a metric spaceX is a function f : N−{0} → X

that associates to each natural number n ≥ 1 a point f (n) of X. In this more general

case as well, we still denote the image f (n) by xn.
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Example 239 Let X = Rn. In this case {xn}n≥1 is a sequence of vectors, usually

denoted by {xn}n≥1 to distinguish vectors and their components.4 For example, xn =

(xn1 , x
n
2 ) = (1/n, 1/n2) is the generic element of the sequence

{
(1, 1) ,

(
1

2
,
1

4

)
,

(
1

3
,
1

9

)
, ...,

(
1

n
,

1

n2

)
, ...

}
(6.8)

of vectors of R2, while xn = (0, 1/n, n3) the generic element of the sequence
{
(0, 1, 1) ,

(
0,

1

2
, 8

)
,

(
0,

1

3
, 81

)
, ...,

(
0,

1

n
, n3
)
, ...

}
(6.9)

of vectors of R3. �

Example 240 Let X = C ([0, 1]). In this case {xn}n≥1 is a sequence of continuous

functions, usually denoted by {fn}n≥1. For example, fn (t) = tn is the generic element

of the sequence {
t, t2, t3, ..., tn, ...

}
(6.10)

of continuous functions on [0, 1], while fn (t) = tn/n is the generic element of the

sequence {
t,
t2

2
,
t3

3
, ...,

tn

n
, ...

}
(6.11)

�

As to convergence, we have the following natural definition.

Definition 241 A sequence {xn}n≥1 of points of a metric space X converges to x ∈ X
if for each neighborhood Bε (x) of x there exists n ≥ 1 such that xn ∈ Bε (x) for each

n ≥ n. In this case, we write limn→∞ xn = x or xn → x.

The condition xn ∈ Bε (x) generalizes in an obvious way (6.7). The point x is called

limit of the sequence {xn}n≥1; a sequence that has a limit point is called convergent.

Lemma 242 A sequence {xn}n≥1 of points of a metric space X converges to x ∈ X if

and only if limn→∞ d (xn, x) = 0.

Proof Let limn→∞ xn = x. Set ε = 1/m, with m ≥ 1. By Definition 241, there exists

n ≥ 1 such that xn ∈ B 1

m
(x) for each n ≥ n, that is, such that d (x, xn) < 1/m for

each n ≥ n. Since this is true for every m ≥ 1, we have

0 ≤ lim
n→+∞

d (x, xn) ≤ lim
m→+∞

1

m
= 0,

4As in the first chapters, we use pedices and apices to distinguish the vectors of Rn and their
components. In particular, the i-th component xni of the vector xn is denoted by the pedix i, while
the apix n denotes the vector itself. Naturally, there is no relation between the pedix n in xn and the
apix n in Rn. To avoid any possible confusion, sometimes we use the notation Rm instead of Rn.
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and so limn→+∞ d (x, xn) = 0.

Viceversa, suppose that limn→+∞ d (x, xn) = 0. Let ε > 0. There exists n ≥ 1 such

that d (x, xn) < ε for each n ≥ n. Therefore, xn ∈ Bε (x) for each n ≥ n, as desired. �

Thanks to this simple result we can reduce the study of the convergence of sequences

in general metric spaces to that, much simpler, of the convergence to 0 of the sequence

of real numbers {d (xn, x)}n≥1. In other words, to verify if xn → x it is enough to verify

that d (xn, x) → 0.

Example 243 Let X = R2, endowed with the Euclidean metric, and consider the

sequence (6.8). We have

d2

(
(0, 0) ,

(
1

n
,

1

n2

))
=

√(
1

n

)2
+

(
1

n2

)2
=

√
n2 + 1

n2
→ 0

and therefore the sequence converges to x = (0, 0). The sequence (6.9), instead, does

not converges to any vector of R3. �

Example 244 Let X = C ([0, 1]), endowed with the metric d∞, and let 0 be the

identically null function. For the sequence {fn}n≥1 given by (6.11) we have

d∞ (fn,0) = max
t∈[0,1]

|fn (t)| = max
t∈[0,1]

tn

n
≤ 1

n
→ 0,

which implies d∞ (fn,0) → 0 since d∞ (fn,0) ≥ 0 for each n ≥ 1. The sequence

converges therefore to the function 0 ∈ C ([0, 1]).

On the contrary, the sequence (6.10) does not converge to any function of C ([0, 1]).

In fact, suppose per contra that this is the case, and let f ∈ C ([0, 1]) be such that

tn
d∞→ f . Therefore, maxt∈[0,1] |tn − f (t)| → 0, so that |tn − f (t)| → 0 for each t ∈ [0, 1],

that is, tn → f (t) for each t ∈ [0, 1]. Since tn → 0 for each t ∈ [0, 1), it follows that

f (t) = 0 for each t ∈ [0, 1). Since f is continuous, this implies f (1) = 0, and therefore

f = 0. But,

d∞ (fn,0) = max
t∈[0,1]

|fn (t)| = max
t∈[0,1]

tn = 1, ∀n ≥ 1

and the sequence thus does not converge to 0. This contradiction shows that the

sequence (6.10) is not convergent in C ([0, 1]). �

Example 245 Let again X = C ([0, 1]), this time endowed with the metric d1. For

the sequence {fn}n≥1 given by (6.11) we have

d1 (fn,0) =

∫ 1

0

|fn (t)| =
∫ 1

0

tn

n
dt =

1

n (n+ 1)
→ 0.
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The sequence therefore converges to the function 0 ∈ C ([0, 1]). As to the sequence

(6.10), we have

d1 (fn,0) =

∫ 1

0

|fn (t)| =
∫ 1

0

tndt =
1

n+ 1
→ 0,

and so also this sequence converges to 0. It is important to note that this is an example

of a sequence that is convergent according to a metric (the d1), but divergent according

to another metric (the d∞). �

We conclude this subsection by considering convergence in the metric space Rn.

The next result shows that a sequence of vectors converges if and only if the sequences

in R formed by their components converge.

Proposition 246 Let {xn}n≥1 be a sequence of vectors xn = (xn1 , ..., x
n
m) of Rm. We

have xn
d1→ x ∈ Rm if and only if xni → xi ∈ R for each i = 1, ...,m.

In other words, xn converges to x under the metric d1 if and only if for every

i = 1, .., n the sequence {xni }n≥1 of the i-th components of the vectors xn converges to

the i-th component xi of the vector x.

Proof Suppose that xn d1→ x ∈ Rm. By Lemma 242,

n∑

i=1

|xni − xi| = d1 (xn, x) → 0.

Therefore,

0 ≤ |xni − xi| ≤
n∑

i=1

|xni − xi| → 0, for each i = 1, ...,m,

and consequently xni → xi ∈ R for each i = 1, ...,m.

Viceversa, suppose that xni → xi ∈ R for each i = 1, ...,m. Let ε > 0. For each

i = 1, ...,m there exists ni ≥ 1 such that |xni − xi| < ε/m for each n ≥ ni. Therefore,

we have |xni − xi| < ε/m for each n ≥ maxi=1,...,m ni and each i = 1, ...,m. It follows

that for each n ≥ maxi=1,...,m ni we have

d1 (x
n, x) =

m∑

i=1

|xni − xi| <
ε

m
+ · · ·+ ε

m
= ε,

and therefore xn ∈ Bε (x). In conclusion, xn d1→ x. �

In Exercise 13.0.33 we will see how Proposition 246 holds also for the metrics d2
and d∞.
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6.3.2 First Properties

The next uniqueness result shows that sequences of points in metric spaces can converge

to at most a unique point.

Theorem 247 A convergent sequence of points of a metric space has a unique limit.

Proof Let {xn}n≥1 be a convergent sequence of a metric space X. Suppose there exist

x, y ∈ X such that xn → x and xn → y. We want to prove that x = y. Suppose that

this is not true, i.e., that x 	= y. For ε sufficiently small, we have two neighborhoods

Bε (x) and Bε (y) such that Bε (x)∩Bε (y) = ∅. By Definition 241, there exist n1, n2 ≥ 1

such that xn ∈ Bε (x) for each n ≥ n1 and xn ∈ Bε (y) for each n ≥ n2. Therefore,

xn ∈ Bε (x) ∩ Bε (y) for each n ≥ n1 ∨ n2, which contradicts Bε (x) ∩ Bε (y) = ∅.5 It

follows that x = y, and the limit is therefore unique. �

The next result shows that when a sequence converges to a point x, in each neigh-

borhood of this point lies the majority of the points of the sequence.

Proposition 248 A sequence {xn}n≥1 of points of a metric space X converges to

x ∈ X if and only if each neighborhood Bε (x) of x contains all the points of the

sequence, except at most a finite number of them.

Proof Suppose that xn → x. For each ε > 0, there exists n ≥ 1 such that xn ∈ Bε (x)
for each n ≥ n. Therefore, except for the points xn with 1 ≤ n < n, all other points of

the sequence belong to Bε (x).

Viceversa, given a neighborhood Bε (x) of x, suppose that all points of the sequence

belong to it, except at most a finite number of them. Denote by {xnk}mk=1 the set of the
points of the sequence that do not belong to Bε (x). Setting n = nm + 1, we therefore

have that xn ∈ Bε (x) for each n ≥ n. Since this is true for each neighborhood Bε (x)

of x, it follows that xn → x. �

Given a sequence f : N−{0} → X of points of a metric space, f (N) is called image

of the sequence. Naturally, the image does not take into account the repetitions that

may occur in the sequence. For example, the constant sequence {2, 2, 2, ...} in R has

as image the singleton {2}, while the sequence {−1, 1,−1, 1, ...} has as image the set

of the two elements {−1, 1}.
A sequence {xn}n≥1 is said to be bounded if its image is a bounded set of X.

Proposition 249 A convergent sequence in a metric space is bounded.

5n1 ∨ n2 denotes max {n1, n2}.
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Proof Suppose that xn → x. Setting ε = 1, there exists n ≥ 1 such that xn ∈ B1 (x)

for each n ≥ n. Let M > 0 be such that M > max {1, d (x1, x) , ..., d (xn−1, x)}. We

have d (xn, x) < M for each n ≥ 1 and, therefore, the image of the sequence is contained

in the neighborhood BM ′ (x). The sequence is therefore bounded. �

Proposition 249 gives us a simple sufficient condition for a sequence to diverge: if

the image of the sequence is not bounded, then the sequence diverges. For example,

the sequence that has as generic element xn = 2n diverges because it has as image the

unbounded set {1, 2, 3, ..., n, ...}.

A sequence {xn}n≥1 in R is increasing if xn ≤ xn+1 for each n ≥ 1, while it is

decreasing if xn ≥ xn+1 for each n ≥ 1. In general, a sequence in R is monotonic

if it is increasing or decreasing (it is both increasing and decreasing if and only if it

is constant). For this class of sequences, boundedness is a necessary and sufficient

condition for convergence.6

Proposition 250 A monotonic sequence in R is convergent if and only if it is bounded.

Proof Let {xn}n≥1 be an increasing sequence in R (the proof of the decreasing case is

similar). If it is convergent, Proposition 249 guarantees that it is bounded.

Viceversa, suppose that this sequence is bounded. We want to prove that it is

convergent. Let E be the image of the sequence. By hypothesis, it is a bounded subset

of R. By the completeness of R, supE exists. Set x = supE. We now show that

xn → x. Let ε > 0. Since x is the supremum of E, we have: (i) x ≥ xn for each n ≥ 1,

(ii) there exists an element of E, denoted by xn, such that xn > x− ε.7 Since {xn}n≥1
is an increasing sequence, it follows that

x ≥ xn ≥ xn > x− ε, ∀n ≥ n

and therefore xn ∈ Bε (x) for each n ≥ n, as desired. �

Notation. The limit x of an increasing sequence {xn}n≥1 is easily seen to be such that

xn ≤ x for each n ≥ 1. For this reason, often this convergence is denoted by xn ↑ x.
Analogously, often it is denoted by xn ↓ x the convergence of a decreasing sequence

{xn}n≥1 to a limit point x.

6For simplicity, Proposition 250 considers sequences of real numbers. The general case of sequences
in Rn follows from Proposition 246 and from Exercise 13.0.33.

7For these properties, see for example Ambrosetti and Musu (1988) p. 37.
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There exists a partial converse of Proposition 249. To state it, we introduce sub-

sequences. Given a sequence of distinct natural numbers {nk}k≥1, i.e., such that

n1 < n2 < n3 < · · · < nk < · · ·, the sequence {xnk}k≥1 is said to be a subsequence of

{xn} n≥1.

Naturally, the image of a subsequence is included in that of the sequence.

Example 251 Consider the sequence in R
{
1,

1

2
,
1

3
,
1

4
, ...,

1

n
, ...

}
(6.12)

with generic point xn = 1/n. A subsequence is given by
{
1,

1

3
,
1

5
,
1

7
, ...,

1

2k + 1
, ...

}
,

where the sequence {nk}k≥1 of natural numbers considered is that of the odd numbers

{1, 3, 5, ...}. Another subsequence of (6.12) is given by
{

1

2
,
1

8
,

1

16
, ...,

1

2n
, ...

}
,

where the sequence {nk}k≥1 of natural numbers considered is that of the powers of 2,

that is, {2, 22, 23, ...}. �

Example 252 As to the sequence in R with generic point xn = (−1)n, a subsequence

is given by

{1, 1, 1, ..., 1, ...} ,

where the sequence {nk}k≥1 of natural numbers considered is that of the even numbers.

�

As the last example shows, it can happen that even though the original sequence

diverges, there exist subsequences that are convergent. In other words, it is sometimes

possible that from a divergent behavior we can “extract” a convergent one, by select-

ing in a proper way among the points of the sequence. In Example 252 we have an

oscillating sequence, from which we have selected a constant subsequence considering

only the points with even index.

We conclude with some simple “algebraic” properties of sequences of vectors, whose

proof we omit. In the statement the space Rn is endowed with any one of the metrics

d1, d2 and d∞.

Proposition 253 Let {xn}n≥1 and {yn}n≥1 be two sequences of vectors of Rn, with

xn → x and yn → y. Then:
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(i) αxn + βyn → αx+ βy for each α, β ∈ R,

(ii) xn · yn → x · y,

(iii) x ≥ y if xn ≥ yn for each n ≥ 1.

6.3.3 Sequences and Topology

Using sequences we can give a characterization of the closure of a set.

Theorem 254 Let A be a set of a metric space X. We have x ∈ A if and only if there

exists a sequence {xn}n≥1 ⊆ A such that xn → x.

Proof Let x ∈ A. If x is an isolated point of A, set xn = x for each n ≥ 1. If x ∈ A′,

consider the neighborhoods B 1

n
(x) of x. Each of these neighborhoods contains a point

xn of A distinct from x. The sequence {xn}n≥1 clearly converges to x, as desired.

Let now x ∈ X be such that there exists a sequence {xn}n≥1 ⊆ A with xn → x.

Each neighborhood Bε (x) of x contains points of the sequence, that is, Bε (x)∩A 	= ∅.
The point x therefore is not an interior point of Ac, that is, x /∈

◦
Ac. It follows that

x ∈ A since in the first part of the proof of point (i) of Theorem 235 we proved that
◦
Ac = A

c
. �

In this result is therefore crucial that in a sequence it is possible that some points

can appear repeatedly. In fact, this allows to consider an isolated point x of A as a

limit of the constant sequence {x, x, x, ..., x, ...}.
Next result is an immediate consequence of Theorem 254 and is probably the most

useful criterion to determine whether a set is closed.

Corollary 255 A set A is closed if and only if x ∈ A whenever there exists a sequence

{xn}n≥1 ⊆ A such that xn → x.

Proof “Only if.” Let A be closed. By Theorem 254, x ∈ A if and only if there exists

a sequence {xn}n≥1 ⊆ A such that xn → x.

“If.” Let x ∈ A. By Theorem 254 there exists {xn}n ⊆ A such that xn → x. By

hypothesis, this implies x ∈ A, that is, A ⊆ A. Therefore, A = A, which implies that

A is closed. �

Thanks to this corollary, to establish whether a set A is closed is sufficient to

consider a generic sequence {xn}n≥1 ⊆ A such that xn → x. If we prove that also the

limit point x belongs to A, we can then conclude that A is closed.
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Example 256 Consider the subset A = [a1, b1] × [a2, b2] × · · · × [am, bm] of Rm. Let

{xn}n≥1 ⊆ A such that xn d1→ x. By Proposition 246, xni → xi. Since xni ∈ [ai, bi], the

convergence xni → xi implies xi ∈ [ai, bi]. Therefore, x ∈ A, and thanks to Corollary

255 we conclude that A is closed. �

Example 257 In the metric space (C ([0, 1]) , d∞) consider the set

A = {f ∈ C ([0, 1]) : −1 ≤ f (t) ≤ 1, ∀t ∈ [0, 1]} .

Consider a sequence {fn}n≥1 ⊆ A such that fn
d∞→ f . Therefore, maxt∈[0,1] |fn (t)− f (t)|

→ 0, which implies |fn (t)− f (t)| → 0 for each t ∈ [0, 1]. Since for each t ∈ [0, 1] we

have fn (t) ∈ [−1, 1], it follows that f (t) ∈ [−1, 1]. Therefore, f ∈ C ([0, 1]) and by

Corollary 255 we conclude that A is closed. �

6.3.4 Completeness

Definition 258 A sequence {xn}n≥1 of a metric space (X, d) satisfies the Cauchy cri-

terion if, for each ε > 0 , there exists n ≥ 1 such that d (xn, xm) < ε for each n,m ≥ n.

A sequence that satisfies Cauchy criterion is called a Cauchy sequence. When n

increases, the points xn of these sequences become therefore closer and closer among

them.

Proposition 259 Each convergent sequence in a metric space is a Cauchy sequence.

Proof Let xn → x. Given ε > 0, there exists n ≥ 1 such that d (xn, x) < ε/2 for each

n ≥ n. Hence, for each n,m ≥ n, we have

d (xn, xm) ≤ d (xn, x) + d (x, xm) ≤ ε

2
+
ε

2
= ε,

and the sequence {xn}n≥1 is Cauchy. �

As this proof shows, if a sequence converges to a limit point, the points of the

sequence become closer and closer to this point, and, consequently, they also become

closer and closer among them. On the other hand, there are metric spaces in which

there exist Cauchy sequences that are not convergent.

Example 260 Let X = (0, 1), endowed with the standard metric of the real line.

The sequence {1/n}n≥1 converges to the point 0, which does not belong to X. This

sequence is therefore Cauchy in X, but it is not convergent in such space. �
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A metric space where Cauchy sequences may not converge is as if it were lacking

some points, it were “incomplete,” with respect to the convergence. In fact, in such

spaces there are sequences whose points behave among themselves as if they were

converging to some limit point, but at the end they do not converge to any point of

the space. These considerations lead us to the following definition.

Definition 261 A metric space in which Cauchy sequences are convergent is called

complete.

The space X = (0, 1) seen in the last example is not complete. The set of rational

points Q endowed with the usual distance |q′ − q′′| is not compete.

Theorem 262 The space Rn, endowed with any of the metrics d1, d2 and d∞, is

complete.

Proof It is sufficient to consider the case n = 1. In fact, the general case follows

from Proposition 246 and from Exercise 13.0.33. Let {xn}n≥1 be a sequence in R that

satisfies Cauchy criterion. We want to prove that this sequence is convergent. We start

by proving that it is bounded. Setting ε = 1, there exists n ≥ 1 such that |xn − xm| < 1

for each n,m ≥ n. Hence, for each n ≥ n we have:

|xn| = |xn − xn + xn| ≤ |xn − xn| + |xn| < 1 + |xn| ,

which implies that for the imageE of the sequence {xn}n≥1 we haveE ⊆ (−1− |xn| , 1 + |xn|
The sequence is therefore bounded.

Let ε > 0. There exists n ≥ 1 such that |xn − xm| < ε/2 for each n,m ≥ n.

Consider the subsequence {xn}n≥n. It is clearly bounded and therefore the sup exists.

That is λ = supn≥n xn with λ ∈ R. In particular, we can pick an element xm, with

m ≥ n, for which xm > λ− ε/2. Therefore,

d (xn, λ) = |xn − λ| ≤ |xn − xm + xm − λ| ≤ |xn − xm|+ |xm − λ| < ε

2
+
ε

2
= ε

holds for all n ≥ n

This implies xn ∈ Bε (x) for each n ≥ n, and therefore xn → λ. �

To know that a metric space is complete simplifies the study of the convergence of

sequences. In fact, in complete metric spaces a sequence is convergent if and only if

it satisfies Cauchy criterion, and this can checked by only considering the values xn of

the sequence, without any need to specify a limit point x to which the sequence can

tend.

This is a key feature of this criterion because for many sequences it may not obvious,

a priori, which may be a limit point. This makes difficult to check convergence through

Definition 241 or Lemma 242.
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We conclude with another important example of a complete metric space (we omit

the proof), and with an example of non-complete metric space.

Theorem 263 The space (C ([0, 1]) , d∞) is complete.

Example 264 The metric space (C ([0, 1]) , d1) is not complete, that is, there exists a

Cauchy sequence in this space that is not convergent (we omit the check). �

6.4 Compactness

Compact sets are a very important class of closed sets, crucial in the formulation of

many classical results. In Calculus compact sets of R are defined as the closed and

bounded sets. The most important example of such sets was given by the closed and

bounded intervals [a, b].

We now extend the notion of compactness to general metric spaces. To this end,

we start by considering the compactness in R from a different perspective. Given a set

A of a metric space, an open cover of A is any collection of open sets {Gi}i∈I such that

A ⊆
⋃

i∈I
Gi.

Proposition 265 Each open cover of a closed and bounded interval [a, b] of R has a

finite subcover.

In other words, each open cover {Gi}i∈I of a closed and bounded interval [a, b] of R

has a finite subcover {Gi}ni=1 ⊆ {Gi}i∈I such that [a, b] ⊆
⋃n

i=1
Gi. The proof is based

on the next lemma.

Lemma 266 Let {[an, bn]}n≥1 be a collection of closed and bounded intervals of R with

[an+1, bn+1] ⊆ [an, bn] for each n ≥ 1. We have
⋂

n≥1
[an, bn] 	= ∅.

Proof Given the collection {[an, bn]}n≥1, let A = {a1, a2, ..., an, ...}. We have A ⊆
[a1, b1] and therefore A is a bounded set. By the completeness of R, we can set x =

supA. Since each bn is an upper bound for A, we have bn ≥ x for each n ≥ 1.

Hence, an ≤ x ≤ bn for each n ≥ 1, and therefore x ∈
⋂

n≥1
[an, bn]. This implies

⋂
n≥1

[an, bn] 	= ∅, as desired. �

Proof of Proposition 265. Suppose per contra that there exists an open cover

{Gi}i∈I of [a, b] that does not contain any finite subcover of [a, b]. Let δ = b − a and

c1 = (a+ b) /2. The collection {Gi}i∈I is an open cover also of the intervals [a, c1] and

[c1, b]. Therefore, at least one of these two intervals has no finite subcover of {Gi}i∈I .
Otherwise, from [a, b] = [a, c1] ∪ [c1, b] it would follow that [a, b] itself would have
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such a subcover. Without loss of generality, suppose therefore that [a, c1] has no finite

subcover of {Gi}i∈I . Set c2 = (a+ c1) /2. By repeating the argument just seen, we can

assume that also [a, c2] does not have not such a finite subcover. By proceeding in this

way we can construct a collection of intervals {[a, cn]}n≥1 such that [a, cn+1] ⊆ [a, cn]

and cn− a = δ/2n for each n ≥ 1. Moreover, none of these closed intervals has a finite

subcover of {Gi}i∈I .
By Lemma 242,

⋂
n≥1

[a, cn] 	= ∅. Let x ∈
⋂

n≥1
[a, cn]. Since [a, b] ⊆

⋃n

i=1
Gi,

there exists Gi such that x ∈ Gi. As x is an interior point of Gi, there exists a

neighborhood (x− ε, x+ ε) such that (x− ε, x+ ε) ⊆ Gi. For n sufficiently large, we

have δ/2n < ε, and therefore

[a, cn] ⊆
(
x− δ

2n
, x+

δ

2n

)
⊆ (x− ε, x+ ε) ⊆ Gi.

Consequently, the singleton {Gi} is a finite subcover of {Gi}i∈I that covers [a, cn], which

contradicts the fact that all the intervals [a, cn] do not have such subcovers. From this

contradiction it follows that [a, b] has a finite subcover of {Gi}i∈I . �

Proposition 265 motivates the next definition.

Definition 267 A subset A of a metric space is compact if each open cover of A has

a finite subcover.

Example 268 By Proposition 265, the closed and bounded intervals [a, b] are compact

sets of R. �

Example 269 In any metric space, the finite sets are compact. In fact, let A = {xi}ni=1
be a finite set and let {Gi}i∈I be an open cover of A. For each point xi ∈ A there exists

an open set Gi in this cover such that xi ∈ Gi. Therefore, {Gi}ni=1 is a finite subcover

of A.

Example 270 Let {xn}n≥1 be a convergent sequence in a metric space X, with image

E and limit point x. Then, the set E ∪{x} is compact. In fact, let {Gi}i∈I be an open

cover of E ∪ {x}. Let Gx be an open set in such cover that contains the limit point x.

There exists n ≥ 1 such that xn ∈ Gx for each n ≥ n. Therefore, the set E ∩Gcx is at
most finite. Since E ∩Gcx ⊆

⋃
i∈I Gi, for each y ∈ E ∩Gcx there exists an open set Gy

of the cover {Gi}i∈I such that y ∈ Gy. It follows that

E = (E ∩Gcx) ∪ (E ∩Gx) ⊆


 ⋃

y∈E∩Gcx

Gy


 ∪Gx,

and therefore {Gy}y∈E∩Gcx ∪ {Gx} is a finite subcover of E ∪ {x}. �
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We start by proving that compact sets are closed and bounded sets.

Theorem 271 A compact subset of a metric space X is closed and bounded.

Proof Let K be a compact set of a metric space X. We prove that Kc is open. Let

x ∈ Kc. For each y ∈ K, let Gy and Vy be, respectively, neighborhoods of y and x with

radius lower than d (x, y) /2. This implies that Gy∩ Vy = ∅ for each y ∈ K. Since the

collection {Gy}y∈K is an open cover of K, there exists a finite subcover {Gyi}ni=1 of K.

Setting V =
⋂n

i=1
Vyi and G =

⋃n

i=1
Gi, we have K ⊆ G and V ∩ G = ∅. Hence, V

is a neighborhood of x such that V ⊆ Kc, which implies that x is an interior point of

Kc. Thus, Kc is open.

It remains to show that K is bounded. Given ε > 0, for each x ∈ K let Bε (x)

be a neighborhood of radius ε. Since the collection {Bε (x)}x∈K is an open cover of

K, there exists a finite set E ⊆ K such that {Bε (x)}x∈E is a subcover of K, that

is, K ⊆
⋃

x∈E
Bε (x). Set M = maxx′,x′′∈E d (x′, x′′). Let y′, y′′ ∈ K. There exist

x′, x′′ ∈ E such that y′ ∈ Bε (x′) and y′′ ∈ Bε (x′′). Therefore,

d (y′, y′′) ≤ d (y′, x′) + d (x′, x′′) + d (x′′, y′′) < 2ε+M .

It follows that, taking any y ∈ K, we have K ⊆ B2ε+M (y), which implies that K is a

bounded set. �

The next result, often called the Heine-Borel Theorem, generalizes Proposition 265

and shows that the converse of Theorem 271 holds in Euclidean spaces. Therefore,

Euclidean spaces the new definition of compactness reduces to the one seen in Calculus.

Theorem 272 (Heine-Borel) Let X = Rn, endowed with any of the metrics d1, d2

and d∞. A subset of Rn is compact if and only if it is closed and bounded.

Proof In view of Proposition 271, we only have to prove that a closed and bounded

subset of Rn is compact. The special case X = R is given by Proposition 265. We

leave to the reader the proof of the general case X = Rn. �

At this point it is important to see an example of a space where there is a closed

and bounded set that is not compact, thus showing that Theorem 272 is in general

false in non-Euclidean spaces.

Example 273 Let X be the space of rational numbers Q, with the usual metric

d (q1, q2) = |q1 − q2| for each q1, q2 ∈ Q. Consider the set

A =
{
q ∈ Q :

√
2 < q <

√
3
}
.
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Clearly, A is bounded. It is also closed. In fact, let {qn}n≥1 ⊆ A be such that qn →
q ∈ Q. Since for each n ≥ 1 we have

√
2 < qn <

√
3, it follows that

√
2 ≤ q ≤

√
3.

Being q a rational number, this implies
√

2 < q <
√

3, that is q ∈ A. By Corollary

255, we conclude that A is closed.

We leave to the reader to check that A is not compact (i.e., there exists at least

an open cover of A that does not have any finite subcover). We close by showing

that A is also open. To this end, take q ∈ A. By the density of Q in R,8 there exist

q1, q2 ∈ Q such that
√

2 < q1 < q < q2 <
√

3. Since (q1, q2) is an open neighborhood

of q entirely contained in A, the point q is an interior point of A, which is therefore

open. In conclusion, A is an example of closed and bounded set that is not compact.

It is also an example of a set that is both closed and open. �

The next result shows that compactness is inherited by closed subsets of compact

sets.

Proposition 274 In a metric space the closed subsets of a compact set are themselves

compact.

Proof Let F be a closed subset of a compact set K. Let {Gi}i∈I be an open cover of

F . We want to prove that there exists a finite subcover of F . Since F is closed, the

complement F c is open. Therefore, the collection {Gi}i∈I∪{F c} is an open cover of K .

Therefore, there exists a finite subcover {Gi}ni=1 ∪ {F c} of K, i.e., K ⊆ F c ∪
⋃n

i=1
Gi.

This implies F ⊆
⋃n

i=1
Gi, and therefore {Gi}ni=1 is a finite subcover of F . �

We now give a fundamental characterization of compact sets, based sequences and

accumulation points. Condition (ii) is often called the Bolzano-Weierstrass property of

compact sets.

Theorem 275 For a subset A of a metric space, the following properties are equival-

ent:

(i) A is compact,

(ii) each infinite subset of A has at least one accumulation point,

(iii) each sequence of points of A has at least a convergent subsequence.

8See for instance Theorem 1 p. 27 of Ambrosetti and Musu (1988).
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Proof (i) implies (ii). Let A be a compact set and let E be an infinite subset of A. If

E does not have accumulation points, then all its points are isolated. Therefore, each

x ∈ E has a neighborhood Gx such that Gx ∩ E = {x}. Consequently, {Gx}x∈E is an

open cover of E that does not contain any finite subcover. For x ∈ A−E, let Vx be a

generic neighborhood of x. The collection {Gx}x∈E ∪ {Vx}x∈A−E is therefore an open

cover of the compact set A that does not have a finite subcover. This contradiction

proves that E has at least one accumulation point.

(ii) implies (iii). Let {xn}n≥1 be a sequence contained in A. Let E be its image.

If E is finite, there exist at least one x ∈ E and a sequence of natural numbers

n1 < n2 < · · · < nk < · · · such that xnk = x for each k ≥ 1. The constant subsequence

{xnk}k≥1 is obviously convergent. Let now E be an infinite set. There exists therefore

an accumulation point x of E. Fixing k ≥ 1, let xnk ∈ B 1

k
(x) ∩ E. The subsequence

{xnk}k≥1 constructed in this way converges to x.

(iii) implies (i). We omit the proof of this last point. �

The (iii) is a fundamental property of compact sets and guarantees that from any

sequence, however irregular it may be, of a compact set it is always possible to extract

at least a convergent subsequence.

By Theorem 275, this property characterizes compact sets and therefore it is not in

general true for sets that are only closed and bounded. For instance, in Example 273

consider a sequence {qn}n ⊆ A of rational numbers with qn →
√

2. It is easy to see

that this sequence does not have any convergent subsequence.

A metric space X is called compact if X itself is a compact set. In other words, if

each collection {Gi}i∈I of open sets such that X =
⋃

i∈I
Gi has a subcollection {Gi}ni=1

such that X =
⋃n
i=1Gi.

Example 276 Each finite metric space is compact. The space X = [a, b], with a, b ∈
R, is compact. �

By Proposition 274, closed subsets of a compact space are themselves compact.

Moreover, thanks to Theorem 275, we have the following characterization of compact

metric spaces.

Corollary 277 A metric space is compact if and only if every sequence has at least a

convergent subsequence.

Metric spaces have the following fundamental property.

Theorem 278 A compact metric space is complete.
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To prove this result we prove couple of useful properties. The first one generalizes

Lemma 266.

Lemma 279 Let {Ki}i∈I be a collection of compact sets such that, for each finite

subcollection {Ki}i∈J ⊆ {Ki}i∈I, we have
⋂

i∈J
Ki 	= ∅. Then,

⋂
i∈I
Ki 	= ∅.

Notice that the set I has any cardinality. In Lemma 266 we have I = {1, ..., n, ...}
and Kn = [an, bn]. Since [an+1, bn+1] ⊆ [an, bn], we have Kn+1 ⊆ Kn and therefore for

each finite subcollection {Kn}n∈J we obviously have
⋂

i∈J
Ki 	= ∅. Lemma 279 implies

⋂
n≥1

Kn 	= ∅, which was exactly what stated in Lemma 266.

Proof Take K1 and set I1 = {i ∈ I : i 	= 1}. Suppose that K1 ∩
⋂

i∈I1
Ki = ∅. Then,

K1 ⊆
⋃

i∈I1
Kc
i and therefore {Kc

i }i∈I1 is an open cover of the compact set K1. There-

fore, there exists a finite subcover
{
Kc
ij

}n
j=1

of K1. This implies that for the finite

subcollection
{
Kij

}n
j=1

∪{K1} we have K1∩Kj1 ∩ · · · ∩Kjn = ∅, which contradicts the

hypothesis. Therefore,
⋂

i∈I
Ki = K1 ∩

⋂
i∈I1

Ki 	= ∅, as desired. �

The diameter of a set E of a metric space, denoted by diam (E), is defined as:

diam (E) = sup {d (x, y) : x, y ∈ E} .

Lemma 280 We have diam (E) = diam
(
E
)
.

Proof Since E ⊆ E, clearly diam (E) ≤ diam
(
E
)
. We prove that it also holds

diam (E) ≥ diam
(
E
)
. Let ε > 0 and let x, y ∈ E. By Theorem 235, E = E ∪ E′.

Therefore, there exist x′, y′ ∈ E such that d (x, x′) < ε and d (y, y′) < ε. It follows

that:

d (x, y) ≤ d (x, x′) + d (x′, y′) + d (y′, y) ≤ ε+ d (x′, y′) + ε ≤ diam (E) + 2ε,

which implies:

diam
(
E
)
= sup

{
d (x, y) : x, y ∈ E

}
≤ diam (E) + 2ε.

Since ε is arbitrary, we conclude that diam
(
E
)
≤ diam (E), as desired. �

Proof of Theorem 278. Let {xn}n≥1 be a Cauchy sequence of points of X. We want

to prove that it is convergent. For simplicity, assume that all the terms of the sequence

are distinct. For each n ≥ 1, set

En = {xn, xn+1, ...} .
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Since En+1 ⊆ En, we have En+1 ⊆ En. Moreover, being X compact, also the sets En
are compact. By Lemma 279,

⋂
n≥1En 	= ∅. Let x ∈ ⋂n≥1En. We prove that xn → x.

Let ε > 0 and let ε′ ∈ (0, ε). Since the sequence {xn}n≥1 is Cauchy, there exists

nε′ ≥ 1 such that d (xn, xm) < ε′ for each n,m ≥ nε′ .9 Therefore, diam
(
Enε′

)
≤ ε′. As

x ∈ Enε′ , by Lemma 280 we have:

d (x, xn) ≤ diam
(
Enε′

)
= diam

(
Enε′

)
≤ ε′ < ε,

for each n ≥ nε′. Therefore, xn ∈ Bε (x) for each n ≥ nε′ , and so xn → x, as desired.

�

The converse of Theorem 278 is clearly false. The real line R is a simple example

of a complete metric space that is not compact.

There exists, however, a condition that combined with completeness makes a metric

space compact. A metric space X is called totally bounded if, for each ε > 0, there

exists a collection of points {xi}ni=1 of X such that X =
⋃n
i=1Bε (xi). In other words,

for each ε > 0 we can find a finite “net” of points from which each point of the space

has distance lower than ε. Naturally, what gives bite to the property is that such net

is finite. For example, the real line does not have this property. This is not by chance:

next result completes Theorem 278 by showing that total boundedness is exactly the

property that, combined with completeness, leads to compactness (we omit the proof).

Theorem 281 A metric space is compact if and only if it is complete and totally

bounded.

6.5 Limits and Continuity of Functions

6.5.1 Limits

We now move to the study of functions defined on metric spaces. We start with the

notion of limit of a function. In Calculus, given a function F : A ⊆ R→ R and given

an accumulation point x0 of A, we write limx→x0 F (x) = L ∈ R if for each ε > 0 there

exists δε > 0 such that, for each x ∈ A with 0 < |x− x0| < δε, we have |F (x)− L| < ε.

The point x0 is not required to belong to A, but it is enough that it is an accumulation

point of A.

This notion can be naturally extended to general metric spaces.

9To underline its dependence on ε′, here we denote by nε′ the number n of Definition 258.
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Definition 282 Let (X, dX) and (Y, dY ) be two metric spaces. Given a function f :

A ⊆ X → Y and an accumulation point x0 of A, we write limx→x0 f (x) = y ∈ Y if,

for each ε > 0, there exists δε > 0 such that

dY (f (x) , y) < ε

for all x ∈ A with 0 < dX (x, x0) < δε.

The special case seen in Calculus corresponds to (X, dX) = (Rn, d2) and (Y, dY ) =

(R, d), where d is the standard metric of the real line. Also here the point x0 is only

required to be an accumulation point of A.

The limit value limx→x0 F (x) is, therefore, the value to which the function tends as

x becomes closer and closer to x0. Note that we do not require any relation between

such limit value and the value f (x0) that the function actually takes at the point x0.

Indeed, the point x0 may even not belong to the domain A of the function (in which case

f (x0) does not exist), but be only an accumulation point of A. A standard example

is the function f : R − {0} → R given by f (x) = (sin x) /x for each x ∈ R − {0}. In
this case A = R − {0}, and the point x0 = 0 is of accumulation of A, but it does not

belong to A. As well known, we have limx→0 f (x) = 1.

Before showing some examples, we characterize limits through sequences.

Proposition 283 Let (X, dX) and (Y, dY ) be two metric spaces. Given a function

f : A ⊆ X → Y and an accumulation point x0 of A, we have limx→x0 f (x) = y ∈ Y

if and only if f (xn) → y for each sequence {xn}n≥1 of points of A, with xn 	= x0 for

each n, such that xn → x0.

To be precise, we should have written xn
dX→ x0 and F (xn)

dY→ y, but for simplicity

we only write xn → x0 and F (xn) → y.

Proof “If”: suppose F (xn) → y for each sequence {xn}n≥1 of points of A, with xn 	= x0

for each n, such that xn → x0. Suppose it is false that limx→x0 F (x) = y. Then there

exists ε > 0 such that for each δ > 0 there exists xδ ∈ A such that 0 < dX (xδ, x0) < δ

and dY (F (xδ) , y) ≥ ε. For each n, set δ = 1/n and let xn be the corresponding point

of A, just denoted by xδ. For the sequence {xn}n≥1of points of A constructed in this

way we have dX (x0, xn) < 1/n for each n, and therefore limn→∞ dX (x0, xn) = 0. By

Lemma 242, xn → x. But, by construction we have dY (F (xn) , y) ≥ ε for each n, and

therefore the sequence F (xn) does not converge to y. This contradicts the hypothesis,

and we conclude that limx→x0 F (x) = y.

“Only if”: suppose limx→x0 F (x) = y ∈ Y . Let {xn}n≥1 be a sequence of points

of A, with xn 	= x0 for each n, such that xn → x0. Let ε > 0. There exists δε > 0
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such that for each x ∈ A with 0 < dX (x, x0) < δε we have dY (F (x) , y) < ε. Since

xn → x0 and xn 	= x0, there exists n ≥ 1 such that 0 < dX (xn, x0) < δε for each n ≥ n.

Therefore, for each n ≥ n we have dY (F (xn) , y) < ε, which implies F (xn) → y. �

Note that, in view of Proposition 283, Theorem 247 also ensures the uniqueness of

the limit value y in Definition 282. In fact, each sequence {F (xn)}n≥1 converges to a

unique limit.

Example 284 Let (X, dX) = (R, d) and (Y, dY ) = (R2, d2), and let F : R → R2 be

defined by F (x) = (sin (x) , cos (x)) for each x ∈ R. Using Proposition 283 it is easy

to verify that limx→0 F (x) = (0, 1) ∈ R2. �

Example 285 Let (X, dX) = (Y, dY ) = (R2, d2) , and let F = (F1, F2) : R2 → R2 be

defined by

F1 (x) =

{
x1 + x2 + 1 x 	= (0, 0)

0 x = (0, 0)
and F2 (x) = 1 + x21x2, ∀x ∈ R2.

For example, for x = (2, 1) we have F (x) = (F1 (x) , F2 (x)) = (4, 5), while for x = (0, 0)

we haveF (x) = (F1 (x) , F2 (x)) = (0, 1). Using Proposition 283, it is easy to verify

that

lim
x→(2,1)

F (x) = (4, 5) and lim
x→(0,0)

F (x) = (1, 1) .

Note that limx→(2,1) F (x) = F (2, 1), while limx→(0,0) F (x) 	= F (0, 0). �

Example 286 Let (X, dX) = (C ([0, 1]) , d∞) and (Y, dY ) = (R, d), and let F : C ([0, 1]) →
R be defined by F (f) =

∫ 1
0
f (t) dt for each f ∈ C ([0, 1]). Let 0 ∈ C ([0, 1]) be the

identically null function. We have limf→0 F (f) = 0, that is, limf→0 F (f) = F (0). In

fact, let {fn}n≥1 be a sequence in C ([0, 1]), with fn 	= 0, such that fn → 0. By Propos-

ition 283, in order to prove that limf→0 F (f) = 0 we have to prove that F (fn) → 0.

We have:

d∞ (fn,0) = max
t∈[0,1]

|fn (t)− 0 (t)| = max
t∈[0,1]

|fn (t)| → 0. (6.13)

Let gn ∈ C ([0, 1]) be the constant function such that gn (t) = maxt∈[0,1] |fn (t)| for
each t ∈ [0, 1]. Expression (6.13) implies:

d (F (fn) , 0) = |F (fn)− 0| =
∣∣∣∣
∫ 1

0

fn (t) dt

∣∣∣∣ ≤
∫ 1

0

|fn (t)| dt

≤
∫ 1

0

gn (t) dt = max
t∈[0,1]

|fn (t)| → 0.

Therefore, by Lemma 242 we have F (fn) → 0, as desired. �
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Example 287 Let (X, dX) = (Y, dY ) = (C ([0, 1]) , d∞), and let F : C ([0, 1]) →
C ([0, 1]) be defined by F (f) = f 2 for each f ∈ C ([0, 1]). For example, if f (t) = sin t,

we have F (f) (t) = sin2 t. We prove that limf→0 F (f) = 0, that is, limf→0 F (f) =

F (0). Let {fn}n≥1 be a sequence in C ([0, 1]), with fn 	= 0, such that fn → 0. By

Proposition 283, in order to prove that limf→0 F (f) = 0 we have to prove that F (fn) →
0. We have:

d∞ (fn,0) = max
t∈[0,1]

|fn (t)− 0 (t)| = max
t∈[0,1]

|fn (t)| → 0,

which implies:

d∞ (F (fn) ,0) = max
t∈[0,1]

|F (fn) (t)− 0 (t)| = max
t∈[0,1]

|F (fn) (t)| = max
t∈[0,1]

∣∣f 2n (t)
∣∣

= max
t∈[0,1]

(|fn (t)| |fn (t)|) ≤
(

max
t∈[0,1]

|fn (t)|
)(

max
t∈[0,1]

|fn (t)|
)

→ 0.

By Lemma 242, we have F (fn) → 0, as desired. �

For real valued functions, we have the following algebraic properties, whose simple

proof we omit.

Proposition 288 Let f : A ⊆ X → R and g : A ⊆ X → R be real valued functions

defined on a subset A of a metric space X. Given x0 ∈ A′, we have:

(i) limx→x0 (αf + βg) (x) = α limx→x0 f (x) + β limx→x0 g (x) for each α, β ∈ R;

(ii) limx→x0 (fg) (x) = limx→x0 f (x) limx→x0 g (x);

(iii) limx→x0

(
f
g

)
(x) =

limx→x0
f(x)

limx→x0
g(x)

when limx→x0 g (x) 	= 0.

6.5.2 Continuity

Definition 289 Let (X, dX) and (Y, dY ) be two metric spaces. A function f : A ⊆
X → Y is said to be continuous at the point x0 ∈ A if, for each ε > 0, there exists

δε > 0 such that

dY (f (x) , f (x0)) < ε

for each x ∈ A with dX (x, x0) < δε.

In other words, f is continuous at x0 ∈ A if, for each neighborhood Bε (f (x0)) of

f (x0), there exists a neighborhood Bδε (x0) of x0 such that f (x) ∈ Bε (f (x0)) for each

x ∈ Bδε (x0). Equivalently, for each open set V containing f (x0), there exists an open

set G containing x0 such that f (x) ∈ V for each x ∈ G.
Observe that the point x0 must belong to the domain of the function. A function

continuous at each point of a set E ⊆ A is called continuous on E. The function is

called continuous if it is continuous at all the points of its domain.
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Lemma 290 Let (X, dX) and (Y, dY ) be two metric spaces. A function f : A ⊆ X →
Y is continuous at each isolated point of A.

Proof Let x0 be an isolated point of A. There exists a neighborhood Bδ (x0) of radius

δ > 0 such that Bδ (x0) ∩ A = ∅. Therefore, we have x ∈ A and dX (x, x0) < δ if and

only if x = x0. It follows that, for each ε > 0, there exists δ > 0 such that x ∈ A and

dX (x, x0) < δ implies x = x0. Therefore, |F (x)− F (x0)| = 0 < ε. �

All functions are thus always continuous at the isolated points of their domains.

Such points are therefore of no interest for the notion of continuity. For accumulation

points we have instead the following characterization of continuity, based on the notion

of limit. Recall that A ∩ A′ is the set of the points of A that are accumulation points

of A.

Proposition 291 Let (X, dX) and (Y, dY ) be two metric spaces. A function f : A ⊆
X → Y is continuous at a point x0 ∈ A ∩ A′ if and only if we have limx→x0 f (x) =

f (x0).

This results follows immediately from Definitions 282 and 289. The notion of con-

tinuity seen in Calculus, usually presented as limx→x0 f (x) = f (x0), can therefore be

recovered by setting (X, dX) = (Rn, d2) and (Y, dY ) = (R, d).

Thanks to the characterization given by Proposition 291, we can fully understand

the meaning of continuity: a function is continuous at an accumulation point x0 ∈ A∩A′
when the value that the function takes at x0, that is f (x0), is consistent with the value

to which the function tends when x gets closer and closer to x0, that is, limx→x0 f (x).

Proposition 283 leads us to a fundamental criterion to establish the continuity of a

function.

Corollary 292 Let (X, dX) and (Y, dY ) be two metric spaces. A function f : A ⊆
X → Y is continuous at a point x0 ∈ A if and only if we have f (xn) → f (x0) for each

sequence {xn}n≥1 of points of A such that xn → x0.

Proof The result follows immediately by Proposition 291, once we observe that when

x0 is an isolated point of A we can consider the constant sequence {x0, x0, ...}. �

Example 293 The function of Example 284 is continuous at each point of its domain.

The function of Example 285 is not continuous at the point (0, 0), but it is continuous

at all the other points of its domain. �

In the next three examples we consider the metric space (C ([0, 1]) , d∞).
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Example 294 The function of Example 286 is continuous at each point of its domain.

To see this, given a function f ∈ C ([0, 1]), let {fn}n≥1 be a sequence in C ([0, 1]), with

fn 	= f , such that fn → f . By Corollary 292, to prove that F is continuous in f we

have to prove that F (fn) → F (f). Since fn → f , we have:

d∞ (fn, f) = max
t∈[0,1]

|fn (t)− f (t)| → 0. (6.14)

Let gn ∈ C ([0, 1]) be the constant function such that gn (t) = maxt∈[0,1] |fn (t)− f (t)|
for each t ∈ [0, 1]. Expression (6.14) implies:

d (F (fn) , F (f)) = |F (fn)− F (f)| =
∣∣∣∣
∫ 1

0

fn (t) dt−
∫ 1

0

f (t) dt

∣∣∣∣ =
∣∣∣∣
∫ 1

0

(fn (t)− f (t)) d

≤
∫ 1

0

|fn (t)− f (t)| dt ≤
∫ 1

0

gn (t) dt = max
t∈[0,1]

|fn (t)− f (t)| → 0.

Therefore, by Lemma 242 we have F (fn) → F (f), as desired. �

Example 295 The function of Example 287 is continuous at each point of its domain.

In fact, given f ∈ C ([0, 1]), let {fn}n≥1 be a sequence in C ([0, 1]) such that fn → f . By

Corollary 292, to prove that F is continuous in f we have to prove that F (fn) → F (f).

We have:

d∞ (fn, f) = max
t∈[0,1]

|fn (t)− f (t)| → 0, (6.15)

which implies:

d∞ (F (fn) , F (f)) = max
t∈[0,1]

|F (fn) (t)− F (f) (t)| = max
t∈[0,1]

∣∣f2n (t)− f 2 (t)
∣∣ = max

t∈[0,1]
|(fn (t)−

≤ max
t∈[0,1]

(|fn (t)− f (t)| |fn (t) + f (t)|) ≤ max
t∈[0,1]

|fn (t)− f (t)| max
t∈[0,1]

|fn (

Let m = mint∈[0,1] f (t) and M = maxt∈[0,1] f (t). By the Weierstrass Theorem, m

and M are well defined. Without loss of generality, assume that |m| ≤ |M |, so that

− |M | ≤ m ≤ |M |.10 Let ε > 0. By (6.15), there exists n ≥ 1 such that

max
t∈[0,1]

|fn (t)− f (t)| < ε, ∀n ≥ n. (6.16)

Therefore, for each n ≥ n we have f (t)− ε < fn (t) < f (t) + ε, and consequently

fn (t) + f (t) < f (t) + ε+ f (t) ≤ 2 |M | + ε, ∀t ∈ [0, 1] ,

fn (t) + f (t) > f (t)− ε+ f (t) ≥ 2m− ε ≥ −2 |M | − ε, ∀t ∈ [0, 1]

10Remember that, given x ∈ R and c > 0, we have |x| < c if and only if −c < x < c (see Ambrosetti
and Musu, 1998, p. 32).
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that is

|fn (t) + f (t)| < 2 |M | + ε, ∀t ∈ [0, 1] .

Together with (6.16), this implies that

max
t∈[0,1]

|fn (t) + f (t)| < 2 |M | + ε and max
t∈[0,1]

|fn (t)− f (t)| < ε, ∀n ≥ n.

It follows that, for each n ≥ n,

d∞ (F (fn) , F (f)) ≤ max
t∈[0,1]

|fn (t)− f (t)| max
t∈[0,1]

|fn (t) + f (t)| ≤ ε (2 |M | + ε) = 2ε |M |+ε2.

Therefore, limn→∞ d∞ (F (fn) , F (f)) ≤ ε (2 |M | + ε). Since this holds for each ε > 0,

we conclude that limn→∞ d∞ (F (fn) , F (f)) = 0. By Lemma 242, we have F (fn) →
F (f), as desired. �

Example 296 Given t0 ∈ (0, 1), let F : A ⊆ C ([0, 1]) → R be defined by

F (f) = f ′ (t0) , ∀f ∈ C ([0, 1]) .

The domain A consists of the functions in C ([0, 1]) that are differentiable at x0. We

prove that the function F is discontinuous at each point of its domain. For each n ≥ 1,

let fn ∈ C ([0, 1]) be such that f ′n (t0) = 1 and maxt∈[0,1] f (t) < 1/n. For example, let

fn (t) =





0 if 0 ≤ t ≤ t0 − 1
4n

t− t0 + ε
4n

if t0 − 1
4n
< t ≤ t0 + 1

4n
1
2n

if t0 + 1
4n
< t ≤ 1

Given f ∈ A, for each n ≥ 1 set gn = f + fn. We have gn ∈ C ([0, 1]) and

d∞ (gn, f) = max
t∈[0,1]

|(f + fn − f) (t)| = max
t∈[0,1]

|fn (t)| < 1/n −→ 0, (6.17)

and

F (gn) = (f + fn)
′ (t0) = f ′ (t0) + f ′n (t0) = F (f) + 1, ∀n ≥ 1. (6.18)

Therefore, (6.18) shows that the sequence {F (gn)}n≥1 does not converge to F (f),

though by (6.17) we have gn → f . It follows that, by Corollary 292, F is not continuous

at f . Since f was an arbitrary function in A, we conclude that F is not continuous at

any point of A. �

We conclude this subsection by showing that in compact metric spaces continuity

takes a stronger form. Given two metric spaces X and Y , a function f : X → Y is

called uniformly continuous if for each ε > 0 there exists δε > 0 such that

dY (f (x1) , f (x2)) < ε
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for each x1, x2 ∈ X with dX (x1, x2) < δε.

With respect to simple continuity, uniform continuity is not linked to a point x0
but it holds on the whole space. In particular, for a fixed ε, the quantity δε must work

for all points of the space, and not only for a given x0. It is therefore a substantially

stronger notion of continuity, which the next result (whose proof we omit) shows to be

automatically satisfied in compact metric spaces.

Theorem 297 Let X and Y be two metric spaces, with X compact. Each function

f : X → Y continuous on X is uniformly continuous.

6.5.3 Intermezzo: Images and Counterimages

In the sequel we will need some properties of images and counterimages. Recall that,

given a function f : X → Y , the counterimage of E ⊆ Y is given by

f−1 (E) = {x ∈ X : f (x) ∈ E} ,

while the image of A ⊆ X is

f (A) = {y ∈ Y : f (x) = y for some x ∈ A} .

Recall also that f is surjective if f (X) = Y and is injective if f (x1) 	= f (x2) for each

x1, x2 ∈ X with x1 	= x2. A function that is both injective and surjective is called

bijective.

It is immediate to see that

f (A1) ⊆ f (A2) if A1 ⊆ A2 ⊆ X and f−1 (E1) ⊆ f−1 (E2) if E1 ⊆ E2 ⊆ Y.

The next result, whose proof is left to the reader, collects other important properties

of images and counterimages. Properties (i) and (v) are especially important as they

show that counterimages are well behaved with respect to the set operations, that is,

unions, intersections, and complements.

Lemma 298 Let f : X → Y be a function between two sets X and Y . We have:

(i) f−1
(⋃

i∈I
Ei
)

=
⋃

i∈I
f−1 (Ei) and f−1

(⋂
i∈I
Ei
)

=
⋂

i∈I
f−1 (Ei), where Ei ⊆

Y for each i ∈ I.

(ii) f
(⋂

i∈I Ai
)
⊆ ⋂

i∈I f (Ai) and f
(⋃

i∈I
Ai
)

=
⋃

i∈I
f (Ai), where Ai ⊆ X for

each i ∈ I.

(iii) f (f−1 (E)) ⊆ E for each E ⊆ Y ; the equality holds if f is surjective.

(iv) f−1 (f (A)) ⊇ A for each A ⊆ X; the equality holds if f is injective.

(v) f−1 (Ec) = (f−1 (E))
c
for each E ⊆ Y .
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6.5.4 Continuity and Topology

We now give a fundamental characterization of continuous functions. For simplicity

we consider the case of functions having as domain the whole space.

Theorem 299 Let (X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y

is continuous if and only if the counterimage f−1 (G) of each open set G of Y is itself

an open set of X.

Proof Suppose that f is continuous. Let G be an open set of Y , and let x0 ∈ f−1 (G).

We prove that x0 is an interior point of f−1 (G). Since f (x0) ∈ G and the set G is

open, there exists a neighborhood Bε (f (x0)) of f (x0) such that Bε (f (x0)) ⊆ G. Since

f is continuous at x0, there exists δε such that f (x) ∈ Bε (f (x0)) for each x ∈ Bδε (x0).
Being Bε (f (x0)) ⊆ G, we have therefore f (x) ∈ G for each x ∈ Bδε (x0), which implies

Bδε (x0) ⊆ f−1 (G). This proves that x0 is an interior point of f−1 (G), as desired.

Suppose that, for each open set G of Y , the set f−1 (G) is itself an open set of

X. We prove that, taken any x0 ∈ X, f is continuous at x0. Let V be an open set

containing f (x0). Since V is open, f−1 (V ) is itself an open set. Since x0 ∈ f−1 (V ),

there exists an open set G (for instance, a neighborhood) of x0 such that G ⊆ f−1 (V ),

and therefore such that f (x) ∈ V for each x ∈ G. We conclude that f is continuous

at x0. �

Thanks to Lemma 298-(v), we have the following version of Theorem 299 for closed

sets: a function f : X → Y is continuous if and only if the counterimage f−1 (F ) of

each closed set F of Y is itself a closed set of X.

Example 300 Consider a real valued function f : X → R defined on a metric space

X. Denote by (f < t) the set {x ∈ X : f (x) < t}, that is, (f < t) = f−1 ((−∞, t)). If

f is continuous, then by Theorem 299 we have that (f < t) is an open set in X because

it is the counterimage of the open set (−∞, t) of R. In a similar way, we prove that

also (f > t) is an open set in X, while (f ≤ t) and (f ≥ t) are closed sets in X. Finally,

(f = t) is a closed set in X because we have (f = t) = f−1 ({t}) and the singleton {t}
is a closed set of R. �

There is no, instead, counterpart of Theorem 299 for images: given a continuous

function f , in general the image f (G) of an open set is not open and the image f (F )

of a closed set is not closed.

Example 301 Let f : R → R be defined as f (x) = x2. For G = (−1, 1) we have

f (G) = [0, 1), which is not open. �
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Example 302 Let f : R→ R be defined as f (x) = ex. The real line R is a closed set

(it is also an open set, but here this is not of interest), and we have f (R) = (0,+∞),

which is not closed. �

In the last example the closed set considered, i.e. R, is not bounded and hence it is

not a compact set. This does not happen by chance: the next important result shows

that when a closed set is compact, its image is then compact.

Theorem 303 Let (X, dX) and (Y, dY ) be two metric spaces. If a function f : A ⊆
X → Y is continuous on a compact subset K ⊆ A of X, then the image f (K) of K is

a compact set of Y .

Proof Given any sequence {yn}n ⊆ f (K), by Theorem 275 to show that f (K) is

compact is enough to show that there is subsequence {ynk}k that converges to some

y ∈ f (K). Since {yn}n ⊆ f (K), by definition there is a sequence {xn}n ⊆ K such that

f (xn) = yn for each n. Since K is compact, by Theorem 275 there is a subsequence

{xnk}k that converges to some x ∈ K. Since f is continuous at x, we have limk f (xnk) =

f (x). Hence, by setting y = f (x), we have that {ynk}k converges to y ∈ f (K), as

desired. �

The next section will show that the classic Weierstrass Theorem is a consequence

of this theorem (Exercise 13.0.45 gives another proof of this important result).

We conclude this section with some simple but useful results on continuity, whose

simple proof we omit. For real valued functions, by Proposition 249 we have:

Proposition 304 Let f : A ⊆ X → R and g : A ⊆ X → R be functions defined on a

subset A of a metric space X. If both f and g are continuous at a point x0 ∈ A, we

have:

(i) αf + βg is continuous at x0 for each α, β ∈ R;

(ii) fg is continuous at x0;

(iii) f/g is continuous at x0, when g (x0) 	= 0.

This shows, inter alia, that the set of the functions that are continuous at a point

x0 ∈ X is a vector space.

Consider now the functions f : A ⊆ Rn → Rm. Recall from Subsection 4.4.1

that these functions can be written as f = (f1, ...fm) : A ⊆ Rn → Rm, where each

fi : A ⊆ Rn → R, for i = 1, ...,m, is a real valued function on A.
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Proposition 305 A function f = (f1, ...fn) : A ⊆ Rn → Rm is continuous at x ∈ A

if and only if each function fi : A ⊆ Rn → R, for i = 1, ...,m, is itself continuous at x.

Example 306 Let F = (F1, F2) : R2 → R2 be defined as in Example 285, that is

F1 (x) =

{
x1 + x2 + 1 x 	= (0, 0)

0 x = (0, 0)
and F2 (x) = 1 + x21x2, ∀x ∈ R2.

The function F2 : R2 → R is continuous on R2, while the function F1 : R2 → R

is continuous at all the points of R2, except the origin. By Proposition 305, F is

therefore continuous at all the points of R2 except the origin. This is not by chance:

in Example 285 we verified that limx→(0,0) F (x) 	= F (0, 0). �

Given two functions, f : A ⊆ Rn → Rm and g : A ⊆ Rn → Rm, the function

fg : A ⊆ Rn → R is given by

(fg) (x) = f (x) · g (x) , ∀x ∈ A,

that is, it is given by the inner product of the two vectors f (x) and g (x) of Rm. It is

easy to see that if f and g are continuous at a point x ∈ A, then also the functions fg

and f + g are continuous at x. In other words, mutatis mutandis, points (i) and (ii) of

Proposition 304 hold also for functions with values in Rm.

6.6 Weierstrass Theorem

In this section we study the famous Weierstrass Theorem, and some of its variants.

First of all we state and prove the classic version of this result, whose proof is a

consequence of the Theorem 303 just seen.

Theorem 307 (Weierstrass) Let f : A ⊆ X → R be a function continuous on a

compact subset K ⊆ A of X. Then, both argminx∈K f (x) and argmaxx∈K f (x) are

nonempty and compact.

In other words, f has both global minima and maxima in K, that is, there exist

x1, x2 ∈ K such that

f (x1) = max
x∈K

f (x) and f (x2) = min
x∈K

f (x) .

The version of Weierstrass theorem for functions f : [a, b] → R studied in basic Calculus

is therefore a very special case of this general result.

Proof By Theorem 303, f (K) is a compact set in R. By the Heine-Borel Theorem

272, f (K) is therefore a closed and bounded set of R. Since f (K) is bounded, by the
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completeness of R there exist sup f (K) and inf f (K). On the other hand, sup f (K)

and inf f (K) belong to the closure of f (K). Consider for instance sup f (K). For

each neighborhood B 1

n
(sup f (K)) there exists a point of f (K), denoted xn, such that

xn > sup f (K) − 1/n. The sequence {xn}n thus constructed converges to sup f (K)

and so, by Theorem 254, sup f (K) ∈ f (K). A similar argument shows that also

inf f (K) ∈ f (K). Since f (K) is closed, by Theorem 235 we have f (K) = f (K).

Hence, both sup f (K) and inf f (K) belong to f (K), that is, sup f (K) = max f (K)

and inf f (K) = min f (K).

It remains to show that argmaxx∈K f (x) is a closed (and so compact) subset of K.

Let {xn}n ⊆ argmaxx∈K f (x) be such that xn → x0 ∈ X. Since K is compact (and

so closed), x0 ∈ K. By Corollary 255, we need to show that x0 ∈ argmaxx∈K f (x).

Let x ∈ K. We have f (xn) ≥ f (x) for each n ≥ 1, and so, f being continuous,

f (x0) = limn f (xn) ≥ f (x). Since x is an arbitrary element of K, we conclude that

x0 ∈ argmaxx∈K f (x), as desired. A similar argument shows that also argminx∈K f (x)

is compact. �

The Weierstrass Theorem ensures the existence of both maxima and minima. In

some cases, however, we are only interested in the existence of either maxima or minima.

For example, in many economic applications it is crucial the existence of maxima, while

the possible existence also of minima is of little or no interest at all.

For these reasons we now introduce a weakened version of continuity, with the ob-

jective of establishing a version of the Weierstrass Theorem that, under weaker hypo-

thesis, guarantees the existence of maxima, without considering the possible existence

of minima.

First of all, recall that a function f : A ⊆ X → R is continuous at a point x0 ∈ A

when, for each ε > 0, there exists δε > 0 such that f (x0) − ε < f (x) < f (x0) + ε for

each x ∈ A with dX (x, x0) < δε.

If in this definition we keep the second inequality, we have the following weakening

of continuity.

Definition 308 A function f : A ⊆ X → R is said to be upper semicontinuous at

x0 ∈ A if for each ε > 0 there exists δε > 0 such that

f (x) < f (x0) + ε

for each x ∈ A with dX (x, x0) < δε.

A function that is upper semicontinuous at each point of a set E is called upper

semicontinuous on E. The function is called upper semicontinuous when it is upper

semicontinuous at all the points of its domain.
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The next result is the version of Corollary 292 for semicontinuous functions, and it

helps to understand the importance of this weakening of the notion of continuity.

Proposition 309 A function f : A ⊆ X → R is upper semicontinuous at the point

x0 ∈ X if and only if lim supn f (xn) ≤ f (x0) for each sequence {xn}n ⊆ A such that

xn → x0.

Proof Let f be upper semicontinuous at the point x0. Let {xn}n be such that xn → x0.

By Definition 308, fixed ε > 0 we have f (xn) < f (x0) + ε for each n. Therefore,

lim supn f (xn) ≤ f (x0) + ε. Since this is true for each ε > 0, we conclude that

lim supn f (xn) ≤ f (x0).

Suppose now that lim supn f (xn) ≤ f (x0) for each sequence {xn}n such that xn →
x0. Let ε > 0 and suppose, by contradiction, that f is not upper semicontinuous at

x0. Therefore, for each δ > 0 there exists xδ such that dX (xδ, x0) < δ and f (xδ) ≥
f (x0) + ε. Setting δ = 1/n, it follows that for each n there exists xn such that

dX (xn, x0) < 1/n and f (xn) ≥ f (x0) + ε. In this way we can construct a sequence

{xn}n such that xn → x0 and f (xn) ≥ f (x0)+ε for each n. Therefore, lim infn f (xn) ≥
f (x0) + ε, which contradicts lim supn f (xn) ≤ f (x0) and thus proves that f is upper

semicontinuous at x0. �

Example 310 The function f : [0, 1] → R defined by

f (x) =

{
1 if x = 0

x if x ∈ (0, 1]

is upper semicontinuous. In fact, it is continuous at each x ∈ (0, 1]. As to x = 0,

consider {xn}n≥1 ⊆ [0, 1] with xn → 0. For each such xn we have f (xn) ≤ 1 and

therefore lim supn f (xn) ≤ 1 = f (0). By Proposition 309, f is upper semicontinuous

also at 0. �

>From Example 300 we know that the upper level sets (f ≥ t) of continuous func-

tions are closed. Next result shows how this property is still true for upper semicon-

tinuous functions and actually characterizes this weakened notion of continuity.

Proposition 311 A function f : A ⊆ X → R is upper semicontinuous on a closed

subset B ⊆ A of X only if the sets (f ≥ t)∩B are closed for each t ∈ R. The converse
is true when A = B.

Proof For simplicity, assume A = X (see Exercise 13.0.46 for the general case). Let

f be upper semicontinuous on B. Fixed t ∈ R, we want to show that (f ≥ t) ∩ B is

closed. Let {xn}n ⊆ (f ≥ t) ∩ B with xn → x ∈ X. By Corollary 255, we have to
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show that x ∈ (f ≥ t) ∩ B. First observe that x ∈ B since B is closed. Moreover,

f (xn) ≥ t for each n ≥ 1. Since f is upper semicontinuous, by Proposition 309 we

have lim supn f (xn) ≤ f (x). Therefore t ≤ f (x), i.e, x ∈ (f ≥ t). We conclude that

x ∈ (f ≥ t) ∩B, as desired.

Viceversa, suppose A = B and that the sets (f ≥ t) ∩ A are closed for each t ∈
R. Fix x ∈ A and let {xn}n ⊆ A be such that xn → x. We want to show that

lim supn f (xn) ≤ f (x). Assume per contra that lim supn f (xn) > f (x). Let α ∈ R
be such that lim supn f (xn) > α > f (x). There exists a subsequence {xnk}k such

that f (xnk) ≥ α for each k. On the other hand xn → x implies xnk → x, and

therefore by Corollary 255 we have x ∈ (f ≥ α) ∩ A since (f ≥ α) ∩ A is closed. But,

this implies f (x) ≥ α > f (x), and this contradiction allows us to conclude that

lim supn f (xn) ≤ f (x). �

Example 312 Given a closed subset F of a metric spaceX, let 1F : X → R be defined

by

1F (x) =

{
1 if x ∈ F
0 if x /∈ F .

The function 1F is upper semicontinuous. In fact,

(1F ≥ t) =





X if t ≤ 0

F if t ∈ (0, 1]

∅ if t > 1

and therefore the sets (1F ≥ t) are closed for each t ∈ R. �

We now introduce a last notion.

Definition 313 A function f : A ⊆ X → R is said to be coercive on a subset B if

there exists a scalar t ∈ R such that (f ≥ t) ∩ B is compact and nonempty.

A function f : A ⊆ X → R is called coercive when B = A, i.e., when B is the

domain of the function.11

Example 314 Let f : R→ R be defined as f (x) = 1− x2. This function is coercive;

in fact:

(f ≥ t) =

{ [
−
√

1− t,
√

1− t
]

if t ≤ 1

∅ if t > 1

and therefore (f ≥ t) is compact and nonempty for each t ≤ 1. �

11Notice that in this definition B is not required to be a subset of the domain A. This is without
any loss of generality since (f ≥ t)∩B ⊆ A, and so only the points in A∩B matter for the definition.



6.6. WEIERSTRASS THEOREM 175

Example 315 Let f : R → R be defined as f (x) = e−|x|. This function is coercive;

in fact:

(f ≥ t) =





R if t ≤ 0

[lg t,− lg t] if t ∈ (0, 1]

∅ if t > 1

and therefore (f ≥ t) is compact and nonempty for each t ∈ (0, 1]. �

Example 316 Let f : R→ R be defined by

f (x) =

{
lg (|x|) if x 	= 0

0 if x = 0

Set B = [−1, 1]. We have

(f ≥ t) =

{
(−∞,−et] ∪ [et,+∞) ∪ {0} if t ≤ 0

(−∞,−et] ∪ [et,+∞) if t > 0
,

and therefore

(f ≥ t) ∩ B =

{
∅ if t > 0

[−1,−et] ∪ [et, 1] ∪ {0} if t ≤ 0
.

This function is therefore coercive on B (observe that B is not a compact). �

We can now state the following fundamental version of the Weierstrass Theorem,

in which only the existence of maxima is guaranteed.

Theorem 317 Let f : A ⊆ X → R be a function that is both upper semicontinuous

and coercive on a subset B ⊆ A of X. Then, argmaxx∈B f (x) is nonempty and

compact.

In other words, f has at least a point of maximum in B, that is, there exists x̂ ∈ B
such that

f (x̂) = max
x∈B

f (x) .

Proof For simplicity, assume A = X. Since f is coercive on B, there exists t ∈ R such

that
(
f ≥ t

)
∩ B is compact and nonempty. Taking t ≥ t, we have (f ≥ t) ⊆

(
f ≥ t

)
,

and therefore (f ≥ t) ∩ B ⊆
(
f ≥ t

)
∩ B. We prove that also the set (f ≥ t) ∩ B

is compact. By Proposition 274, it is enough to prove that (f ≥ t) ∩ B is closed.

Let {xn}n ⊆ (f ≥ t) ∩ B with xn → x ∈ X. By Corollary 255, we have to prove

that x ∈ (f ≥ t′) ∩ B. Since {xn}n ⊆
(
f ≥ t

)
∩ B and this set is closed, we have

x ∈
(
f ≥ t

)
∩ B thanks to Corollary 255. Therefore, x ∈ B. On the other hand,

{xn}n ⊆ (f ≥ t) implies F (xn) ≥ t for each n. Since f is upper semicontinuous on B,
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it follows that F (x) ≥ lim supn F (xn) ≥ t, and therefore x ∈ (f ≥ t). This proves that

x ∈ (f ≥ t) ∩B, which allows us to conclude that (f ≥ t) ∩B is compact.

Set Kt = (f ≥ t) ∩ B for each t ≥ t, so that {Kt}t≥t is a collection of compact

sets. We have Kt ⊆ Kt′ if t ≥ t′, and therefore given any finite collection {Kti}ni=1 of
{Kt}t∈R, with t1 < t2 < · · · < tn, we have

n⋂

i=1

Kti = Ktn . (6.19)

We begin by observing that supx∈B f (x) exists. In fact, suppose that this is not

true, so that Kt 	= ∅ for each t ≥ t. Expression (6.19) implies that for each finite

subcollection {Kti}i∈J of {Kt}t≥t we have
⋂

i∈J
Ki 	= ∅. By Lemma 279, we have

⋂
t≥t
Kt 	= ∅. Let x ∈

⋂
t≥t
Kt. We have f (x) ≥ t for each t ∈ R, and therefore

f (x) = +∞, which contradicts the fact that f is real valued. We conclude that

supx∈B f (x) exists.

Set now α = supx∈B f (x). Clearly, α ≥ t because by hypothesis Kt 	= ∅. If α = t,

then there exists x ∈ Kt such that f (x) = α, which proves the statement.

Suppose on the contrary that α > t, so that Kt 	= ∅ for each t if t ≤ t < α. Also

here (6.19) implies that for each finite subcollection {Kti}i∈J of {Kt}t≤t<α we have⋂
i∈J

Ki 	= ∅. By Lemma 279, we therefore have
⋂

t≤t<α
Kt 	= ∅. Let x ∈

⋂
t≤t<α

Kt.

We have f (x) ≥ t for each t < α, and therefore f (x) ≥ α. On the other hand, by the

definition of supremum we cannot have f (x) > α. It follows that f (x) = α, and so x

is a point of maximum.

It remains to show that argmaxx∈B f (x) is compact. It is enough to show that

argmaxx∈B f (x) is closed since it is a subset of the compact set
(
f ≥ t

)
∩ B. Let

{xn}n ⊆ argmaxx∈B f (x) be such that xn → x0 ∈ X. By Corollary 255, we need

to show that x0 ∈ argmaxx∈B f (x). Since
(
f ≥ t

)
∩ B is compact, we have x0 ∈(

f ≥ t
)
∩B, i.e., x0 ∈ B. Now, let x ∈ B. We have f (xn) ≥ f (x) for each n ≥ 1, and

so, f being upper continuous, f (x0) ≥ lim supn f (xn) ≥ f (x). Since x is an arbitrary

element of B, we conclude that x0 ∈ argmaxx∈B f (x), as desired. �

Example 318 By Theorem 317, the function of Example 315 has at least one point of

maximum in R. Notice that, instead, the function does not have points of minimum;

on the other hand, here the Weierstrass Theorem does not hold because R is not a

compact set. �

Example 319 Again by Theorem 317, also the function of Example 316 has a point

of maximum on the set B. It is easy to see that the function does not have points
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of minimum on B (here Weierstrass Theorem cannot be applied because B is not

compact). �

In conclusion, Theorem 317 only ensures the existence of maxima, but it has the

advantage of using hypotheses that, as shown by Examples 316 and 322, are substan-

tially weaker than those of the Weierstrass Theorem. As a result, Theorem 317 has a

much greater scope than Weierstrass Theorem and it plays a key role in optimization

problems that are only interested in the existence of maxima.

That said, even a very general Theorem 317 gives only a sufficient condition of

optimality. It is easy to give examples where there exist points of global maximum

even though the hypotheses of Theorem 317 do not hold.

Example 320 Let f : Rn → R be a constant function, say f (x) = 1 for each x ∈ Rn.
All points of Rn are trivially points of global maximum (and of minimum as well). This

function is continuous, but it is not coercive, and therefore the hypotheses of Theorem

317 are not satisfied. �

The next corollary is a simple consequence of Theorem 317 and shows that coer-

citivity is implied by the upper semicontinuity when the set in which we search the

point of maximum is compact. This version of Theorem 317 is especially suited for a

comparison with the Weierstrass Theorem, since it holds under the same hypotheses,

except upper semicontinuity in place of continuity.

Corollary 321 Let f : A ⊆ X → R be a function that is upper semicontinuous on a

compact subset K ⊆ A of X. Then, argmaxx∈K f (x) is nonempty and compact.

That is, f has at least a maximum in K, that is, there exists x̂ ∈ K such that

f (x̂) = max
x∈K

f (x) .

Proof By Proposition 311, (f ≥ t) ∩ K is closed for each t ∈ R, and therefore is

compact by Proposition 274. Hence, f is coercive on K. �

Example 322 Consider the upper semicontinuous function f : [0, 1] → R seen in

Example 310, given by

f (x) =

{
1 if x = 0

x if x ∈ (0, 1]
.

By Corollary 321, this function has at least a point of maximum in its domain [0, 1].

We can verify that this function does not have points of minimum in its domain (here

the Weierstrass Theorem cannot be applied because the function is not continuous).�
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For functions defined on Rn we can give a condition that, together with the upper

continuity, guarantees coercitivity (and that therefore allows to apply Theorem 317).

Proposition 323 Let f : Rn → R be an upper semicontinuous function. The sets

(f ≥ t) are compact for each t ∈ R (and so f is coercive) if f (x) → −∞ when

‖x‖ → +∞.

Proof Suppose to have f (x) → −∞ when ‖x‖ → +∞. We want to prove that the

sets (f ≥ t) are compact for each t ∈ R. Given t ∈ R, the set (f ≥ t) is closed since

f is upper semicontinuous. It remains to verify its boundedness. By hypothesis, there

exists k > 0 such that ‖x‖ ≥ k implies f (x) ≤ t. Therefore, we have x ∈ (f ≥ t) only

if ‖x‖ < k for a suitable k. Hence, (f ≥ t) ⊆ Bk (0), and the set (f ≥ t) is therefore

bounded. Since it is also closed, it follows that it is compact. �

The condition f (x) → −∞ when ‖x‖ → +∞ can sometimes be not easy to verify.

For this reason next we give a stronger condition, which is however easier to verify.

Corollary 324 Let f : Rn → R be an upper semicontinuous function. The sets (f ≥ t)

are compact for each t ∈ R (and f is therefore coercive) if there exist α > 0 and β ∈ R
such that f (x) ≤ β − α ‖x‖.

Proof Clearly f (x) ≤ β − α ‖x‖ implies f (x) → −∞ when ‖x‖ → +∞. �

Example 325 Let f : Rn → R be defined as f (x) = 1 − ‖x‖ for each x ∈ Rn. The

function f is continuous and, by Corollary 324, is also coercive. By Theorem 317 the

function has at least one point of maximum in Rn. On the other hand, it is easy to see

how this function does not have points of minimum in Rn (the Weierstrass Theorem

here does not hold since Rn is not compact). �

We conclude by observing that for the points of minimum hold results that are

specular relative to those that we have established here. In this case the lower level

sets (f ≤ t) become relevant; in particular, it is easy to see that f admits at least a

point of minimum in B provided the sets (f ≤ t) ∩ B are compact for each t ∈ R.



Chapter 7

Normed Vector Spaces

7.1 Norms and Metrics

In this chapter we go back to vector spaces and we show how it is possible to introduce

in a natural way a topological structure on them.

In Calculus is sometimes studied the so-called Euclidean norm ‖·‖2 of Rn, defined
as ‖x‖2 =

√∑n
i=1 x

2
i for each x ∈ Rn. This norm satisfies the following properties:1

• ‖x‖2 ≥ 0 for each x ∈ Rn, and ‖x‖2 = 0 if and only if x = 0;

• ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 for each x, y ∈ Rn;

• ‖αx‖2 = |α| ‖x‖2 for each α ∈ R and each x ∈ Rn.

For each x ∈ Rn we have ‖x‖2 = d2 (x,0) and, more generally, for each x, y ∈ Rn we
have d2 (x, y) = ‖x− y‖2. We can therefore see the Euclidean norm as the primitive

notion, in whose terms it is then possible to define the Euclidean distance. This is

actually the approach sometimes followed in Calculus.2

Since Rn is a vector space, all this suggests a possible way to introduce distances

in vector spaces. This motivates the next definition.

Definition 326 Given a vector space V , a functional ‖·‖ : V → R is said to be a

norm if:

(i) ‖v‖ ≥ 0 for each v ∈ V , and ‖v‖ = 0 if and only if v = 0;

(ii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for each v, w ∈ V ;

(iii) ‖αv‖ = |α| ‖v‖ for each α ∈ R and each v ∈ V .
1See Ambrosetti and Musu (1988) pp. 56 and 57.
2See Chapter III of Ambrosetti and Musu (1988).

179
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The Euclidean norm is an example of norm in the vector space Rn. We see another

example.

Example 327 In the vector space C ([0, 1]), the function ‖·‖∞ : C ([0, 1]) → R defined

by

‖f‖∞ = max
t∈[0,1]

|f (t)| , ∀f ∈ C ([0, 1]) ,

is a norm. This can be easily checked by recalling what we did in Example 206. �

Definition 328 A vector space V endowed with a norm ‖·‖ is called a normed vector
space.

The spaces (Rn, ‖·‖2) and (C ([0, 1]) , ‖·‖∞) are examples of normed vector spaces.

The next result follows immediately from the properties of the norm and shows how

each normed space has a natural metric structure.

Lemma 329 Let (V, ‖·‖) be a normed vector space. The function d : V × V → R

defined by

d (v,w) = ‖v − w‖ , ∀v, w ∈ V

is a distance.

Each normed space thus becomes a metric space and this generalizes the procedure

seen in earlier courses for the Euclidean norm and distance.

Example 330 In the vector space Rn, the function ‖·‖1 : Rn → R defined by:

‖x‖1 =
n∑

i=1

|xi| , ∀x ∈ Rn,

is a norm. The normed vector space (Rn, ‖·‖1) induces the metric space (Rn, d1). �

Example 331 In the vector space Rn, the function ‖·‖∞ : Rn → R defined by:

‖x‖∞ = max
i=1,...,n

|xi| , ∀x ∈ Rn,

is a norm. The normed vector space (Rn, ‖·‖∞) induces the metric space (Rn, d∞). �

Example 332 In the vector space C ([0, 1]), the function ‖·‖1 : C ([0, 1]) → R defined

by:

‖f‖1 =

∫ 1

0

|f (t)| dt, ∀f ∈ C ([0, 1]) ,

is a norm. The normed vector space (C ([0, 1]) , ‖·‖1) induces the metric space (C ([0, 1]) , d1).

�
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Since a normed vector space have a natural metric structure, we can define in them

all the topological notions we studied in the previous chapter. For example, given a

normed vector space (V, ‖·‖), a neighborhood Bε (v) of a vector v of V is given by:

Bε (v) = {w ∈ V : ‖v − w‖ < ε} .
Vectors can thus viewed as interior points or boundary points of a certain set A of

V , and so on. In particular, we have sets of V that are open, sets that are closed, and

sets that are compact.

The neighborhoods Bε (0) of 0 are particularly important. Among them the one

with radius 1, i.e.,

B1 (0) = {v ∈ V : ‖v‖ < 1} ,
is called the open unit ball, while its closure:

B1 (0) = {v ∈ V : ‖v‖ ≤ 1} ,

is called the closed unit ball. In view of its importance, in what follows we will of-

ten denote the closed unit ball B1 (0) by BV . Also important is the unit sphere

B1 (0) \B1 (0) = {v ∈ V : ‖v‖ = 1}, which will be denoted by SV .

Finally, notice that in this context a set A is bounded when there exists ε > 0 such

that A ⊆ Bε (0).

As to convergence, a sequence of vectors {vn}n≥1 converges to a vector v if for each
ε > 0 there exists n ≥ 1 such that:

‖vn − v‖ < ε, ∀n ≥ n.

In particular, by Lemma 242 we have vn → v if and only if ‖vn − v‖ → 0, and this is

a useful criterion to check the convergence of a sequence of vectors.

Notice that vn → v if and only if vn − v → 0. More generally, it is easy to see

that Proposition 253-(i) can be extended to normed vector spaces: given two sequences

{vn}n≥1 and {wn}n≥1 of vectors of a normed vector space V , with vn → v and wn → w,

we have:

αvn + βwn → αv + βw, ∀α, β ∈ R. (7.1)

A sequence of vectors {vn}n≥1 is Cauchy if, for each ε > 0, there exists n ≥ 1 such

that:

‖vm − vn‖ < ε, ∀m,n ≥ n.

Completeness characterizes the following fundamental class of normed vector spaces.

Definition 333 A normed vector space whose metric is complete is called Banach

space.
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By Theorems 262 and 263, the normed vector spaces (Rn, ‖·‖1), (Rn, ‖·‖2), (Rn, ‖·‖∞)

and (C ([0, 1]) , ‖·‖∞) are all examples of Banach spaces.

Example 334 In light of Example 264, (C ([0, 1]) , d1) is an example of a normed

vector space that is not Banach. �

7.2 Functionals and Operators

Now that we have a topological structure in vector spaces, we can talk of continuity of

the functionals L : V → R and, more generally, of the applications T : V1 → V2.

Let (V1, ‖·‖1) and (V2, ‖·‖2) be two normed vector spaces. An application T : V1 →
V2 is continuous at v ∈ V1 if, for each ε > 0, there exists δε > 0 such that:

‖w − v‖1 < δε =⇒ ‖T (w)− T (v)‖2 < ε, ∀w ∈ V1.

Equivalently, by Corollary 292 T is continuous at v if and only if:

vn → v =⇒ T (vn) → T (v) .

Example 335 Let (V1, ‖·‖1) = (V2, ‖·‖2) = (C ([0, 1]) , ‖·‖∞), with the application

T : C ([0, 1]) → C ([0, 1]) defined as T (f) = f 2 for each f ∈ C ([0, 1]). As shown in

Example 295, the application T is continuous. Observe that this application is not

linear. �

For the special case of functionals L : V → R, where (V2, ‖·‖2) = (R, |·|), we have
continuity at v ∈ V when, for each ε > 0, there exists δε > 0 such that:

‖v − w‖ < δε =⇒ |L (w)− L (v)| < ε, ∀w ∈ V .

Example 336 Let (V, ‖·‖) = (C ([0, 1]) , ‖·‖∞), with L : C ([0, 1]) → R defined as

L (f) =
∫ 1
0
f (t) dt for each f ∈ C ([0, 1]). As shown in Example 294, the linear func-

tional L is continuous. �

Example 337 In every normed space (V, ‖·‖), the norm itself ‖·‖ : V → R is a

continuous (nonlinear) functional. In fact, the reader can verify that for each v,w ∈ V
we have:

|‖v‖ − ‖w‖| ≤ ‖v − w‖ , ∀v, w ∈ V (7.2)

If {vn}n≥1 is a sequence in V such that vn → v, then:

|‖vn‖ − ‖v‖| ≤ ‖vn − v‖ → 0,

and therefore ‖vn‖ → ‖v‖. In conclusion:

vn → v =⇒ ‖vn‖ → ‖v‖ , (7.3)

and ‖·‖ : V → R is therefore a continuous functional. �
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Linear applications play a central role in the theory of normed spaces. We start

therefore by studying their continuity properties.

Proposition 338 A linear application T : V1 → V2 between normed vector spaces is

continuous at a point v ∈ V1 if and only if it is continuous on V1.

We therefore have a first remarkable property: for linear applications, the continuity

at a point guarantees automatically the continuity on the entire space. To verify

whether a linear application is continuous it is therefore sufficient to verify that it is

continuous at some point of V1 (for example at the neutral element 0).3

Proof. We prove the “only if,” the “if” being obvious. Let T be continuous at a vector

v0 ∈ V . We prove that it is continuous at any other vector v ∈ V . Let {vn}n≥1 be a

sequence in V such that vn → v. Therefore, vn−v → 0, and, by (7.1), vn−v+v0 → v0.

Being T continuous at v0, we have T (vn − v + v0) → T (v0). For the linearity of T ,

this implies:

T (vn)− T (v) + T (v0) → T (v0) ,

and hence T (vn)− T (v) → 0. By Corollary 292, T is continuous at v. �

We now give a characterization of the continuity of linear applications. To do this,

we need the following definition.

Definition 339 A linear application T : V1 → V2 between normed vector spaces is said

to be bounded if there exists a scalar K > 0 such that:

‖T (v)‖2 ≤ K ‖v‖1 , ∀v ∈ V1. (7.4)

In particular, a linear functional L : V → R is bounded if there exists a scalar

K > 0 such that |T (v)| ≤ K ‖v‖ for each v ∈ V .
This definition of boundedness is a bit different from the usual one for functions.

Recall from Calculus that a function f : A ⊆ Rn → R is bounded when there exists

a scalar M > 0 such that |f (x)| ≤ M for each x ∈ A; i.e. if the image f (A) is a

bounded set in R.4 In the case of applications, this definition is generalized by saying

that an application T : V1 → V2 is bounded if there exists a scalar M > 0 such that

‖T (v)‖2 ≤ M for each v ∈ V1; i.e., recalling (3.13), if the image Im (T ) of T is a

bounded set in V2.

3For simplicity, in the following we denote by 0 both the neutral element of V1 and that of V2. The
context should clarify to which neutral element we refer. In the same way, the symbol of convergence
→ is used both for the convergence in V1 and in V2.

4See Ambrosetti and Musu (1988) p. 84.
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The next result clarifies the relationships between the notion of boundedness for

linear applications introduced in Definition 339 and the usual notion of boundedness

for functions just recalled.

Lemma 340 A linear application T : V1 → V2 between normed vector spaces is

bounded if and only if the image T (BV1) of the closed unit ball of V1 is a bounded

set in V2.

A linear application is therefore bounded if and only if it is bounded in the tradi-

tional sense when restricted to the closed unit ball.

Proof. Let T : V1 → V2 be bounded. By (7.4) we have ‖T (v)‖2 ≤ K for each v ∈ BV1 ,
and therefore:

T (BV1) = {T (v) : v ∈ BV1} ⊆ BK (0) ,

where BK (0) = {w ∈ V2 : ‖w‖2 ≤ K}. Hence, T (BV1) ⊆ BK′ (0) for any K ′ > K.

Viceversa, suppose that T (BV1) is a bounded set in V2. There exists therefore a

neighborhood BK (0) of 0 ∈ V2 such that T (BV1) ⊆ BK (0). Hence, given any K ′ > K,

we have ‖T (v)‖2 ≤ K ′ for each v ∈ BV1 . Given any vector v of V1, we have:
∥∥∥∥

v

‖v‖1

∥∥∥∥
1

=
‖v‖1
‖v‖1

= 1,

and so: ∥∥∥∥T
(

v

‖v‖1

)∥∥∥∥
2

≤ K ′, ∀v ∈ V1,

which in turn implies (7.4) for v 	= 0. On the other hand, (7.4) clearly holds for v = 0,

and we have therefore completed the proof. �

Example 341 When V1 = V2 = R, the only applications T : R → R have the form

T (x) = αx with α ∈ R. The function T is obviously unbounded on the entire real line.

But, its restriction on the closed unit ball [−1, 1] is bounded because |T (x)| ≤ |α| for
each x ∈ [−1, 1]. In particular, T ([−1, 1]) ⊆ [−α,α] and therefore by Lemma 340 T is

bounded as a linear application in the sense of Definition 339. �

The next result shows why we devoted all this attention to boundedness.

Theorem 342 A linear application T : V1 → V2 between normed vector spaces is

continuous if and only if it is bounded.

Hence, continuity and boundedness are equivalent properties for linear applications.

This is another remarkable property of linear applications, which is in general altogether

false for nonlinear applications, as the example that follows the proof will show.
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Proof. We suppose that T is bounded and we prove that in this case T is continuous.

Let vn → v, that is, ‖vn − v‖1 → 0. Since T is bounded, by (7.4) we have:

‖T (vn)− T (v)‖2 = ‖T (vn − v)‖2 ≤ K ‖vn − v‖1 → 0,

and therefore T (vn) → T (v). By Corollary 292, T is continuous at v.

Let now T be continuous, and we show that this implies the boundedness of T .

Suppose that this is not true, and that there exists therefore at least a sequence {vn}n≥1
in V1 such that:

‖T (vn)‖2
‖vn‖1

→ +∞.

Set αn = ‖T (vn)‖2 / ‖vn‖1 and:

wn =
vn

αn ‖vn‖1
, ∀n ≥ 1.

Since ‖wn‖1 = 1/αn → 0, we have wn → 0. Being T continuous, it follows that

T (wn) → T (0) = 0, which implies ‖T (wn)‖2 → ‖0‖2 = 0 by (7.3). But,

‖T (wn)‖2 =

∥∥∥∥T
(

vn
αn ‖vn‖1

)∥∥∥∥
2

=
‖T (vn)‖2
αn ‖vn‖1

= 1,

which contradicts ‖T (wn)‖2 → 0. This contradiction proves that T is bounded. �

Example 343 The application T : C ([0, 1]) → C ([0, 1]) of Example 335 is continuous

and is not linear. We prove that T is not bounded. If it were so, there would exist

K > 0 such that:
∥∥f2
∥∥
∞ = ‖T (f)‖∞ ≤ K ‖f‖∞ , ∀f ∈ C ([0, 1]) .

Let fn (t) = ent for each t ∈ [0, 1]. We have ‖f2‖∞ = e2n and ‖f‖∞ = en, so that:

‖f 2n‖∞
‖fn‖∞

=
e2n

en
= en → +∞,

which proves that such a K cannot exist. It follows that T is not bounded. �

Example 344 Let (P ([−1, 1]) , ‖·‖∞) be the normed vector space of the polynomi-

als defined on the interval [−1, 1], with the norm ‖f‖∞ = maxt∈[−1,1] f (t). Let L :

P ([−1, 1]) → R be the linear functional defined as L (f) = f ′ (0) for each f ∈
P ([−1, 1]). Set fn (t) = 1 − n + nt for each t ∈ [−1, 1] and for each n ≥ 1. We have

‖fn‖∞ = 1 and |L (fn)| = |f ′ (0)| = n, and therefore:

|L (fn)|
‖fn‖∞

= n→ +∞,

which shows that L is not bounded. By Theorem 342, the functional L is not continu-

ous. Observe that the space P ([−1, 1]) is infinite dimensional, and Theorem 359 will

show that this is a crucial feature of this example. �
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We conclude the study of the continuity with a characterization that holds for linear

functionals. Recall from (3.12) that the kernel kerL of a functional L : V → R is given

by kerL = {v ∈ V : L (v) = 0}, that is, kerL = L−1 (0).

Theorem 345 A linear functional L : V → R defined on a normed vector space is

continuous if and only if kerL is a closed set.

>From Chapter 3 we know that kerL is a vector subspace of V that plays an

important role in the study of the finite dimensional vector spaces. Theorem 345 shows

how the continuity of a linear functional is reflected in a simple topological property

of such a subspace, i.e., in being a closed subset of V .

This result is false without linearity. For example, the function f : R→ R given

by:

f (x) =

{
x if x ≥ 0,

x− 1 if x < 0,

is discontinuous at 0, though ker f = f−1 (0) = {0} is a singleton, and it is therefore a

closed set.

Proof. We omit the proof of the “If.” We prove the “Only if.” Let L : V → R be a

continuous linear functional. Let {vn}n≥1 be a sequence of vectors of kerL such that

vn → v. By Corollary 255, to prove that kerL is closed is sufficient to prove that

v ∈ kerL. Being L continuous, L (vn) → L (v). On the other hand, {vn}n≥1 ⊆ kerL

implies L (vn) = 0 for each n, and we conclude that L (v) = 0. It follows that v ∈ kerL,

as desired. �

7.3 Topological Duals

In Definition 63 we defined dual space V ′ of a vector space V as the set of linear

functionals defined on V . In particular, we saw that V ′ were themselves vector spaces.

When V is normed, it becomes natural to consider the following subset of V ′.

Definition 346 The set of all linear and continuous functionals L : V → R defined

on a normed vector space V is called the topological dual space of V and is denoted

by V ∗.

To distinguish it from the topological dual V ∗, the space V ′ is often called the

algebraic dual of V . By Proposition 304-(i), given L1, L2 ∈ V ∗ we have αL1+βL2 ∈ V ∗
for each α, β ∈ R. Therefore, the topological dual V ∗ is a vector subspace of the

algebraic dual V ′.
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Similar considerations can be done for the vector space L (V1, V2) of all linear applic-

ations T : V1 → V2, introduced in Subsection 3.2. In this case we denote by B (V1, V2)

the vector subspace of L (V1, V2) formed by all linear applications T : V1 → V2 that are

continuous. Naturally, when V2 = R we have B (V,R) = V ∗.

For simplicity, forget for a moment that B (V1, V2) is a vector subspace of L (V1, V2),

and think of it as a vector space on its own. The natural question to ask is whether

B (V1, V2) is a normed vector space. To this end, we first need to introduce a norm on

B (V1, V2). By Theorem 342, we know that for each continuous application T : V1 → V2

there exists a scalar K > 0 such that ‖T (v)‖2 ≤ K ‖v‖1 for each v ∈ V1. Naturally,

there exist many scalars that satisfy this inequality; in particular, if a scalar K satisfies

it, this will be true also for all scalars K ′ such that K ′ ≥ K. Among all these scalars,

however, the one that really tells us how much the application is bounded is the smallest

among them, i.e., the smallest scalar K for which the inequality ‖T (v)‖2 ≤ K ‖v‖1
holds for each v ∈ V1. We start by seeing that such a minimum actually exists.

Lemma 347 The set:

{K ∈ R+ : ‖T (v)‖2 ≤ K ‖v‖1 , ∀v ∈ V1}

has a minimum.

Proof. Set A = {K ∈ R+ : ‖T (v)‖2 ≤ K ‖v‖1 ,∀v ∈ V1}. Since A consists of positive

numbers, is it obviously lower bounded and by the completeness of R it has infimum

inf A. On the other hand, it is easy to see that A is a closed subset of R, which implies

that inf A ∈ A (proceed, for instance, as in the proof of Theorem 307). Hence inf A is

the minimum of A. �

At this point we can introduce the norm of a linear application.

Definition 348 Given a continuous linear application T : V1 → V2 between normed

vector spaces, its norm, denoted by ‖T‖, is given by the quantity:

‖T‖ = min {K ∈ R+ : ‖T (v)‖2 ≤ K ‖v‖1 , ∀v ∈ V1} . (7.5)

Notice that, by definition, we have:

‖T (v)‖2 ≤ ‖T‖ ‖v‖1 , ∀v ∈ V1, (7.6)

an inequality that will turn out to be very useful.
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Proposition 349 Given a continuous linear application T : V1 → V2 between normed

vector spaces, the function ‖·‖ : B (V1, V2) → R defined in (7.5) is a norm. Moreover,

we have:5

‖T‖ = sup

{‖T (v)‖2
‖v‖1

: v ∈ V1 with v 	= 0
}

= sup {‖T (v)‖2 : v ∈ BV1}
= sup {‖T (v)‖2 : v ∈ SV1} .

Proof. We start by proving that ‖·‖ is a norm. Obviously, ‖T‖ ≥ 0 for each T ∈
B (V1, V2). The neutral element of the vector space B (V1, V2) is the null application

0 : V1 → V2. Clearly, ‖0‖ = 0. Moreover, if ‖T‖ = 0, by (7.6) we have ‖T (v)‖2 = 0

for each v ∈ V1. Therefore, T (v) = 0 for each v ∈ V1, that is, T is the null application.

Condition (i) of Definition 326 is therefore verified.

As to condition (ii), given any two applications T1 and T2 in B (V1, V2), for each

v ∈ V1 we have:6

‖(T1 + T2) (v)‖2 = ‖T1 (v) + T2 (v)‖2 ≤ ‖T1 (v)‖2 + ‖T2 (v)‖2
≤ ‖T1‖ ‖v‖1 + ‖T2‖ ‖v‖1 = (‖T1‖+ ‖T2‖) ‖v‖1 ,

which implies ‖T1 + T2‖ ≤ ‖T1‖+ ‖T2‖.
Finally, for each α ∈ R we have:7

‖αT (v)‖2 = |α| ‖T (v)‖2 ≤ |α| ‖T‖2 ‖v‖1 , ∀v ∈ V1,

and hence ‖αT‖ ≤ |α| ‖T‖. In conclusion, ‖·‖ is a norm.

For each v 	= 0, (7.6) implies:

‖T (v)‖2
‖v‖1

≤ ‖T‖ .

The following inequalities are therefore clear:

‖T‖ ≥ sup

{‖T (v)‖2
‖v‖1

: v ∈ V1 with v 	= 0
}

≥ sup {‖T (v)‖2 : v ∈ BV1}

≥ sup {‖T (v)‖2 : v ∈ SV1} .

To complete the proof it remains to prove that:

‖T‖ ≤ sup {‖T (v)‖2 : v ∈ SV1} . (7.7)

5SV denotes the unit sphere {v ∈ V : ‖v‖ = 1}.
6The second inequality follows from (7.6).
7The inequality follows from (7.6).
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Set α = sup {‖T (v)‖2 : v ∈ SV1}. For each v 	= 0, we have:
∥∥∥∥

v

‖v‖1

∥∥∥∥
1

=
1

‖v‖1
‖v‖1 = 1.

Hence, for each v ∈ V1 with v 	= 0 we have:
∥∥∥∥T
(

v

‖v‖1

)∥∥∥∥
2

≤ α. (7.8)

Since T (0) = 0, (7.8) implies ‖T (v)‖2 ≤ α ‖v‖1 for each v ∈ V1. Hence:

α ∈ {K ∈ R+ : ‖T (v)‖2 ≤ K ‖v‖1 , ∀v ∈ V1} ,

from which ‖T‖ ≤ α, as desired. �

By this proposition, (B (V1, V2) , ‖·‖) is therefore a normed vector space.

Example 350 Consider F : C ([0, 1]) → R defined as F (f) =
∫ 1
0
f (t) dt for each f ∈

C ([0, 1]). It is a linear functional defined on the normed vector space (C ([0, 1]) , ‖·‖∞),

and it is continuous for what seen in Example 294. Let us compute its norm ‖F‖. Since
|f (t)| ≤ ‖f‖∞ for each t ∈ [0, 1], we have:

|F (f)| =
∣∣∣∣
∫ 1

0

f (t) dt

∣∣∣∣ ≤
∫ 1

0

|f (t)| dt ≤ ‖f‖∞ ,

which implies:

‖F‖ = sup {|F (f)| : ‖f‖∞ = 1} ≤ ‖f‖∞ = 1.

On the other hand, consider the constant function 1[0,1] : [0, 1] → R such that 1[0,1] (t) =

1 for each t ∈ [0, 1]. We have
∥∥1[0,1]

∥∥
∞ = 1 and:

|F (g)| =
∣∣∣∣
∫ 1

0

1[0,1] (t) dt

∣∣∣∣ = 1.

Hence, 1 = |F (g)| ≤ ‖F‖ ≤ 1, and we conclude that ‖F‖ = 1. �

Example 351 Let (V1, ‖·‖1) = (V2, ‖·‖2) = (C ([0, 1]) , ‖·‖∞), and define the applica-

tion T : C ([0, 1]) → C ([0, 1]) as:

T (f) (s) =

∫ 1

0

(h1 (t) + h2 (s)) f (t) dt, ∀s ∈ [0, 1] ,

for each f ∈ C ([0, 1]), where h1 and h2 are any two positive functions in C ([0, 1]). For

example, if f (t) = t, h1 (t) = et and h2 (s) = s2, then:8

T (f) (s) =

∫ 1

0

tetdt+

∫ 1

0

s2etdt = (e− 1) s2, ∀s ∈ [0, 1] .

8See Ambrosetti and Musu (1988) p. 349.
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We have:

‖T (f)‖∞ = max
s∈[0,1]

∣∣∣∣
∫ 1

0

(h1 (t) + h2 (s)) f (t) dt

∣∣∣∣ ≤ max
s∈[0,1]

∫ 1

0

|(h1 (t) + h2 (s)) f (t)| dt

= max
s∈[0,1]

∫ 1

0

(h1 (t) + h2 (s)) |f (t)| dt

=

∫ 1

0

h1 (t) |f (t)| dt+ max
s∈[0,1]

∫ 1

0

h2 (s) |f (t)| dt

≤ ‖f‖∞
(∫ 1

0

h1 (t) dt+ max
s∈[0,1]

h2 (s)

)
,

which implies:

‖T‖ = sup {‖T (f)‖∞ : ‖f‖∞ = 1} ≤
∫ 1

0

h1 (t) dt+ max
s∈[0,1]

h2 (s) .

On the other hand, consider the constant function 1[0,1]. We have:

∥∥T
(
1[0,1]

)∥∥
∞ = max

s∈[0,1]

∣∣∣∣
∫ 1

0

(h1 (t) + h2 (s)) dt

∣∣∣∣ = max
s∈[0,1]

∫ 1

0

(h1 (t) + h2 (s)) dt

=

∫ 1

0

h1 (t) dt+ max
s∈[0,1]

h2 (s) ,

and so:

‖T‖ =

∫ 1

0

h1 (t) dt+ max
s∈[0,1]

h2 (s) .

�

We saw that (B (V1, V2) , ‖·‖) is a normed vector space. Since completeness is a

central property for normed vector spaces, it is therefore natural to ask under what

conditions the space (B (V1, V2) , ‖·‖) is complete, i.e., when it is a Banach space. A

natural conjecture is that this can happen when both spaces V1 and V2 are themselves

Banach. The next result (whose proof we omit) shows that, surprisingly, it is sufficient

that V2 be a Banach space in order for (B (V1, V2) , ‖·‖) to be also a Banach space,

independently of whether or not V1 is a Banach space.

Theorem 352 If V2 is a Banach space, also the normed vector space (B (V1, V2) , ‖·‖)
is a Banach space.

Since V2 = R is obviously a Banach space, we have the following important corollary.

Corollary 353 The topological dual space (V ∗, ‖·‖) is a Banach space.
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7.4 Intermezzo: Homeomorphisms and Isometries

In Theorem 299 we saw that, given a continuous function f : X → Y between two

metric spaces, the counterimages f−1 (G) of each open set G of Y are themselves open

sets of X, while the images f (G) of open sets G of X are in general not open sets of

Y . Next definition introduces a class of functions for which this is always true.

Definition 354 A continuous and surjective function f : X → Y between two metric

spaces is called homeomorphism if it is injective and if its inverse function f−1 : Y →
X is continuous. When such a function exists, the spaces X and Y are said to be

homeomorphic.

Since f is in turn the inverse function of f−1, i.e., f = (f−1)
−1, when f is an

homeomorphism we have that f (G) is an open set. Specifically, let τX and τY be the

collections of all the open sets of the metric spaces X and Y . Such collections are

called topologies of X and Y , respectively.

Proposition 355 Let f : X → Y be an homeomorphism between the two metric spaces

X and Y . Then,

τY = {f (G) : G ∈ τX} and τX =
{
f−1 (V ) : V ∈ τY

}
.

Proof. It is sufficient to prove that τY = {f (G) : G ∈ τX}, the other equality being

specular, with f−1 in place of f . Clearly, {f (G) : G ∈ τX} ⊆ τY . Let V ∈ τY . We

have f−1 (V ) ∈ τX , and therefore:

V = f
(
f−1 (V )

)
∈ {f (G) : G ∈ τX} ,

as desired. �

The homeomorphism f preserves therefore the open sets between the two spaces

X and Y . Once we know the topology τX , through the function f we can determine

also the topology τY , and viceversa. In this sense, the topologies of two homeomorphic

metric spaces can be seen as equivalent.

As seen in Chapter 3, a linear and bijective application T : V1 → V2 between two

normed vector spaces is called isomorphism. It becomes an homeomorphism when both

T and T−1 are continuous. Next lemma gives a necessary and sufficient condition for

an isomorphism to be also an homeomorphism.

Lemma 356 A surjective linear application T : V1 → V2 between two vector spaces

V1 and V2 is both an isomorphism and an homeomorphism if and only if there exist

c1, c2 > 0 such that:

c1 ‖v‖1 ≤ ‖T (v)‖2 ≤ c2 ‖v‖1 , ∀v ∈ V1. (7.9)
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Proof. If V1 = {0}, the result is trivially true since ‖T (v)‖2 = ‖v‖ = 0 for each

v ∈ V1.
Assume therefore that V1 	= {0}. Suppose that T is both an isomorphism and an

homeomorphism. It follows that V2 	= {0}, and therefore ‖T‖ > 0 and ‖T−1‖ > 0 by

Proposition 349. Moreover, being T linear and continuous, by (7.6) we have:

‖T (v)‖2 ≤ ‖T‖ ‖v‖1 , ∀v ∈ V1. (7.10)

Moreover, being also T−1 linear and continuous, we also have:

∥∥T−1 (T (v))
∥∥
1
≤
∥∥T−1

∥∥ ‖T (v)‖2 , ∀v ∈ V1,

that is,
‖v‖1
‖T−1‖ ≤ ‖T (v)‖2 , ∀v ∈ V1. (7.11)

Thanks to (7.10) and (7.11), there exist therefore c1, c2 > 0 such that (7.9) holds.

As to the converse, assume that (7.9) holds. We first prove that T is an isomorphism.

Since by hypothesis T is surjective, it is necessary to prove that it is also injective. By

Proposition 106, this is equivalent to prove that kerT = {0}. Let v 	= 0. We have

‖v‖1 > 0 and hence (7.9) implies ‖T (v)‖2 ≥ c1 ‖v‖1 > 0. It follows that T (v) 	= 0,

and so v /∈ kerT . We therefore conclude that kerT = {0}, as desired.
To complete the proof it is necessary to show that T and T−1 are both continuous.

Let {vn}n≥1 be a sequence in V1 such that vn → v ∈ V1. By (7.9) we have:

‖T (vn)− T (v)‖2 = ‖T (vn − v)‖2 ≤ c2 ‖vn − v‖1 → 0,

and therefore T (vn) → T (v), which proves that T is continuous. Let now {wn}n≥1 be
a sequence in V2 such that wn → w ∈ V2. By (7.9) we have:

∥∥T−1 (wn)− T−1 (w)
∥∥
1

=
∥∥T−1 (wn − w)

∥∥
1
≤ 1

c1

∥∥T
(
T−1 (wn − w)

)∥∥
2

=
1

c1
‖wn − w‖2 → 0,

and therefore T−1 (wn) → T−1 (w). This implies that also T−1 is continuous. �

Consider the case V ≡ V1 = V2, and suppose that ‖·‖1 and ‖·‖2 are two norms

defined on V . Let τ1 and τ2 be the topologies induced on V by the norms ‖·‖1 and
‖·‖2, respectively.

If the isomorphism I : V → V given by the identity application is an homeomorph-

ism between (V, ‖·‖1) and (V, ‖·‖2), by Proposition 355 we have:

τ2 = {I (G) : G ∈ τ1} = {G : G ∈ τ1} ,
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that is, τ1 = τ2. In other words, the two norms ‖·‖1 and ‖·‖2, though different, induce

the same topology on the vector space V .

On the other hand, by Lemma 356 the isomorphism I is an homeomorphism if and

only if there exist c1, c2 > 0 such that:

c1 ‖v‖1 ≤ ‖v‖2 ≤ c2 ‖v‖1 , ∀v ∈ V.

This motivates the following definition.

Definition 357 Two norms ‖·‖1 and ‖·‖2 on a vector space V are called equivalent

if there exist c1, c2 > 0 such that:

c1 ‖v‖1 ≤ ‖v‖2 ≤ c2 ‖v‖1 , ∀v ∈ V.

Two equivalent norms induce therefore the same topology on the vector space V .

This means, for example, that a function is continuous with respect to the norm ‖·‖1 if
and only if it is so with respect to ‖·‖2, and a sequence {vn}n≥1 converges to v according
to the norm ‖·‖1 if and only if it converges also according to ‖·‖2. Hence, once verified
if a function or a sequence satisfies these properties with respect to one norm, this will

be true with respect to all its equivalent norms.

We close this Intermezzo, with a last notion. An isomorphism T : V1 → V2 between

two normed vector spaces V1 and V2 is called isometry if ‖T (v)‖2 = ‖v‖1 for each

v ∈ V1. An isometry therefore preserves the norms between two metric spaces. As

immediate consequence of Lemma 356 we have that an isometry between two normed

vector spaces V1 and V2 is also an homeomorphism between such spaces.

7.5 Finite Dimensional Spaces

Finite dimensional vector spaces are a fundamental class of vector spaces, which we

studied in detail in Chapters 1-3. Here we will see that finite dimensional normed

vector spaces enjoy important properties.

We begin with a fundamental lemma, whose proof we omit.

Lemma 358 Let {vi}ni=1 be a set of linearly independent vectors of a normed vector

space V . Then, there exists a constant c > 0 such that, for each collection of scalars

{αi}ni=1, we have:
n∑

i=1

|αi| ≤ c

∥∥∥∥∥

n∑

i=1

αiv
i

∥∥∥∥∥ .

The first important consequence of this lemma is the continuity of linear applica-

tions defined on finite dimensional spaces.
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Theorem 359 Let V1 and V2 be two normed vector spaces such that V1 is finite di-

mensional. Then, each linear application T : V1 → V2 is continuous.

In other words, when V1 is finite dimensional we have B (V1, V2) = L (V1, V2). As

Example 344 shows, the finite dimensionality of V1 is crucial for the validity of Theorem

359, which is in general false when V1 is infinite dimensional.

Proof Let {vi}ni=1 be a basis of the space V1. For each v ∈ V1 there exists a collection

of scalars {αi}ni=1 such that v =
∑n

i=1 αiv
i. Hence, by Lemma 358 we have:

‖T (v)‖2 =

∥∥∥∥∥T
(

n∑

i=1

αiv
i

)∥∥∥∥∥
2

=

∥∥∥∥∥

n∑

i=1

αiT
(
vi
)
∥∥∥∥∥
2

≤
n∑

i=1

|αi|
∥∥T
(
vi
)∥∥

2

≤ c

∥∥∥∥∥

n∑

i=1

αiv
i

∥∥∥∥∥
1

(
max
i=1,...n

∥∥T
(
vi
)∥∥

2

)
= c

(
max
i=1,...n

∥∥T
(
vi
)∥∥

2

)
‖v‖1 .

SettingK = c (maxi=1,...n ‖T (vi)‖2), we conclude that for each v ∈ V we have ‖T (v)‖2 ≤
K ‖v‖1. Hence, T is a bounded application and, by Theorem 342, it is continuous. �

Corollary 360 Each linear functional L : V → R defined on a finite dimensional

normed vector space V is continuous.

Hence, the duals V ′ and V ∗ coincide when V is finite dimensional. For example, by

Theorem 65 we have that Rn is both the algebraic and the topological dual of Rn.

In Theorem 104 we saw that two finite dimensional spaces are isomorphic if and

only if they have the same dimension. Next we show that, in the case of normed vector

spaces, such isomorphism is also an homeomorphism. Hence, finite dimensional spaces

that have the same dimension have also similar topological structures.

Theorem 361 Two finite dimensional normed vector spaces that have the same di-

mension are homeomorphic.

Proof Let V1 and V2 be two finite dimensional normed vector spaces, with dimV1 =

dimV2. By Theorem 104, there exists an isomorphism T : V1 → V2. By Theorem 359,

T is continuous. Similarly, also the inverse application T−1 : V2 → V1 is continuous. It

follows that T is an homeomorphism, as desired. �

A trivial, but legitimate, case of two normed vector spaces that have the same

dimension is given by (V, ‖·‖1) and (V, ‖·‖2), where ‖·‖1 and ‖·‖2 are two norms defined

on the same vector space V . This simple observation leads to the following important

consequence of Theorem 361.

Corollary 362 In a finite dimensional vector space all norms are equivalent.
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Proof. Let ‖·‖1 and ‖·‖2 be two norms defined on a finite dimensional space V . The

identity application I : V → V is an isomorphism between the normed vector spaces

(V, ‖·‖1) and (V, ‖·‖2). By Theorem 361, I is an homeomorphism. By Lemma 356,

there exist c1, c2 > 0 such that:

c1 ‖v‖1 ≤ ‖v‖2 ≤ c2 ‖v‖1 , ∀v ∈ V.

Hence, the two norms are equivalent. �

Corollary 362 is an important principle of order. Though in a finite dimensional

space it is possible to introduce several norms, very different among them, Corollary

362 guarantees that they are topologically equivalent. For example, the norms ‖·‖1,
‖·‖2, and ‖·‖∞ defined on Rn are equivalent and so they induce the same topology on

Rn, i.e., the same collection of open sets.

>From Corollary 105 we know that all vector spaces of dimension n are isomorphic

to Rn. Due to Corollary 362, they are also homeomorphic to Rn. Since the latter space

is Banach, we have the following result.

Corollary 363 Each finite dimensional normed vector space is a Banach space.

Proof Let (V, ‖·‖) be a finite dimensional normed vector space, and let Rn be endowed

with its Euclidean norm ‖·‖2. By Corollary 105 there exists an homeomorphism T :

V → Rn, which Corollary 362 guarantees to be also an homeomorphism between

(V, ‖·‖) and (Rn, ‖·‖2). By Lemma 356 there exists therefore a constant c > 0 such

that ‖T (v)‖2 ≤ c ‖v‖ for each v ∈ V .
Let {vn}n≥1 be a Cauchy sequence in V . To show that V is a Banach space we

have to prove that {vn}n≥1 is a convergent sequence. For each m,n ≥ 1 we have:

‖T (vn)− T (vm)‖2 = ‖T (vn − vm)‖2 ≤ c ‖vn − vm‖

and hence the sequence {≥}n≥1 is a Cauchy sequence in (Rn, ‖·‖2). Since this space is
a Banach space, there exists x ∈ Rn such that T (vn)

‖·‖
2→ x. Since T−1 is a continuous

application, we have:

vn = T−1 (T (vn))
‖·‖→ T−1 (x) ,

and so {vn}n≥1 converges to T−1 (x). �

We close this study of finite dimensional normed vector spaces with a surprising

characterization through the notion of compactness. In Section 6.4 we saw that com-

pact sets are closed and bounded, but how the converse is in general false, with the

remarkable exception of Rn thanks to the Heine-Borel Theorem 272. This motivates
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the following terminology: we say that a normed vector space enjoys the Heine-Borel

property when all closed and bounded sets are compact. Clearly, Rn enjoys such prop-

erty.

The next deep result, proved in 1918 by Frederic Riesz, shows that the Heine-Borel

property actually characterizes finite dimensional normed vector spaces. Moreover, the

result shows that the compactness of an “elementary” closed and bounded set, i.e., the

closed unit ball, is per se equivalent to the finite dimensionality of the space.

Theorem 364 Given a normed vector space V , the following properties are equivalent:

(i) V is finite dimensional;

(ii) V enjoys the Heine-Borel property;

(iii) the closed unit ball BV = {v : ‖v‖ ≤ 1} is compact.

In other words, in infinite dimensional normed vector spaces the closed and bounded

sets are not in general compact. In particular, it is not compact the closed unit ball,

nor, more generally, any set having interior points.

Corollary 365 In an infinite dimensional vector space, the sets with interior points

are not compact.

Proof Let A be a subset with
◦
A 	= ∅ of an infinite dimensional normed vector space

V . Suppose that A is compact, and let x ∈
◦
A. There exists therefore a neighborhood

Bε (x) of x such that Bε (x) ⊆ A. Since A is compact, it is also closed by Theorem

271; hence, Bε (x) ⊆ A. It follows that Bε (0) = Bε (x) − x ⊆ A− x. It is easy to see

that also A − x is compact, and therefore its closed subset Bε (0) is also compact by

Proposition 274. In turn, this implies that the closed unit ball BV is compact (why?),

and hence the space V is finite dimensional by Theorem 364. This contradiction shows

that A cannot be compact. �

All this shows that in infinite dimensional spaces compactness with respect to the

metric induced by the norms is a very strong property, enjoyed by relatively few sets.

Hence, such compactness is a not very useful notion in studying sets in infinite dimen-

sional space, while it plays a fundamental role in finite dimensional spaces.

7.6 Some Classical Spaces

We introduce some classic normed vector spaces and study some of their properties.
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7.6.1 Bounded Functions

Given any set X, consider the vector space B (X) of all bounded functions f : X → R,

endowed with the supnorm ‖f‖∞ = supx∈X |f (x)|.

Proposition 366 (B (X) , ‖·‖∞) is a Banach space.

Proof Consider a Cauchy sequence {fn}n ⊆ B (X). Fix x ∈ X. From the obvious

inequality

|fn (x)− fm (x)| ≤ ‖fn − fm‖∞ ,

it follows that the sequence {fn (x)}n ⊆ R is Cauchy. Hence, this sequence has a limit

point, denoted f (x). In this way we define a function f : X → R, with limn fn (x) =

f (x) for all x ∈ X. Given any ε > 0, there is n0 ≥ 1 such that

|fn (x)− fm (x)| ≤ ‖fn − fm‖∞ ≤ ε, ∀n,m ≥ n0.

Letting m → ∞, we get |fn (x)− f (x)| ≤ ε. This implies that ‖fn − f‖∞ ≤ ε and

thus f is the uniform limit of the sequence. Hence, f ∈ B (X). For, take ε = 1 and let

n be such that ‖fn − f‖∞ ≤ 1. Then

|f (x)| ≤ |f (x)− fn (x)| + |fn (x)| ≤ 1 + ‖fn‖∞

and f is bounded, i.e., f ∈ B (X). �

7.6.2 Continuous Functions

Given any metric space X, consider the vector space Cb (X) of all bounded functions

f : X → R, endowed with the supnorm ‖f‖∞ = supx∈X |f (x)|.

Proposition 367 (Cb (X) , ‖·‖∞) is a Banach space.

The proof relies on the following very important property, which shows that con-

tinuity is preserved by uniform convergence (i.e., convergence under the supnorm).

Lemma 368 Let {fn}n ⊆ C (X) be such that fn
‖·‖

∞−→ f for some f : X → R. Then,

f ∈ C (X).

Proof Let {xm}m ⊆ X be such that xm → x ∈ X. Fix ε > 0. Let nε be such that

‖fnε − f‖∞ ≤ ε/3, and, being fnε continuous, letmε be such that |fnε (xm) − fnε (x)| ≤
ε/3 for all m ≥ mε. Then,

|f (xm)− f (x)| ≤ |f (xm)− fnε (xm)| + |fnε (xm)− fnε (x)| + |fnε (x)− fnε (x)|
≤ ‖fnε − f‖∞ + |fnε (xm)− f (x)| + ‖fnε − f‖∞ ≤ ε
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for all m ≥ mε. This shows that f ∈ C (X). �

Proof of Proposition 367. In view of Proposition 366, it is enough to show that

C (X) is a closed subset of B (X). Let {fn}n ⊆ C (X) be such that ‖fn − f‖∞ → 0

for some f ∈ B (X). By Lemma 368, f ∈ C (X). Hence, by Corollary 255 C (X) is a

closed subset of B (X). �

Notice that by the Weierstrass Theorem we have C (X) = Cb (X) when the metric

space X is compact. We thus have the following simple but important corollary of

Proposition 367.

Corollary 369 (C (X) , ‖·‖∞) is a Banach space if X is a compact metric space.

We now characterize the compact subsets of the Banach space (Cb (X) , ‖·‖∞). To

this end, say that a subset A ⊆ C (X) is equicontinuous if, given any ε > 0, there is

δε > 0 such that

d (x, y) < δε =⇒ |f (x)− f (y)| < ε, ∀x, y ∈ X, ∀f ∈ A.

In other words, the collection A of continuous functions if equicontinuous if, given any

ε > 0, they all share the same δε.

We can now state and prove the classic Ascoli-Arzelà Theorem, due to Arzelà (1882-

1883) and (1895) and Ascoli (1883-1884), which characterizes compact subsets of the

Banach space (C (X) , ‖·‖∞), when X is compact.

Theorem 370 (Ascoli-Arzelà) Let X be a compact metric space. A subset H of

C (X) is relatively compact (i.e., its closure is a compact set) in the Banach space

(C (X) , ‖·‖∞) if and only it is uniformly bounded9 and equicontinuous.

Proof. Necessity. If H is relatively compact then is totally bounded. This implies in

turn that it is norm bounded. Let us show that the family of functions H is equicon-

tinuous. Fix ε > 0. There is a finite number of functions {fi}ni=1 ⊆ H such that

f ∈ H implies ‖f − fi0‖∞ ≤ ε/3 for some index i0 ∈ {1, .., n}. Fix x ∈ X. There

is a neighborhood Bη (x) such that |fi (x)− fi (y)| ≤ ε/3 for all y ∈ Bη (x) and every

i ∈ {1, 2, .., n}. Consequently, for any f ∈ H and any y ∈ Bη (x) we have

|f (y)− f (x)| = |f (y) − fi0 (y) + fi0 (y)− fi0 (x) + fi0 (x)− f (x)|
≤ |f (y) − fi0 (y)|+ |fi0 (y)− fi0 (x)| + |fi0 (x) − f (x)|
≤ ε/3 + ε/3 + ε/3 = ε,

9That is, bounded with respect to the supnorm: there is K > 0 such that H ⊆
{f ∈ C (X) : ‖f‖

∞
≤ K}.
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and thus H is equicontinuous.

Sufficiency. Assume that H is equicontinuous. For any x ∈ X, let Bη (x) be a

neighborhood of x such that |f (x)− f (y)| ≤ ε/4 for all y ∈ Bη (x) and f ∈ H. As X

is compact, there is a finite number of points {xi}ni=1 ⊆ X such that the neighborhoods

Bηi (xi) cover X. Since H is norm bounded, say ‖f‖ ≤ K for all f ∈ H, we have

|f (x)| ≤ K, i.e., f (x) ∈ [−K,K] for all f ∈ H and x ∈ X. We can hence construct a

finite sequence of points {cj}mj=1 ⊆ [−K,K] so that if f ∈ H and x ∈ X, |f (x)− cj0| ≤
ε/4 for some cj0 . Consider any map ϕ : {1, 2, ..., n} → {1, 2, ...,m} and, associated

with ϕ, the subset

Lϕ =
{
f ∈ H :

∣∣f (xi)− cϕ(i)
∣∣ ≤ ε/4

}
.

Clearly, some Lϕ may be empty but, by construction, H = ∪ϕLϕ, where the union is

made over all the finite number of maps ϕ : {1, 2, ..., n} → {1, 2, ...,m}. We claim that

the diameter of each nonempty set Lϕ is less than ε. Actually, if f, g ∈ Lϕ, for all i we
have

|f (xi)− g (xi)| =
∣∣f (xi)− cϕ(i) + cϕ(i) − g (xi)

∣∣

≤
∣∣f (xi)− cϕ(i)

∣∣+
∣∣cϕ(i) − g (xi)

∣∣

≤ ε/4 + ε/4 = ε/2.

Consequently, for any x ∈ X, if x ∈ Bηi (xi) , it follows

|f (x)− g (x)| = |f (x)− f (xi) + f (xi)− g (xi) + g (xi)− g (x)|
≤ |f (x)− f (xi)| + |f (xi)− g (xi)| + |g (xi)− g (x)|
≤ ε/4 + ε/2 + ε/4 = ε.

Hence, f, g ∈ Lϕ implies ‖f − g‖ ≤ ε and diam (Lϕ). Summarizing, for every ε > 0

the set H can be covered by a finite number of sets with diameter less than ε. Hence

H is totally bounded. As C (X) is complete, H is relatively compact, as desired. �

An immediate consequence of this classic result is that a subset A of C (X) is

compact in (C (X) , ‖·‖∞) if and only it is bounded, closed, and equicontinuous.

Example 371 Given K > 0, let A be a subset of C ([a, b]) such that

|f (x)− f (y)| ≤ K |x− y| , ∀x, y ∈ [a, b] ,

for all f ∈ A. The set A is easily seen to be uniformly bounded and equicontinuous

(why?). By the Ascoli-Arzelà Theorem, the set A is relatively compact in the Banach

space (C (X) , ‖·‖∞). �
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7.6.3 Differentiable Functions

Given a closed and bounded interval [a, b], consider the vector space C1 ([a, b]) of the

continuously differentiable functions f : [a, b] → R. Endow C1 ([a, b]) with the norm

‖·‖1 given by

‖f‖1 = max {‖f‖∞ , ‖f ′‖∞} .

In other words, ‖f‖1 is the largest value among the supnorms of f and of its derivative

f ′.

Proposition 372 (C1 ([a, b]) , ‖·‖1) is a Banach space.

Proof. Let us first observe that if (gn) is a sequence of continuous functions

uniformly converging on [a, b] to a function g, then the sequence of their primitives

ϕn (t) =

∫ t

a

gn (s) ds, t ∈ [a, b]

converges uniformly to ϕ (t) =
∫ t
a
g (s) ds. Actually,

|ϕ (t)− ϕn (t)| =

∣∣∣∣
∫ t

a

[g (s)− gn (s)] ds

∣∣∣∣ ≤
∫ t

a

|g (s)− gn (s)| ds

≤
∫ t

a

‖g − gn‖∞ ds = ‖g − gn‖∞
∫ t

a

ds ≤ (b− a) ‖g − gn‖∞ .

Hence

‖ϕ− ϕn‖∞ ≤ (b− a) ‖g − gn‖∞ ,

which is the desired result.

Consider now the space C1 ([a, b]). It is clearly a vector space and ‖f‖1 is a norm

on this space. It remains to prove that C1 ([a, b]) is complete when endowed with the

norm ‖f‖1.
Let {fn} ⊆ C1 ([a, b]) be a Cauchy sequence. We have ‖fn − fm‖1 ≤ ε for n,m ≥ n0.

This implies ‖fn − fm‖∞ ≤ ε as well as ‖f ′n − f ′m‖∞ ≤ ε. Hence, the two sequences

{fn} and {f ′n} are Cauchy in C ([a, b] , ‖·‖∞). Completeness of this space implies that

fn → f and f ′n → g, uniformly over [a, b] and with f, g ∈ C ([a, b] , ‖·‖∞). We must

show that f ′ = g. On the other hand, we have

fn (t) = fn (a) +

∫ t

a

f ′n (s) ds. (7.12)

We have seen that
∫ t
a
f ′n (s) →

∫ t
a
g (s) uniformly. In particular it converges point-wise.

Likewise, fn (a) → f (a), and fn (t) → f (t). Therefore, taking limit in (7.12), we get

f (t) = f (a) +

∫ t

a

g (s) ds
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for all t. As g is continuous, this leads to f ′ (t) = g (t) for all t ∈ [a, b] . We conclude

that fn → f and f ′n → f ′ uniformly. Namely, ‖fn − f‖∞ → 0 and ‖f ′n − f ′‖∞ →
0. As the function (r, s) → Max {r, s} is continuous, it follows that ‖fn − f‖1 =

max {‖fn − f‖∞ , ‖f ′n − f ′‖∞} → 0. �

It should be noticed that there are several norms equivalent to ‖f‖1 in C1 ([a, b]) ..
For instance:

‖f‖ = ‖f‖∞ + ‖f ′‖∞
‖f‖ = |f (a)| + ‖f ′‖∞
‖f‖ = Max {|f (a)| , ‖f ′‖∞} .

Let us check the last one. Clearly,

Max {|f (a)| , ‖f ′‖∞} ≤Max {‖f‖∞ , ‖f ′‖∞} .

On the other hand, from

f (t) = f (a) +

∫ t

a

f ′ (s) ds

we obtain easily

‖f‖∞ ≤ |f (a)| + (b− a) ‖f ′‖∞ .

Hence,

Max {‖f‖∞ , ‖f ′‖∞} ≤ Max {|f (a)| + (b− a) ‖f ′‖∞ , ‖f ′‖∞}
≤ (1 + b− a)Max {|f (a)| , ‖f ′‖∞}

that proves the claim.

The set C1 ([a, b]) is a subset of C ([a, b]). The next result shows that its unit ball

is actually relatively compact (i.e., its closure is compact) when viewed as a subset of

the Banach space (C ([a, b]) , ‖·‖∞). We thus have a “concrete” example of a relatively

compact subset of (C ([a, b]) , ‖·‖∞).

Proposition 373 The unit ball {f ∈ C1 ([a, b]) : ‖f‖1 ≤ 1} is relatively compact in

(C ([a, b]) , ‖·‖∞).

Proof Set B = {f ∈ C ([a, b]) : ‖f‖1 ≤ 1}. If f ∈ B, by Example 419 f is Lipschitz

with

|f (x)− f (y)| ≤ ‖f‖1 |x− y| ≤ |x− y| , ∀x, y ∈ [a, b] .

Hence, B is equicontinuous. It is also bounded since B ⊆ {f ∈ C ([a, b]) : ‖f‖∞ ≤ 1}.
By the Ascoli-Arzelà Theorem 370, B is relatively compact in (C ([a, b]) , ‖·‖∞). �
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7.7 Differentiability

The notions of directional derivative and Gateaux differentiability studied in Chapter

4 can be naturally extended to applications f : V → W among normed vector spaces.

To ease notation, we focus on the important special caseW = R, that is, on functionals

f : V → R. This is also the case that is more relevant for the rest of these lecture

notes, and we leave to the reader the more general case f : V → W , which can be

studied along the same lines.

We first give the versions for functionals defined on normed vector spaces of Defin-

itions 129 and 139.

Let A be an open subset of a normed vector space V . Given a functional f : A→ R,

the derivative of f at v ∈ A in the direction w ∈ V is given by

f ′ (v;w) = lim
t→0+

f (v + tw)− f (v)

t
, (7.13)

when such limit exists finite. Fixed v ∈ V , the function f ′ (v; ·) : D ⊆ V → R is the

directional derivative of f at v. Its domain D is the set of the directions along which

the limit (7.13) exists finite.

The functional f : A → R is called the Gateaux differentiable at v ∈ A if D = V

and if the directional derivative f ′ (v; ·) : V → R is a linear and continuous functional,

i.e., if it belongs to the topological dual V ∗. The linear functional f ′ (v; ·) : V → R is

called Gateaux differential.

Notice that Gateaux differentiability requires that the functional is linear and con-

tinuous. In the finite dimensional case seen in Chapter 4, linear functionals are auto-

matically continuous thanks to Theorem 359 and for this reason it was not necessary

to require explicitly the continuity.

Frechet differentiability can be also naturally extended to general normed vector

spaces: say that a function f : A→ R is Frechet differentiable at v ∈ A if there exists

a continuous linear functional df (v) : V→ R such that

lim
h→0

|f (v + h)− f (v)− df (v) (h)|
‖h‖ = 0. (7.14)

The functional df (v) is the Frechet differential of f at v ∈ A.
This extends Definition 145 to general normed vector spaces. It is easy to check

that the properties of Frechet differentials established in Chapter 4 for functionals

defined on Rn still hold in normed vector spaces. In particular, if f : A→ R is Frechet

differentiable at v ∈ A, then:
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(i) the Frechet differential df (v) : V→ R is unique;

(ii) f is Gateaux differentiable at v, with df (v) (w) = f ′ (v;w) for all w ∈ V ;

(iii) f is continuous at v.

Frechet differentiability is a stronger notion than Gateaux differentiability, and in

fact the converse in (ii) is false: a function f : A→ R that is Gateaux differentiable at

v may not be Frechet differentiable at v (and may also be not continuous at v). The

next result clarifies the extent to which Frechet differentiability is a stronger notion

than Gateaux differentiability. In particular, it shows that Frechet differentiability

can be regarded as a “uniform” version of Gateaux differentiability, where the limit

(7.13) is required to converge to zero uniformly across all w that belong to unit sphere

SV = {w ∈ V : ‖w‖ = 1} of V . In other words, all such limits must converge to zero at

a similar pace. This is something that Gateaux differentiability per se does not require,

as it only require that each individual limit (7.13) exists, without any assumption on

their relative behavior.10

Proposition 374 A function f : A→ R is Frechet differentiable at v ∈ A if and only

if is Gateaux differentiable at v and the limit (7.13) exists uniformly on the unit sphere

SV of V .11

Proof. Suppose f is Gateaux differentiable at v. If w ∈ SV , then by setting h = tw

we have
∣∣∣∣
f (v + tw)− f (v)

t
− f ′ (v;w)

∣∣∣∣ =
|f (v + tw)− f (v)− f ′ (v; tw)|

t
(7.15)

=
|f (v + h)− f (v)− f ′ (v;h)|

‖h‖ ,

for all t > 0. Suppose the limit (7.13) exists uniformly on SV , that is, for all ε > 0

there exists tε > 0 such that
∣∣∣∣
f (v + tw)− f (v)

t
− f ′ (v;w)

∣∣∣∣ < ε (7.16)

for all 0 < t ≤ tε and all w ∈ SV . Wlog, we can assume that tε ≤ 1. By (7.15),

|f (v + h)− f (v)− f ′ (v;h)|
‖h‖ < ε (7.17)

10Though we could have already stated this insightful result in Chapter 4 for Rn, we state it here
because its nature is best understood in general normed vector spaces.

11That is, for all ε > 0 there exists tε > 0 such that
∣∣∣∣
f (v + tw)− f (v)

t
− f ′ (v;w)

∣∣∣∣ < ε

for all 0 < t ≤ tε and all w ∈ SV .
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for all h ∈ V such that ‖h‖ = t ‖w‖ = t ≤ tε. Hence, (7.14) holds and so f is Frechet

differentiable at v ∈ A.

Conversely, suppose f is Frechet differentiable at v ∈ A. Hence, it is Gateaux

differentiable at v with f ′ (v;w) = df (v) (w) for all w ∈ V . Moreover, for each ε > 0

there exists δε > 0 such that (7.17) holds for all h ∈ V such that 0 < ‖h‖ ≤ δε. Let

w ∈ SV . For each 0 < t ≤ δε, by setting h = tw from (7.15) and (7.17) we have:
∣∣∣∣
f (v + tw)− f (v)

t
− f ′ (v;w)

∣∣∣∣ < ε.

Since this holds for any w ∈ SV , we conclude that the limit (7.13) exists uniformly on

SV . �

Next we extend Theorem 157 to normed vector spaces. To this end, consider

the topological dual V ∗ with the norm ‖·‖ given by (7.5). The Gateaux differential

f ′ (v; ·) : V → R is continuous at v if ‖f ′ (vn; ·)− f ′ (v; ·)‖ → 0 whenever vn → v.

Proposition 375 A function f : A→ R is Frechet differentiable at v ∈ A if is Gateaux

differentiable on a neighborhood of v and f ′ (v; ·) : V → R is continuous at v.

Proof. Let Bε (v) be the neighborhood of v where f is Gateaux differentiable. Let

h ∈ V be such that ‖h‖ < ε. By Exercise 13.0.59, there is an open interval (a, b), with

[0, 1] ⊆ (a, b), such that v+ th ∈ Bε (v) for all t ∈ (a, b). Let ϕ : (a, b) → R be given by

ϕ (t) = f (v + th). Then, ϕ is differentiable on (a, b), with ϕ′ (t) = f ′ (v + th;h). By

the Mean Value Theorem there exists ξ ∈ (0, 1) such that ϕ (1) − ϕ (0) = ϕ′ (ξ). We

can thus write:

|f (v + h)− f (v)− f ′ (v;h)| = |ϕ (1)− ϕ (0)− f ′ (v;h)| = |ϕ′ (ξ)− f ′ (v;h)|
= |f ′ (v + ξh;h)− f ′ (v;h)| ≤ ‖f ′ (v + ξh; ·)− f ′ (v; ·)‖ ‖h‖

where the last inequality follows from (7.6). By the continuity of f ′ (v; ·) : V → R

at v, ‖f ′ (v + ξh; ·) − f ′ (v; ·)‖ → 0 as h → 0. Hence, |f (v + h)− f (v)− f ′ (v;h)| =

o (‖h‖), and we conclude that f is Frechet differentiable at v. �

Thus, the continuity of the Gateaux differential of f , which in Theorem 157 amoun-

ted to the continuity of the gradient mapping ∇f , ensures the Frechet differentiability
of f . This is an important observation since it is in general easier to compute the Gat-

eaux differential of a function: by Proposition 375 it is then enough to check whether

the Gateaux differential is continuous to conclude that f is also Frechet differentiable.

We close by showing that in finite dimensional spaces Frechet and Gateaux differ-

entiability are equivalent notions for the important class of locally Lipschitz functions

(see Definition 422 below).
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Proposition 376 Suppose f : A→ R is a locally Lipschitz function defined on an open

set A of a finite dimensional normed vector space. Then, f is Gateaux differentiable

at v ∈ A if and only if f is Frechet differentiable at v.

Proof. We prove the “only if” part, the converse being trivial by now. Suppose that

f is Gateaux differentiable at v ∈ A. Fix ε > 0. By Proposition 374, to show that f is

also Frechet differentiable at v we must show that there exists tε > 0 such that
∣∣∣∣
f (v + tw)− f (v)

t
− f ′ (v;w)

∣∣∣∣ < ε (7.18)

for all 0 < t ≤ tε and all w ∈ SV .
Fix w ∈ SV . Since f is Gateaux differentiable at v, there is tw > 0 such that

∣∣∣∣
f (v + tw)− f (v)

t
− f ′ (v;w)

∣∣∣∣ < ε

for all 0 < t ≤ tw. Moreover, since f is locally Lipschitz at v, there exists Bε (v) and

K > 0 such that
∣∣∣∣
f (v + tw′)− f (v)

t
− f (v + tw′′)− f (v)

t

∣∣∣∣ ≤ K ‖w′ − w′′‖

for all 0 < t < ε and all w′, w′′ ∈ SV (by Exercise 13.0.59, if w ∈ SV , then v+tw ∈ Bε (v)
if and only if 0 < t < ε). Hence, given any z ∈ SV , for all 0 < t ≤ min {tw, ε} we have:
∣∣∣∣
f (v + tz)− f (v)

t
− f ′ (v; z)

∣∣∣∣ =

∣∣∣∣
f (v + tz)− f (v)

t
− f (v + tw)− f (v)

t

+
f (v + tw)− f (v)

t
− f ′ (v;w) + f ′ (v;w)− f ′ (v; z)

∣∣∣∣
≤ K ‖w − z‖+ ε+ ‖f ′ (v; ·)‖ ‖w − z‖ .

Hence, there exists δw > 0 such that the neighborhood Bδw (w) of w is such that
∣∣∣∣
f (v + tz) − f (v)

t
− f ′ (v; z)

∣∣∣∣ ≤ 3ε (7.19)

for all 0 < t ≤ max {tw, ε} and all z ∈ Bδw (w).

By considering for each w ∈ SV such a neighborhood Bδw (w), we have an open

cover {Bδw (w)}w∈SV of SV . The unit sphere SV is compact because it is a closed

subset of the closed unit ball B1 (0), which is compact by Theorem 364. Hence, there

is a finite subcover {Bδ (wi)}ni=1 of SV , with wi ∈ SV for all i = 1, ..., n, and we can

thus write ∣∣∣∣
f (v + tz) − f (v)

t
− f ′ (v; z)

∣∣∣∣ ≤ 3ε

for all 0 < t ≤ mini=1,...n {tw1 , ..., twnε} and all z ∈ SV . By setting tε = mini=1,...n {tw1 , ..., twnε},
this implies (7.18), as desired. �



206 CHAPTER 7. NORMED VECTOR SPACES

7.8 Convex Sets

We devote this last section to the study of the convex sets, a fundamental class of sets

of a vector space.

Definition 377 A set C of a vector space V is said to be convex if, for each v, w ∈ V ,
we have tv + (1− t)w ∈ C for each t ∈ [0, 1].

In other words, a set is convex if it contains the segment:

[v,w] = {(1− t) v + tw : t ∈ [0, 1]}

that joins two any points v and w of the set.

Notice that the points of the segment [v,w] can be seen as linear combinations of

the vectors v and w in which the coefficients are required to be positive and to add up

to one. In general, given a collection {vi}ni=1 of vectors, a linear combination
∑n

i=1 αiv
i

is called a convex combination of the vectors {vi}ni=1 if αi ∈ [0, 1] for each i = 1, ..., n

and if
∑n

i=1 αi = 1. In the case n = 2, α1 + α2 = 1 implies α2 = 1 − α1, and hence

convex combinations of two vectors have the form αv + (1− α)w with α ∈ [0, 1].

Lemma 378 A set C of a vector space V is convex if and only if it is closed with

respect to all convex combinations of its own elements.

Hence, C is convex if and only if
∑n

i=1 αiv
i ∈ C for each collection {vi}ni=1 of vectors

of C and each collection {αni=1} of scalars such that αi ∈ [0, 1] for each i = 1, ..., n and∑n
i=1 αi = 1.

Proof The “If” is obvious because by considering the convex combinations with n = 2

we get Definition 377. We prove the “Only if.” Let C be convex and let {vi}ni=1 be a
collection of vectors of C and {αi}ni=1 a collection of scalars such that αi ∈ [0, 1] for

each i = 1, ..., n and
∑n

i=1 αi = 1. We want to prove that
∑n

i=1 αiv
i ∈ C. By Definition

377, this is true for n = 2. We proceed by induction on n: we assume that it is true

for n− 1 and we show that this implies that the property holds also for n. We have:

n∑

i=1

αiv
i =

n−1∑

i=1

αiv
i + αnv

n = (1− αn)
n−1∑

i=1

αi
1− αn

vi + αnv
n.

Since we have assumed that C is closed with respect to the convex combinations of

n− 1 elements, we have:
n−1∑

i=1

αi
1− αn

vi ∈ C.
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Hence, the convexity of C implies:

(1− αn)
n−1∑

i=1

αi
1− αn

vi + αnv
n ∈ C,

from which it follows that C is closed with respect to the convex combinations of n

elements, as desired. �

As to set operations, the next result shows that set intersection preserves convexity.

On the contrary, the union of convex sets is not in general a convex set. For example,

in R2 the horizontal and vertical axes are convex sets, while their union is not.

Lemma 379 The intersection of any collection of convex subsets of a vector space is

a convex set.

Proof Let {Cα} be any collection of convex subsets of a vector space V . Let C =⋂
αCα. The empty set is trivially convex, and hence if C = ∅ the result holds. Suppose

therefore that C 	= ∅. Let v,w ∈ C and let t ∈ [0, 1]. We want to prove that

tv + (1− t)w ∈ C. Since v, w ∈ Cα for each α, we have that tv + (1− t)w ∈ Cα for

each α because each set Cα is convex. Hence, tv + (1− t)w ∈ ⋂αCα, as desired. �

Definition 380 Given any subset A of a vector space V , its convex envelope co (A)

is the smallest convex set that contains A. If V is normed, its closed convex envelope

co (A) is the smallest closed and convex set that contains A.

Next results show that convex envelopes are the counterpart for convex combin-

ations of what generated subspaces were for linear combinations (remember Section

1.9). We begin with a useful lemma.

Lemma 381 Let C be a convex subset of a normed vector space V . Then, its closure

C is a convex subset of V .

Proof Let v, w ∈ C and let t ∈ [0, 1]. By Theorem 254, there exist two sequences

{vn}n≥1 and {wn}n≥1 in C such that vn → v and wn → w. Since C is convex,

tvn+(1− t)wn ∈ C for each n. Since tvn+(1− t)wn → tv+(1− t)w and C is closed,

it follows that tv + (1− t)w ∈ C, as desired. �

Proposition 382 Given a subset A of a vector space V , let {Cα} be the collection of

all convex subsets of V containing A. We have co (A) =
⋂
αCα. If, moreover, V is

normed, we have:

co (A) = co (A) =
⋂

α

Cα. (7.20)
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Expression (7.20) shows that to obtain co (A) it is necessary first to construct co (A)

and then, in order to pass to the closure co (A), it is necessary to consider all the limits

of sequences in co (A) (remember Theorem 254).

Proof By Lemma 379,
⋂
αCα is a convex set of V . Since A ⊆ Cα for each α, we have

co (A) ⊆ ⋂αCα since, by definition, co (A) is the smallest convex subset of V containing

A. On the other hand, co (A) belongs to the collection {Cα}, being a convex subset

of V containing A. It follows that
⋂
αCα ⊆ co (A) and we can therefore conclude that⋂

αCα = co (A).

Let {Fα} be the collection of all closed and convex subsets of V containing the set

A. By proceeding as above we get co (A) =
⋂
α Fα. By Lemma 381, co (A) ∈ {Fα}.

On the other hand, co (A) =
⋂
α Fα since co (A) is by Theorem 235-(iii) the smallest

closed set containing co (A).

It remains to show that {Fα} =
{
Cα
}
. By Lemma 381,

{
Cα
}
⊆ {Fα}, while from

Fα = Fα it follows that {Fα} ⊆
{
Cα
}
. This completes the proof. �

The next result shows that co (A) can be represented through convex combinations

of vectors of A.

Theorem 383 Let A be a subset of a vector space V . A vector v ∈ V belongs to co (A)

if and only if it is a convex combination of vectors of A, i.e., if and only if there exists

a finite set {vi}i∈I of A and a finite set {αi}i∈I of scalars, with αi ∈ [0, 1] for each i ∈ I
and

∑
i∈I αi = 1, such that v =

∑
i∈I αiv

i.

Proof “If.” Let v ∈ V be convex combination of a finite set {vi}i∈I of vectors of A.
The set co (A) is convex and, since {vi}i∈I ⊆ co (A), Lemma 378 implies v ∈ co (A), as

desired.

“Only if.” Let C be the set of all the vectors v of V that can be expressed as convex

combinations of vectors of A, i.e., v ∈ C if there exist finite sets {vi}i∈I ⊆ A and

{αi}i∈I ⊆ R, with αi ∈ [0, 1] for each i ∈ I and
∑

i∈I αi = 1, such that v =
∑n

i=1 αiv
i.

It is easy to see that C is a convex subset of V containing A. It follows that co (A) ⊆ C

and hence each v ∈ co (A) is a linear combination of vectors of A. �

Example 384 Let A =
{
v1, ..., vk

}
⊆ V . By Theorem 383 we have:

co (A) =

{
k∑

i=1

αiv
i : αi ∈ [0, 1] ∀i = 1, ..., k and

k∑

i=1

αi = 1

}
.

The convex sets that are a convex envelope of a finite collection of vectors are called

polytopes. In R2, the polytopes are nothing else that the polygons studied in high
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school. For example, if A = {(0, 1) , (1, 0) , (−1, 0) , (0,−1)}, then co (A) is the rhomb

that has as vertices the four points of the set A. Note that the set

A′ = {(0, 1) , (1, 0) , (−1, 0) , (0,−1) , (1/2, 1/2)}

is such that co (A) = co (A′). Hence, it may well happen that the finite collection of

vectors that generates a polygon is made only by the vertices, even though they must

necessary belong to it. �

Example 385 Let A = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} ⊆ R3. We have:

co (A)

=
{
x ∈ R3 : x = α1 (1, 0, 0) + α2 (0, 1, 0) + (1− α1 − α2) (0, 0, 1)

with αi ∈ [0, 1] ∀i = 1, 2, 3 and α1 + α2 ≤ 1}
= {(α1, α2, 1− α1 − α2) : αi ∈ [0, 1] ∀i = 1, 2, 3 and α1 + α2 ≤ 1} .

More generally, let A = {e1, ..., en} ⊆ Rn. We have:

co (A) =

{
n∑

i=1

αie
i : αi ∈ [0, 1] ∀i = 1, ..., n and

n∑

i=1

αi = 1

}

=

{
(α1, ..., αn) : αi ∈ [0, 1] ∀i = 1, ..., n and

n∑

i=1

αi = 1

}
.

This polytope co (A) is called the simplex of Rn, often denoted by ∆n−1. �

By Theorem 383, each vector of the convex envelope co (A) can be obtained as

convex combination of a finite set {vi}i∈I of vectors of A. The next important result,

often called the Caratheodory Theorem, shows that in a vector space of finite dimension

n it is actually sufficient to consider convex combinations of at most n + 1 vectors of

A, i.e., with |I| ≤ n+ 1.

Theorem 386 Let V be a vector space of finite dimension n. Each vector that belongs

to co (A) can be written as convex combination of at most n+ 1 elements of A.

Proof. Wlog, let A ⊆ Rn. We prove that if v ∈ co (A) and v =
∑n

i=0 tiv
i with

vi ∈ A, ti > 0,
∑n

i=0 ti = 1 and N > d, then v can be written as convex combination

of at most N − 1 points of A. Wlog, set v0 = 0. But, N > d implies that {vi}ni=1
are linearly dependent. Therefore, there exist λ1, λ2, ..., λN ∈ R not all zero such that∑n

i=1 λiv
i = 0. Wlog, assume

∑n
i=0 λi ≥ 0 (otherwise we change all their signs) and

λj > 0 for some j. Observe that if λi ≤ 0, then ti − tλi ≥ 0, while if λi > 0, then

ti − tλi ≥ 0 if and only if t ≤ ti
λi
. Set t̄ = min

{
tn
λn

: λn > 0
}

= tj
λj
. Then
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v =
n∑

i=0

tiv
i =

n∑

i=1

tiv
i =

n∑

i=1

tiv
i − t̄

n∑

i=1

tiv
i

=
n∑

i=1

(ti − t̄λi) v
n =

n∑

j �=i=1
(ti − t̄λi) v

i

and
∑n

i=1 (ti − t̄λi) =
∑n

i=1 ti − t̄
∑n

i=1 λi ≤ 1 (since
∑n

i=1 λi ≥ 0). Finally:

v =
n∑

j �=i=1
(ti − t̄λi) ai +

(
1−

n∑

i=1

(ti − t̄λi)

)
0.

�

Next result is a consequence of the Caratheodory Theorem and shows that convex

envelopes preserve compactness.

Corollary 387 Let V be a finite dimensional normed vector space. The convex envel-

ope of a compact subset of V is compact.

When A is a compact subset of a finite dimensional normed vector space, we there-

fore have that co (A) is compact, and so co (A) = co (A).

Proof Wlog, let A ⊆ Rl. Let xk =
∑N+1

j=1 λ
(k)
j a

(k)
j for k ∈ N be a sequence in co (A).

But, {
λ
(k)
1

}
k∈N

,
{
λ
(k)
2

}
k∈N

, ...,
{
λ
(k)
N+1

}
k∈N

⊆ [0, 1]

compact and
{
a
(k)
1

}
k∈N

,
{
a
(k)
2

}
k∈N

, ...,
{
a
(k)
N+1

}
k∈N

⊆ A compact, hence in at most

2N + 2 steps we can obtain a subsequence {km} of {k} such that for m→ ∞ we have

λ(km)j → λ̄j ∈ [0, 1] and a(km)j → āj ∈ A, then for the continuity of the operations:∑N+1
j=1 λ

(km)
j a

(km)
j → ∑N+1

j=1 λ̄jāj for m → ∞, moreover 1 =
∑N+1

j=1 λ
(km)
j → ∑N+1

j=1 λ̄j

implies
∑N+1

j=1 λ̄j = 1. The subsequence xkm of xk converges to
∑N+1

j=1 λ̄j āj ∈ co (A). �

7.8.1 Affine spaces

Let V be a vector space and W ⊆ V be a linear subspace of V . The translation

A = W +u is called an affine subspace of V . We also say that A is parallel to W . The

dimension of A is the dimension of W , whenever it is finite.

For instance, if dim (W ) = 1, A is called a straight line. The straight line can be

written in the parametric form

A = {u+ λv : λ ∈ R} .
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The opposite extreme to the straight lines is represented by the (affine) hyperplanes.

Consider any non-zero linear functional L : V → R. If α is a fixed element of R the set

H = {v ∈ V : L (v) = α}

is called an hyperplane of V . Clearly H is an affine subspace because it is parallel to

ker (L). Actually, H = ker (L) + v, where v is any element for which L (v) = α.

Observe that if the affine subspace A has the representation A = W + u, where W

is a linear subspace, then u ∈ A, as 0 ∈ W. Moreover, if u1 is another point u1 ∈ A,

then A = W + u = W + u1. Actually, from A = W + u, it follows u1 = w+ u for some

w ∈W . Hence, W + u1 = W + w + u = W + u.

This fact implies another important property. If A is an affine space and u is any

point u ∈ A, then A− u is the linear subspace parallel to A and we have A = W + u,

where W = A− u.

A linear combination

v = λ1v1 + λ2v2 + ...+ λmvm

in a vector space V is called an affine combination if λ1+λ2+ ...+λm = 1. The vectors

{vi}mi=1 are said to be affinely independent, provided

λ1v1 + λ2v2 + ...+ λmvm = 0

and λ1 + λ2 + ...+ λm = 0 implies necessarily that λ1 = λ2 = ... = λm = 0.

The affine combinations play for affine spaces the role played by linear combinations

for vector spaces and the convex combinations for convex sets.

Proposition 388 A ⊆ V is affine if and only if it contains all the affine combinations

of elements in A.

Proof Assume that A is affine. That is, A = a+W where W is a linear subspace of

V . Let (vi)
m
i=1 ⊆ A and (λi)

m
i=1 be with

∑m
i=1 λi = 1. Since vi − a ∈W , it follows

m∑

i=1

λivi = a+
m∑

i=1

λi (vi − a) ∈ a+W.

Conversely, assume that A is closed under affine combinations. Pick a ∈ A. We must

prove that A− a is a vector space. Given v1, v2 ∈ A and λ1, λ2 ∈ R, we have

λ1 (v1 − a) + λ2 (v2 − a) + a = λ1v1 + λ2v2 + (1− λ1 + λ2) a ∈ A.

Hence, λ1 (v1 − a) + λ2 (v2 − a) ∈ A− a. Consequently A− a is a vector space. �

Given a nonempty subset C ⊆ V , we define the affine hull of C, denoted by aff (C),

the smallest affine subspace containing C. The next proposition characterizes this set

aff (C).
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Proposition 389 The following definitions are equivalent:

i)

aff (C) =
⋂

α

Aα

where the intersection is made over the class of all affine subspaces Aα ⊇ C;

ii)

aff (C) =

{
m∑

i=1

λivi : {vi}mi=1 ⊆ C,
m∑

i=1

λi = 1

}
. (7.21)

Proof We must first prove that the definition as intersection of affine subspaces is

meaningful. Note that the class is nonempty since V ⊇ C is an affine space. Let us

show that intersection is still an affine space. Since C is nonempty, let c ∈ C. Hence,

c ∈ Aα for all α. Hence, Aα−c = Wα is a linear subspace, and Aα = Wα+c. Therefore,

⋂

α

Aα =
⋂

α

(Wα + c) =

(⋂

α

Wα

)
+ c

that implies
⋂
αAα to be an affine space.

ii) We now show that definition 7.21 turns out to be equivalent to the first one.

The set defined in 7.21 is an affine space. More specifically, if c is a fixed element of

C, then
{

m∑

i=1

λivi : {vi}mi=1 ⊆ C,
m∑

i=1

λi = 1

}

= span {v − c : v ∈ C}+ c.

Actually, if v =
∑m

i=1 λivi, with vi ∈ C and
∑m

i=1 λi = 1, then

v =
m∑

i=1

λivi =
m∑

i=1

λivi −
m∑

i=1

λic+ c

=
m∑

i=1

λi (vi − c) + c

and so v ∈ span {v − c : v ∈ C}+ c. Conversely, if v ∈ span {v − c : v ∈ C}+ c, then

v =
m∑

i=1

λi (vi − c) + c

for scalars λi. Consequently,

v =
m∑

i=1

λivi +

(
1−

m∑

i=1

λi

)
c

and v is the affine combination of elements in C.
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It remains to prove that if Aα ⊇ C then

Aα ⊇
{

m∑

i=1

λivi : {vi}mi=1 ⊆ C,
m∑

i=1

λi = 1

}
.

But this is obvious since the operation of affine combinations is closed for affine spaces.

The claim is hence proved. �

Proposition 390 If H is an hyperplane of V , and v0 /∈ H, then

aff (H, v0) = span (H, v0) = V.

Consequently, if A ⊇ H is affine, then either A = H or A = V .

Proof LetH = {v : V : L (v) = α}, where L is a linear functional. Let L (v0) = β 	= α,

as v0 /∈ H. Take any point v ∈ V with L (v) 	= β. Consider the point

v1 =
α− β

L (v)− β
v +

(
1− α− β

L (v)− β

)
v0.

It is easy to see that L (v1) = α. Hence, v1 ∈ H and consequently

v =
L (v)− β

α− β
v1 +

(
1− L (v)− β

α− β

)
v0.

We deduce that all the points outside the hyperplane L (v) = β lie in aff (H, v0). This

is enough as an affine space is connected and therefore also the set L (v) = β lies in

aff (H, v0). Note further that from the obvious relation aff (H, v0) ⊆ span (H, v0) ⊆ V

it follows that aff (H, v0) = span (H, v0).

To finish, if A ⊃ H, there is a point v0 ∈ A and v0 /∈ H. Hence, aff (H, v0) ⊆ A,

that implies A = V . �

Corollary 391 Let H be an hyperplane of a vector space V.

i) if dim (V ) = n, then dim (H) = n− 1.

ii) if V is a normed space, then either H is closed or H = V .

Proof (i) From the relation span (H, v0) = V , it follows that dim (H) ≥ n −
1. Clearly dim (H) cannot be n. Otherwise the parallel linear space W would have

dimension n. Hence H = a+W = a+ V = V which is not an hyperplane.

(ii) Suppose that H is not closed, i.e., H ⊂ H. It is easy to see that H is still affine.

Let v0 ∈ H and v0 /∈ H. Then

H ⊇ aff (H, v0) = V

and therefore H is dense in V . �

We end this subsection by giving a useful criterion for the determination of the

dimension of affine spaces, related to the notion of affinely independent vectors.
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Proposition 392 Let A ⊆ V be an affine space. dim (A) = m if and only if m+ 1 is

the maximum number of elements in A which are affinely independent.

Proof Let A = W + a where W is the parallel subspace. Assume that dim (A) =

m = dimW . This implies the existence of m linearly independent vectors (vi)
m
i=1 ⊂W .

Consider the m + 1 vectors a, v1 + a, ..., vm + a in A. We show that they are affinely

independent. Let λ0, λ1, ..., λm be scalars with λ0 +
∑m

i=1 λi = 0. We have

λ0a+
m∑

i=1

λi (vi + a) =

(
λ0 +

m∑

i=1

λi

)
a+

m∑

i=1

λivi

=
m∑

i=1

λivi.

Because (vi)
m
i=1 are linearly independent, λi = 0 for i = 1, ...,m ⇒ λ0 = 0. Hence, the

vectors a, v1 + a, ..., vm + a are affinely independent. Thus the maximum number is

greater or equal to m+ 1. To prove that it is just m+ 1, suppose by contradiction the

existence of p > m+ 1 elements (vi)
p
i=1 ⊂ A which are affinely independent. Consider

the p−1 > m points v2−v1, ...., vp−v1 ∈W . They are linearly independent. Actually,

set
p∑

i=2

λi (vi − v1) = 0.

It follows

0 =

p∑

i=2

λi (vi − v1) =

p∑

i=2

λivi −
(

p∑

i=2

λi

)
v1.

Hence, λi = 0 for i = 2, ..., p and the p − 1 vectors are linearly independent. This

contradicts the fact that dimW = m < p− 1. �

Definition 393 Let v1, v2, ..., vn+1 ∈ Rn be affinely independent. The set ∆ = co (v1, v2, ..., v

is called a n-dimensional simplex.

Proposition 394 Let v1, v2, ..., vn+1 ∈ Rn be affinely independent. Any point v ∈ Rn
admits a unique representation as v = λ1v1 + λ2v2 + ...+ λn+1vn+1 with λ1 + λ2 + ...+

λn+1 = 1. In particular, if λi ≥ 0 we get the points of the simplex ∆.

Proof Clearly any point is representable as an affine combination because aff (v1, v2, ...,

Rn. Let us shows that the coefficient λi are uniquely determined. Suppose that there

is a point v ∈ Rn for which

v = λ1v1 + λ2v2 + ...+ λn+1vn+1

v = λ′1v1 + λ′2v2 + ...+ λ′n+1vn+1
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with λ1 + λ2 + ...+ λn+1 = 1 = λ′1 + λ′2 + ...+ λ′n+1. This implies

(λ1 − λ′1) v1 + (λ2 − λ′2) v2 + ...+
(
λn+1 − λ′n+1

)
vn+1 = 0

and

(λ1 − λ′1) + (λ2 − λ′2) + ...+
(
λn+1 − λ′n+1

)
= 0.

Since the vectors are affinely independent, λi = λ′i for i = 1, ..., n + 1 and hence the

representation is unique. �

Remark. When v1, v2, ..., vn+1 ∈ Rn are affinely independent, the map v ↔
(λ1, λ2, ..., λn+1) , as described in Proposition 394, is called the barycenter coordinates

of v.

7.8.2 Separation properties

In this subsection we treat only convex sets of some finite-dimensional space. With

no loss of generality we can consider convex sets C of Rn. By using the operation of

affine closure, aff (C), we show that a non-empty convex set in Euclidean spaces with

empty interior, has a smaller ambient space, for which it acquires an interior. This

important property makes the finite-dimensional situation radically different from the

infinite-dimensional case.

Proposition 395 Let C ⊆ Rn be a convex set. If intC = ∅, then dimaff (C) < n.

Proof It suffices to prove there is an affine space A ⊇ C and with dim (A) <

n. First we claim there are no n + 1 affinely independent points v1, v2, ..., vn+1 in

C. For if there were such points, then ∆ = co (v1, v2, ..., vn+1) ⊆ C. In view of

Proposition 394, consider the barycenter coordinates v ↔ (λ1, λ2, ..., λn+1). To the

n + 1-ple
(

1
n+1

, ...., 1
n+1

)
corresponds the point v = 1

n+1
(v1 + ...+ vn+1) ∈ ∆ ⊂ C.

Consequently, there is a small neighborhood U of v in Rn such that for w ∈ U its

barycenter coordinates are all positive. Hence U ⊆ ∆ ⊂ C and C would have nonempty

interior. Now we can deduce that dimaff (C) < n. Actually, let k < n + 1 be the

maximum number of affinely independent points in C and let v1, v2, ..., vk be such

points. If v is any point of C, then the linear system

λ1v1 + λ2v2 + ....+ λkvk + λv = 0

λ1 + λ2 + ....+ λk + λ = 0

has a non trivial solution. Clearly, as v1, v2, ..., vk are affinely independent, λ must be

different from 0. Hence,

v =
∑(

−λi
λ

)
vi
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and v is an affine combination of the points v1, v2, ..., vk. Hence, C ⊆ aff {v1, v2, ..., vk} =⇒
aff (C) ⊆ aff {v1, v2, ..., vk}, and thus dimaff (C) < n. �

We have seen above how, given any set, the notion of convex envelope allows to

construct through the convex combinations of its elements the smallest convex set that

contains it. Now we consider, in a sense, the opposite problem: given a convex set C,

we ask what is the smallest set of its points from which C can be reconstructed as their

convex combinations. In other words, we ask what is the minimal set A ⊆ C such that

co (A) = C.

If it exists, such set A gives us the essence of the set C, its “skeleton.” From the

point of view of convexity, the knowledge of A would be equivalent to the knowledge of

the entire set C, since C could be reconstructed from A in a “mechanical” way through

convex combinations of its elements.

To understand how to address this problem, we go back to the rhomb described in

Example 384. There we saw how this polygon is the convex envelope of its vertices

A = {(0, 1) , (1, 0) , (−1, 0) , (0,−1)}. In general, it is immediate to see how any polygon

can be seen as the convex envelope of its own vertices.

On the other hand, we observed how the same rhomb can be seen as the convex

envelope of the set:

A′ = {(0, 1) , (1, 0) , (−1, 0) , (0,−1) , (1/2, 1/2)} .

In this set, besides the vertices there is also the vector (1/2, 1/2), which is however

completely useless for the representation of the polygon because is itself a convex

combination of the vertices.12 We therefore have a redundancy in the set A′, while this

does not happen in the set A of the vertices, whose elements are all essential for the

representation of the rhomb.

Hence, for a polygon the set of the vertices is the natural candidate to be the minimal

set that allows to represent each point of the polygon as a convex combination of its

elements.

Motivated by all this, we introduce the notion of extreme point, which generalizes

that of vertex to any convex sets.

Definition 396 Let C be a convex subset of a vector space V . A point v0 ∈ C is said

to be an extreme point for C if v0 = tv+ (1− t)w with t ∈ (0, 1) and v, w ∈ C implies

w = v = v0.

12In fact: (
1

2
,
1

2

)
=
1

2
(1, 0) +

1

2
(0, 1) .



7.8. CONVEX SETS 217

A point v0 ∈ C is therefore extreme if it is not convex combination of other two

vectors of C. The set of the extreme points of C is denoted by extC, and in the case

of polytopes the extreme points are called vertices.

Next result gives a simple characterization of extreme points, by showing that they

are the points that can be eliminated without altering the convex nature of the set

considered.

Lemma 397 A point v0 of a convex set C is extreme if and only if the set C\ {v0} is

convex.

Proof Let v0 ∈ extC and let v,w ∈ C\ {v0}. Since C is convex, tv + (1− t)w ∈ C

for each t ∈ [0, 1]. To prove that tv + (1− t)w ∈ C\ {v0}, it is therefore sufficient to

prove that v0 	= tv + (1− t)w. This is obvious if t ∈ {0, 1}. On the other hand, if it

held v0 = tv + (1− t)w for some t ∈ (0, 1), then Definition 396 implies u = v = v0,

which contradicts v, w ∈ C\ {v0}. In conclusion, tv + (1− t)w ∈ C\ {v0}, and the set

C\ {v0} is therefore convex.

Viceversa, assume that v0 ∈ C is such that the set C\ {v0} is convex. We prove that

v0 ∈ extC. Let v, w ∈ C be such that v0 = tv+(1− t)w with t ∈ (0, 1). Since C\ {v0}
is convex, if v,w belong to C\ {v0}, then tv + (1− t)w ∈ C\ {v0} for each t ∈ [0, 1].

Hence, v0 	= tv + (1− t)w for each t ∈ [0, 1]. It follows that v, w do not belong to

C\ {v0}, which is equivalent to say that w = v = v0. In conclusion, v0 ∈ extC. �

The next result shows that the extreme points belong necessarily to the frontier of

the set, that is, no interior point of a convex set can be an extreme point.

Proposition 398 Given a convex set C of a normed vector space, we have extC ⊆ ∂C.

Proof Let v be an interior point of C. We prove that v /∈ extC. Since v is an interior

point, there exists a neighborhood Bε (v) such that Bε (v) ⊆ C. Consider the points

(1− ε/n) v and (1 + ε/n) v. We have:

‖(1− ε/n) v − v‖ =
ε

n
‖v‖ and ‖(1 + ε/n) v − v‖ =

ε

n
‖v‖ ,

and hence (1− ε/n) v, (1 + ε/n) v ∈ Bε (v) for n sufficiently large. On the other hand,

v =
1

2
(1− ε/n) v +

1

2
(1 + ε/n) v,

and so v /∈ extC. �

An immediate consequence of Proposition 398 is that open convex sets (like, for

example, open unit balls) do not have extreme points.

We now see other examples in which we get the set of the extreme points of some

convex sets.
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Example 399 Consider the polytope co (A) generated by a finite collection A ={
v1, ..., vk

}
of vectors of a vector space V . It is easy to see that extco (A) is not empty

and that extco (A) ⊆ A, i.e., the vertices of the polytope necessarily belong to the finite

collection that generates the polytope. �

Example 400 Consider the closed unit ball BV = {v ∈ V : ‖v‖ ≤ 1} of a normed

vector space V . Since ∂BV = {v ∈ V : ‖v‖ = 1}, by Proposition 398 we have:

extBV ⊆ {v ∈ V : ‖v‖ = 1} . (7.22)

In the next examples we will see cases in which this inclusion is strict, and others in

which it is instead an equality. �

Example 401 Consider the closed unit ball BRn = {x ∈ Rn : ‖x‖2 ≤ 1} of Rn, en-

dowed with its Euclidean norm ‖·‖2. In this case, we have:

extBRn = {x ∈ Rn : ‖x‖2 = 1} .

The set of the extreme points is therefore given by the “circumference” of the ball

and the inclusion (7.22) in this case is an equality. To prove this statement, we take a

point x ∈ Rn such that ‖x‖2 = 1, and we show that x ∈ extBRn . To this end, we use

Exercise 13.0.50. Let therefore y ∈ BRn be such that x + y ∈ BRn and x − y ∈ BRn .

Therefore, ‖x+ y‖ ≤ 1 and ‖x− y‖ ≤ 1, from which:13

1 ≥ ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2x · y,
1 ≥ ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2x · y.

Being ‖x‖ = 1, it follows that:

‖y‖2 + 2x · y ≤ 0 and ‖y‖2 − 2x · y ≤ 0,

which implies:

‖y‖2 + 2x · y ≤ 2x · y − ‖y‖2 ,

and hence ‖y‖2 = 0, that is y = 0. By Exercise 13.0.50 we can conclude that x ∈
extBRn, as desired. �

Example 402 Consider the closed unit ball BRn = {x ∈ Rn : ‖x‖1 ≤ 1} of Rn, en-

dowed this time with the norm ‖·‖1. In this case we have:

extBRn =
{
±ei : i = 1, ..., n

}
, (7.23)

13See Ambrosetti and Musu (1988) p. 56.
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that is, extBRn is the set of the fundamental versors ei of Rn and of their negatives

−ei. The set extBRn has therefore cardinality 2n and the inclusion (7.22) is in this

case strict. For simplicity, consider the case n = 2. Let therefore x ∈ R2 be such that

‖x‖1 = 1, and show that if x 	= ±ei for i = 1, 2, then x /∈ extBRn. Since x 	= ±ei and
‖x‖1 = |x1|+ |x2| = 1, we have 0 < |xi| < 1 for i = 1, 2. Set y = (x1, 0) and z = (0, x2),

so that 1 = ‖x‖1 = ‖y‖1 + ‖z‖1. Moreover, set:

ỹ =
y

‖y‖1
and z̃ =

z

‖z‖1
.

We have ‖ỹ‖1 = ‖z̃‖1 = 1, and x = ‖y‖1 ỹ + (1− ‖y‖1) z̃. Since ‖y‖1 ∈ (0, 1), it

follows that x is a convex combination of two other vectors of B1 (0), and so it is not

an extreme point. �

Example 403 Consider the vector space (C ([0, 1]) , ‖·‖∞). In this case, BC([0,1]) =

{f ∈ C ([0, 1]) : ‖f‖∞ ≤ 1}. Denote by 1[0,1] the constant function equal to 1, that is,

1[0,1] (t) = 1 for each t ∈ [0, 1]. We have extBC([0,1]) =
{
±1[0,1]

}
, that is, the closed

unit ball has only two extreme points, the function 1[0,1] and its negative −1[0,1]. By

(7.22), it is enough to consider f ∈ C ([0, 1]) such that ‖f‖∞ = 1, and to show that

if f 	= ±1[0,1], then f /∈ extBC([0,1]). Let therefore f ∈ C ([0, 1]) with ‖f‖∞ = 1 and

f 	= ±1[0,1]. Hence there exists t0 ∈ [0, 1] such that |f (t0)| < 1. Set g = 1 − |f |. It is
easy to see that ‖f + g‖∞ ≤ 1 and ‖f − g‖∞ ≤ 1, and hence f + g and f − g belong

to B1 (0). On the other hand, g (t0) 	= 0, and so g 	= 0. By Exercise 13.0.50, we have

f /∈ extBC([0,1]), as desired. �

Next fundamental result shows that a convex and compact set can be reconstructed

from its extreme points, by taking all their convex combinations.

Theorem 404 (Minkowski) Let K be a convex and compact subset of a finite di-

mensional normed vector space V . Then:

K = co (extK) . (7.24)

Proof Luigi

Note that ext (K) is the minimal set in K for which (7.24) holds: if A ⊆ K is

another set for which K = co (A), then ext (K) ⊆ A. In fact, by definition the extreme

points of K cannot be expressed as convex combinations of other vectors of the set K,

and must therefore necessarily belong to such set A.

Hence:

• all the points of a compact and convex set K can be expressed as convex com-

binations of the extreme points;
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• the set of the extreme points of K is the minimal set in K for which this is true.

We can conclude that Minkowski Theorem answers the question with which we

started this Subsection, that is, the characterization of the minimal set of points of a

convex set, whose convex combinations makes it is possible to reconstruct the convex

set considered.

The Minkowski Theorem can be extended to infinite dimensional spaces, where it

takes the name of Krein-Milman Theorem. We see a version of this result for normed

vector spaces, though it is not the most interesting form in which this theorem appears.

Theorem 405 (Krein-Milman) Let K be a convex and compact subset of a normed

vector space V . Then:

K = co (extK) . (7.25)

In Minkowski Theorem we only used the convex envelope and, therefore, the result

obtained in (7.24) is stronger than what we have now in (7.25). In fact, convex envelopes

are a simpler set to construct than closed and convex envelopes, as it has been observed

in Proposition 382. On the other hand, Krein-Milman Theorem applies to any normed

vector space, not necessarily finite dimensional.14

As to the minimality of extK, in the more general context of Krein-Milman Theorem

we have the following result, based on closures.

Theorem 406 Let K be a convex and compact subset of a normed vector space V .

Then, given a set A ⊆ K, we have:

K = coA⇐⇒ A ⊇ extK.

Finally, observe that Example 403 shows that in the Krein-Milman Theorem the

hypothesis that K is compact is crucial. In fact, in this example we saw that the set

of the extreme points of the closed unit ball of the space (C ([0, 1]) , ‖·‖∞) is given by{
±1[0,1]

}
. Hence,

co (extK) =
{
α1[0,1] : α ∈ [−1, 1]

}
	= B1 (0) ,

which does not contradict the Krein-Milman Theorem since (C ([0, 1]) , ‖·‖∞) is an

infinite dimensional space and therefore, by Theorem 364, the convex set BC([0,1]) is

not compact.

14In this regard it is, however, necessary to remember Theorem 364, according to which in infinite
dimensional spaces there are “few” sets that are compact in the metric induced by the norms. This is
why before we said that Theorem 405 is not the most interesting version of Krein-Milman Theorem.



Chapter 8

Concavity

8.1 Definitions

8.1.1 Concavity

This chapter is devoted to concave functionals, a fundamental class of non linear func-

tionals that have as their natural domain the convex sets studied in the previous

chapter.

Definition 407 A functional f : C → R defined on a convex set C of a vector space

is called concave if

f (λv + (1− λ)w) ≥ λf (v) + (1− λ) f (w) , (8.1)

for each v, w ∈ C and each λ ∈ [0, 1], while it is called convex if

f (λv + (1− λ)w) ≤ λf (v) + (1− λ) f (w) , (8.2)

for each v, w ∈ C and each λ ∈ [0, 1].

Graphically, a functional is concave if the chord that joins any two points (v, f (v))

and (w, f (w)) of its graph lies below the graph of the functional itself, while it is convex

if the opposite happens, i.e., if such chord lies above the graph of the functional.

Example 408 Each norm ‖·‖ : V → R is a convex functional.1 In fact:

‖λv + (1− λ)w‖ ≤ ‖λv‖+ ‖(1− λ)w‖ = λ ‖v‖+ (1− λ) ‖w‖ , (8.3)

for each v, w ∈ V and each λ ∈ [0, 1]. �

1Throughout the chapter, V denotes a vector space and C a convex subset of V .

221
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Notice that a functional f is convex if and only if −f is concave. This simple

duality between the convexity and concavity of functionals implies that the properties

of convex functionals can be immediately derived from those of concave functionals.

For this reason we will consider only the properties of concave functionals.

An important subclass of concave functionals is given by strictly concave function-

als, which are the functionals f : C → R such that

f (λv + (1− λ)w) > λf (v) + (1− λ) f (w) ,

for each v 	= w ∈ C and each λ ∈ (0, 1). In other words, the inequality (8.1) here is

required to be strict, which implies that the graph of a strictly concave functional has

no straight lines.

Similarly, a functional f : C → R is strictly convex if

f (λv + (1− λ)w) < λf (v) + (1− λ) f (w) ,

for each v 	= w ∈ C and each λ ∈ (0, 1). In particular, a functional is strictly convex if

and only if −f is strictly concave.

Since the inequalities (8.1) and (8.2) are weak, it is possible for a functional to be

at the same time concave and convex. In such case, the functional is called affine. That

is, a functional f : C → R is affine if

f (λv + (1− λ)w) = λf (v) + (1− λ) f (w) ,

for each v, w ∈ C and each λ ∈ [0, 1]. Next result shows that affine functionals defined

on vector spaces are nothing but translations of linear functionals.

Proposition 409 A functional f : V → R defined on a vector space V is affine if

and only if there exist a linear functional L : V → R and a scalar α ∈ R such that

f (v) = L (v) + α for each v ∈ V .

Notice that f = L + α implies f (0) = α, and hence by Proposition 409 it follows

that an affine functional f is linear if and only if f (0) = 0. In other words, linear

functionals can be viewed as affine functionals that become equal to zero at the neutral

element 0.

Proof Let L ∈ V ′. For each v, w ∈ C and each λ ∈ [0, 1], we have:

f (λv + (1− λ)w) = L (λv + (1− λ)w) + α = λL (v) + (1− λ)L (w) + α

= λf (v) + (1− λ) f (w) ,
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and hence f is affine.

Viceversa, let f : V → R be affine and set L (v) = f (v) − f (0) for each v ∈ V .

We prove that L ∈ V ′. We start by proving that L (αv) = αL (v) for each v ∈ V and

eachα ∈ R. For each α ∈ [0, 1] we have

L (αv) = f (αv)− f (0) = f (αv + (1− α) 0)− (1− α) f (0)− f (0)

= αf (v) + (1− α) f (0)− (1− α) f (0)− f (0) = αf (v)− f (0)

= αL (v) .

Now let α > 1. Setting w = αv, from what we just proved we have

L (v) = L
(w
α

)
=

1

α
L (w) ,

and so L (αv) = αL (v). On the other hand,

0 = L (0) = L

(
1

2
v − 1

2
v

)
= f

(
1

2
v − 1

2
v

)
− f (0)

=
1

2
f (v) +

1

2
f (−v)− 1

2
f (0)− 1

2
f (0)

=
1

2
L (v) +

1

2
L (−v) ,

from which L (v) = −L (−v). If α < 0, we therefore have:

L (αv) = L ((−α) (−v)) = (−α)L (−v) = (−α) (−L (v)) = αL (v) .

In conclusion, L (αv) = αL (v) for each v ∈ V and eachα ∈ R. By Proposition 59, to

complete the proof that L ∈ V ′ we have to prove that L (v + w) = L (v) + L (w) for

each v, w ∈ V . We have:

L (v + w) = 2L

(
v + w

2

)
= 2L

(v
2

+
w

2

)
= 2

(
f
(v
2

+
w

2

)
− f (0)

)

= 2

(
1

2
f (v) +

1

2
f (w)− 1

2
f (0)− 1

2
f (0)

)
= L (v) + L (w) ,

as desired. �

Example 410 By Theorem 65, a functional f : Rn → R is affine if and only if there

exist χ ∈ Rn and α ∈ R such that f (x) = χ · x+ α for each x ∈ R. When n = 1, we

have f (x) = βx+α, with α, β ∈ R, that is, the affine functionals on R are the straight

lines. �
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Superlinear Functionals

A very important class of concave functionals are the superlinear functionals, which

are the functionals f : V → R defined on the whole space V and such that:

(i) f (αv) = αf (v) for each α ≥ 0 and each v ∈ V,

(ii) f (v + w) ≥ f (v) + f (w) for each v, w ∈ V .

Property (i) is called positive homogeneity, while property (ii) is called superadditiv-

ity. Hence, a functional is superlinear if it is positively homogeneous and superadditive.

Similarly, a functional f : V → R is sublinear if it is positively homogeneous and sub-

additive, i.e., if f (v + w) ≤ f (v) + f (w) for each v, w ∈ V . We already introduced

this notion in Definition 75, and it is immediate to see that f is sublinear if and only

if −f is superlinear.

Example 411 Norms ‖·‖ : V → R are sublinear functionals. �

Example 412 Consider the functional f : V → R defined by

f (v) = inf
i∈I
Li (v) , ∀v ∈ V,

where {Li}i∈I be a collection, finite or infinite, of linear functionals defined on a vector

space V . This functional f is easily seen to be superlinear.

Superlinear functionals are concave (and so sublinear functionals are convex). In

fact:

f (λv + (1− λ)w) ≥ f (λv) + f ((1− λ)w) = λf (v) + (1− λ) f (w) ,

for each v, w ∈ V and each λ ∈ [0, 1] (note the analogy with (8.3), obviously due to

the sublinearity of the norm).

In the sequel superlinear functionals will play an important role. For this reason

next we give some useful properties of superlinear functionals and we then provide a

key characterization.

Lemma 413 Let f : V → R be a superlinear functional. Then, f (0) = 0 and

−f (−v) ≥ f (v) , ∀v ∈ V. (8.4)

Furthermore, f is linear if and only if f (−v) = −f (v) for each v ∈ V .
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Proof Since f is positively homogeneous, we have f (α0) = αf (0) for each α ≥ 0.

Since α0 = 0, we therefore have f (0) = αf (0) for each α ≥ 0, which can happen

only if f (0) = 0 (note that the argument is analogous to the one used in the proof of

Proposition 60). Hence, for each v ∈ V , we have:

0 = f (0) = f (v − v) ≥ f (v) + f (−v) ,

which implies −f (−v) ≥ f (v), i.e., (8.4).

Obviously, if f is linear we have f (−v) = −f (v) for each v ∈ V . We conclude

the proof by showing that also the viceversa is true. Let f (−v) = −f (v) for each

v ∈ V . In Exercise 13.0.55 we considered the sublinear functional f : V → R defined

as f (v) = −f (−v) for each v ∈ V . From f (−v) = −f (v) it follows that f (v) = f (v)

for each v ∈ V , and hence f is affine. By Proposition 409, there exist L ∈ V ′ and

α ∈ R such that f = L+ α. On the other hand, α = f (0) = 0, and hence f = L, i.e.,

f is a linear functional. �

Note that in the final part of the previous proof we implicitly proved also the

following result.

Lemma 414 A functional f : V → R is both superlinear and sublinear if and only if

is linear.

The next result is a key characterization of superlinear functionals. It shows that

they can be viewed as the lower envelopes of the linear functionals that pointwise

dominate them.

Theorem 415 A functional f : V → R is superlinear if and only if

f (v) = min
{L∈V ′ :L≥f}

L (v) , ∀v ∈ V . (8.5)

If, in addition, f is continuous, then in (8.5) we can replace the algebraic dual V ′ with

the topological dual V ∗.

Proof. We prove the “only if” part, as the “if” follows from Example 412. Suppose

f is superlinear and set Γ = {L ∈ V ∗ : L ≥ f}. Let v ∈ V . Consider the vector

subspace Mv = {αv : α ∈ R} generated by v (see Example 41). Define Lv : Mv → R

by Lv (αv) = αf (v) for all α ∈ R. The functional Lv is linear on the vector subspace

Mv. By the Hahn-Banach Theorem 77, there is L̃ ∈ V ′ such that L̃ ≥ f on V and

L̃ = Lv on Mv. Hence, L̃ ∈ Γ and f (v) = L̃ (v). Consequently, f (v) = L̃ (v) =

min{L∈V ′:L≥f} L (v).

Finally, suppose f is continuous. By Theorem 432, f is lower bounded. Hence, given

v ∈ V , there is a neighborhood Bε (v) and a constant Mv ∈ R such that f (w) ≥ M
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for all w ∈ Bε (v). Then, for all L ∈ Γ it holds L (w) ≥ M for all w ∈ Bε (v). Again

by Theorem 432, this implies that all L ∈ Γ are continuous. Hence, Γ ⊆ V ∗. �

We close with a further characterization of the linearity of superlinear functionals.

Corollary 416 A superlinear functional f : V → R is linear (resp., continuous linear)

if and only if there exists a unique L ∈ V ′ (resp., L ∈ V ∗) such that L ≥ f .

Proof. Suppose f is linear. Let L ∈ V ′ be such that L ≥ f . Then,

f (v) = −f (−v) ≥ −L (−v) = L (v) ≥ f (v) , ∀v ∈ V,

and so f = L. Conversely, suppose there is a unique L ∈ V ′ such that L ≥ f . Then

(8.5) implies f = L.

A similar argument proves the continuous case. �

8.1.2 Lipschitzianity

We introduce now Lipschitzian functionals, another fundamental class of nonlinear

functionals. Differently from convexity, which relies on the vector structure, Lipschit-

zianity can be introduced in any metric space.

Definition 417 A function f : A ⊆ X → Y between two metric spaces X and Y is

said to be Lipschitz on a subset B of A if there exists a positive scalar M > 0 such

that

dY (f (x1) , f (x2)) ≤MdX (x1, x2) , ∀x1, x2 ∈ B. (8.6)

A function is called Lipschitz, without further qualifications, when A = B; i.e.

when (8.6) holds on all the domain of the function.

In Lipschitz functions the distance dY (f (x1) , f (x2)) between the images of two

points x1 and x2 is therefore controlled, through a positive coefficientM , by the distance

dX (x1, x2) between the same two points x1 and x2.

In the case which we are interested in, we have that a functional f : A ⊆ V → R

defined on a subset A of a normed vector space V is Lipschitz on B ⊆ A if there exists

a positive scalar M > 0 such that

|f (v)− f (w)| ≤M ‖v − w‖ , ∀v, w ∈ B. (8.7)

When A = B, the functional f is called Lipschitz (or Lipschitzian). Note that B is

not required to be convex, exactly because Lipschitzianity is not based on the vector

structure of V , but only on the metric induced by the norm.
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Example 418 By (7.4), bounded linear functionals are Lipschitz. By (7.2), also the

norms are Lipschitz functionals. �

Example 419 Let C1 ([a, b]) be the vector space of the continuously differentiable

functions f : [a, b] → R (remember Definition 155). All these functions are Lipschitz.

In fact, let f ∈ C1 ([a, b]) and set M = maxx∈[a,b] |f ′ (x)|. Since the derivative f ′ is

continuous on [a, b], by the Weierstrass Theorem the constant M is well defined.

On the other hand, given x, y ∈ [a, b], by the Mean Value Theorem there exists

c ∈ [x, y] such that
f (x)− f (y)

x− y
= f ′ (c) .

Hence,
|f (x)− f (y)|

|x− y| = |f ′ (c)| ≤M,

and f is therefore Lipschitz. �

Example 420 Consider f : R+ → R given by f (x) =
√
x for each x ≥ 0. This

function is not Lipschitz. In fact,

lim
x→0+

f (x)− f (0)

x− 0
= lim
x→0+

√
x

x
= lim
x→0+

1√
x

= +∞,

and, setting y = 0, it cannot existM > 0 such that |f (x)− f (y)| ≤M |x− y| for each
x, y ∈ R+.

On the other hand, the previous Example shows that f is Lipschitz on each interval

[a, b] with a, b > 0. Hence, f is a function that is not of Lipschitz, i.e., (8.7) does not

hold for any two points of its domain, but it is Lipschitz on appropriate subsets of the

domain. �

Lipschitz functionals are obviously continuous. In fact, if vn → v, we have:

|f (vn)− f (v)| ≤M ‖vn − v‖ → 0,

and hence f (vn) → f (v). Next lemma shows that such functionals are actually uni-

formly continuous.2

Lemma 421 A Lipschitz functional f : A ⊆ V → R defined on a normed vector space

V is uniformly continuous.

2Even if this property, like other ones that we will see, holds for Lipschitz functions defined on
metric spaces, we only consider the case that is here relevant of functionals defined on normed vector
spaces.
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Proof For each ε > 0, take δε ∈ (0, ε/M). We have:

|f (v)− f (w)| ≤M ‖v − w‖ < ε

for each v, w ∈ V such that ‖v − w‖ < δε. �

Lipschitzianity is a global property since the constant M in (8.7) is required to be

the same for each pair of vectors v and w in B. It is, however, possible to give a local

version of Lipschitzianity.

Definition 422 A functional f : A ⊆ V → R is locally Lipschitz at a point v0 ∈ A if

there exist a neighborhood Bε (v0) and a positive scalar Mv0 > 0 such that

|f (v)− f (w)| ≤Mv0 ‖v − w‖ , ∀v,w ∈ Bε (v0) .

Notice the local character of this definition: the constant Mv0 depends on the

particular point v0 considered and, moreover, (8.7) is required to hold only among the

points of a neighborhood of the point v0 considered (and not between any two points

of the domain).

When f is locally Lipschitz at each point of a set B we say that it is locally Lipschitz

on B. Clearly, a functional that is locally Lipschitz on B is also continuous on B. It is

also clear that a functional that is Lipschitz on B is also locally Lipschitz on B. On the

contrary, since the constant Mv0 depends on the point v0, a functional that is locally

Lipschitz on B might well not be Lipschitz on B.

Example 423 Consider f : R→ R given by f (x) = x2 for each x ∈ R. By proceeding
as in Example 419 it is easy to see that f is locally Lipschitz at each x ∈ R. But, f is

not Lipschitz. In fact, if it were so there would exist M such that

∣∣x2 − y2
∣∣ ≤M |x− y| , ∀x, y ∈ R,

i.e., such that |x+ y| ≤M for each x, y ∈ R with x 	= y, which is impossible. �

There is, however, an important case where local Lipschitzianity implies the global

one.

Proposition 424 Let f : A ⊆ V → R be a functional defined on a subset A of a

normed vector space V , and let K ⊆ A be a compact subset. Then, f is Lipschitz on

K if and only if it is locally Lipschitz on K.
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Proof Since the “Only if ” is obvious, we prove the “If.” Let f be locally Lipschitz at

each point of K. For each v0 ∈ K there exist a neighborhood Bε (v0) and a constant

Mv0 > 0 such that

|f (v)− f (w)| ≤Mv0 ‖v − w‖ , ∀v,w ∈ Bε (v0) . (8.8)

The collection {Bε (v0)}v0∈K is an open cover of K, and therefore there exists a finite

subcover {Bε (vi0)}
n
i=1. Let M = maxi=1,...,nMvi

0
. Since K ⊆ ⋃ni=1Bε (vi0), (8.8) implies

that

|f (v)− f (w)| ≤Mv0 ‖v − w‖ ≤M ‖v − w‖ ∀v, w ∈ K,
as desired. �

8.2 First Properties

Consider in the set

ipo (f) = {(v, t) ∈ C ×R : f (v) ≥ t} , (8.9)

called the ipograph of f , which consists of the points (v, t) that lie below the graphG (f)

of the function f , which we remind is given by G (f) = {(v, t) ∈ C × R : f (v) = t}.
The next result shows that the concavity of f is equivalent to the convexity of

its ipograph. This provides a simple characterization of concave functionals through

convex sets.

Proposition 425 A functional f : C → R defined on a convex set C of a vector space

is concave if and only if its ipograph ipo (f) is a convex set in C × R.

Proof Let f be concave, and let (v, t) , (w, s) ∈ ipo (f). By definition, t ≤ f (v) and

s ≤ f (w), from which:

λt+ (1− λ) s ≤ λf (v) + (1− λ) f (w) ≤ f (λv + (1− λ)w) ,

for each λ ∈ [0, 1]. Hence, (λv + (1− λ)w, λt+ (1− λ) s) ∈ ipo (f), which proves that

ipo (f) is convex.

Viceversa, suppose that ipo (f) is convex. Hence, for each v, w ∈ C and λ ∈ [0, 1],

(λv + (1− λ)w,λf (v) + (1− λ) f (w)) ∈ ipo f

that is,

λf (v) + (1− λ) f (w) ≤ f (λv + (1− λ)w) ,

as desired. �

Though concavity is defined through convex combinations of only two elements,

next we show that it actually holds for all convex combinations.
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Proposition 426 A functional f : C → R defined on a convex set C of a vector space

is concave if and only if, for each finite collection {v1, ..., vn} of elements of C, we have

f

(
n∑

i=1

λiv
i

)
≥

n∑

i=1

λif
(
vi
)

(8.10)

for each λi ≥ 0 and
∑n

i=1 λi = 1.

Expression (8.10) is known as Jensen inequality.

Proof The “If” is obvious. As to the “Only if” we proceed, as for Lemma 378, by

induction on n. Let f be concave. Expression (8.10) obviously holds for n = 2.

Suppose that it holds for n − 1, i.e., that f
(∑n−1

i=1 λiv
i
)
≥ ∑n−1

i=1 λif (vi) for each

convex combination of n − 1 elements of C. If λn = 1, (8.10) trivially holds. Let

λn < 1. We have:

f

(
n∑

i=1

λiv
i

)
= f

(
n−1∑

i=1

λiv
i + λnv

n

)
= f

(
(1− λn)

n−1∑

i=1

λi
1− λn

vi + λnv
n

)

≥ (1− λn) f

(
n−1∑

i=1

λi
1− λn

vi

)
+ λnf (vn)

≥ (1− λn)
n−1∑

i=1

λi
1− λn

f
(
vi
)
+ λnf (vn) =

n∑

i=1

λif
(
vi
)
,

as desired. �

Turn now to the properties of the space of concave functionals. Given two func-

tionals f, g : C → R, the minimum functional f ∧g : C → R is defined by (f ∧ g) (v) =

min {f (v) , g (v)} for each v ∈ V .

Proposition 427 Let f, g : C → R be two concave functionals defined on a convex set

C of a vector space. The functionals f + g and f ∧ g are concave, while αf is concave

provided α ≥ 0.

The proof of this result is left to the reader. Note that the space of concave functions

is a convex cone (see Section 11.2) but not a vector space. In fact, it is not closed with

respect to scalar multiplication, except when the scalar is non-negative.

Given a function f : C → R defined on a convex set, its concavity on C is intuitively

closely related to its concavity on all line segments [v, w] = {tv + (1− t)w : t ∈ [0, 1]}
determined by vectors v and w that belong to C. Proposition 429 will make precise

this intuition that is important both conceptually, to better understand the scope of
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concavity, and operationally since the restrictions on line segments of f are scalar

functions, in general much easier to study than the original function f .

Given a convex set C and v,w ∈ C, set Cv,w = {t ∈ R : (1− t) v + tw ∈ C}. That
is, Cv,w is the set of all t values such that (1− t) v + tw ∈ C. Clearly, [0, 1] ⊆ Cv,w.

Lemma 428 Cv,w is an open interval when C is open convex.

Proof. Suppose C is open convex. Let t ∈ [v, w]C, i.e., (1− t) v+ tw ∈ C. We want to

show that t an interior point. Since C is open, there exists Bε ((1− t) v + tw) such that

Bε ((1− t) v + tw) ⊆ C. Then, given any 0 < δ < ε/ ‖v − w‖, by Exercise 13.0.59,

(1− t− δ) v + (t+ δ)w = (1− t) v + tw + δ (w − v) ∈ Bε ((1− t) v + tw) ,

(1− t+ δ) v + (t− δ)w = (1− t) v + tw + δ (v − w) ∈ Bε ((1− t) v + tw)

Hence, (t− ε/ ‖v − w‖ , t+ ε/ ‖v − w‖) ⊆ Cv,w, as desired. �

Define φv,w : Cv,w→ R by

φv,w (t) = f ((1− t) v + tw) . (8.11)

Proposition 429 For a function f : C → R defined on a convex set C of a vector

space, the following properties are equivalent:

(i) f is concave (resp., strictly concave);

(ii) φv,w is concave (resp., strictly concave) for all v, w ∈ C;

(iii) φv,w is concave (resp., strictly concave) on [0, 1] for all v, w ∈ C.

Proof. We consider the concave case, and leave to the reader the strictly concave one.

(i) implies (ii). Suppose f is concave. Let v, w ∈ C and t1, t2 ∈ Cv,w. Then, for

each α ∈ [0, 1],

φv,w (αt1 + (1− α) t2) = f ((1− (αt1 + (1− α) t2)) v + (αt1 + (1− α) t2)w)

= f (α ((1− t1) v + t1w) + (1− α) ((1− t2) v + t2w))

≥ αf ((1− t1) v + t1w) + (1− α) f ((1− t2) v + t2w)

= αφv,w (t1) + (1− α)φv,w (t2)

and so φv,w is concave.

Since (ii) trivially implies (iii), it remains to prove that (iii) implies (i). Let v, w ∈ C.
Since φv,w is concave on [0, 1], we have

f ((1− t) v + tw) = φv,w (t) ≥ tφv,w (1) + (1− t)φv,w (0) = (1− t) f (v) + tf (w) ,

for all t ∈ [0, 1], as desired. �

We close with a property of convex sets of normed vector spaces.
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Lemma 430 Let C be a convex set of a normed vector space. Then, its interior C̊ is

convex.

Proof. Let U = {v ∈ V : ‖v‖ < 1}. By Exercise 13.0.59,

Bε (v) = {v + w : ‖w‖ < ε} = v + εU, ∀v ∈ V . (8.12)

Hence, given any v ∈ C̊, there is ε > 0 small enough so that v + εU ⊆ C. Therefore,

given any v1, v2 ∈ C̊, there is ε > 0 small enough so that both v1 + εU ⊆ C and

v2 + εU ⊆ C. Then, for all t ∈ [0, 1], we have

tv1 + (1− t) v2 + εU = t (v1 + εU) + (1− t) (v2 + εU) ⊆ C,

Hence, by (8.12), Bε (tv1 + (1− t) v2) ⊆ C, and so tv1 + (1− t) v2 ∈ C̊. �

In view of this lemma, when in the sequel we will state results for concave functions

defined on open convex sets, they actually hold on the interior points of any convex

set, possibly not open, on which a concave function is defined. This should be kept in

mind when reading the results of the rest of the chapter, which for convenience will be

often stated in terms of concave functions defined on open convex sets (see for example

the discussion after Proposition 454).

8.3 Continuity

Concave functionals have remarkable continuity properties, similar to those enjoyed by

linear functionals. Since the latter are a very particular class of concave functionals,

these properties then turn out to hold for a much larger class of functionals.

We begin by introducing a property that plays a key role in the study of continuity

of concave functionals. A functional f : C → R is said to be lower bounded at v ∈ C if

there exist a neighborhood Bε (v) of v and a constant M ∈ R such that f (w) ≥M for

each w ∈ Bε (v). The functional is lower bounded on C if it is lower bounded at each

v ∈ C.

Example 431 Consider a linear functional L : V → R defined on a normed vector

space V . If L is bounded in the sense of Definition 339, then it is lower bounded on

V . In fact, let v ∈ V and let Bε (v) be a neighborhood of v. By (7.6), we have:

|L (w)− L (v)| ≤ ‖L‖ ‖w − v‖ ≤ ‖L‖ ε, ∀w ∈ Bε (v) ,

and so L (w) ≥ L (v)− ‖L‖ ε for each w ∈ Bε (v). �
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The next result is truly remarkable: a concave function defined on an open convex

set C that is just lower bounded at some point of C turns out to be automatically locally

Lipschitz (and so continuous) on the entire C. Thus, a property that in general is much

weaker than continuity, let alone than locally Lipschitzianity, becomes equivalent to it

when f is concave.

Theorem 432 Let f : C → R be a concave functional defined on an open convex set

C of a normed vector space. Then, the following properties are equivalent:

(i) f is lower bounded at some point of C;

(ii) f is continuous at some point of C;

(iii) f is locally Lipschitz on C.

Proof.3(ii) implies (i). If f is continuous at v0 ∈ C, then f is locally bounded at v0.

Actually there exists a neighborhood Bε (v0) ⊆ C such that |f (v)− f (v0)| ≤ 1 for all

v ∈ Bε (v0). In particular, f (v) = f (v)− f (v0) + f (v0) ≥ f (v0)− 1.

As (iii) trivially implies (ii), it remains to prove that (i) implies (ii). Suppose f is

lower bounded at v0 ∈ C, i.e., there exists M ∈ R and a neighborhood Bε (v0) such

that f (w) ≥M for all w ∈ Bε (v0). We divide the proof in three steps.

Step 1: f is bounded above on Bε (v0). For, let w ∈ Bε (v0). Consider the point

z = 2v0 − w = v0 − (w − z0). Clearly, z ∈ Bε (v0) and v0 is the mid-point between z

and w. By concavity,

f (v0) = f

(
1

2
z +

1

2
w

)
≥ 1

2
f (z) +

1

2
f (w) .

We conclude that

f (w) ≤ 2f (v0)− f (z) ≤ 2f (v0)−M, ∀w ∈ Bε (v0) ,

and this completes the proof of Step 1.

Step 2: f is is locally bounded on C, i.e., at all v ∈ C. By Step 1, f is bounded at

v0, i.e., there exists M ∈ R and a neighborhood Bε (v0) such that |f (w)| ≤ M for all

w ∈ Bε (v0). We now prove that f is is locally bounded at all v ∈ C . Since C is open,

by Lemma 428 there is z ∈ Cv0,v such that z = (1− t) v0 + tv with t > 1. For each

w ∈ Bε (v0), we have
1

t
z +

(
1− 1

t

)
w =

1

t
((1− t) v0 + tv) +

(
1− 1

t

)
w =

= v +

(
1− 1

t

)
(w − v0)

3The proof is based on Roberts and Varberg (1974).
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and so, by Exercise 13.0.59,

B(1− 1

t )ε
=

{
1

t
z +

(
1− 1

t

)
w : w ∈ Bε (v0)

}
.

By concavity,

f

(
1

t
z +

(
1− 1

t

)
w

)
≥ 1

t
f (z) +

(
1− 1

t

)
f (w) ≥ 1

t
f (z) +

(
1− 1

t

)
M,

and so f is bounded below on the neighborhood B(1− 1

t )ε
.

Step 3: We want to show that f is locally Lipschitz at any v ∈ C. By Step 2, f is

locally bounded at v, i.e., there exists M ∈ R and a neighborhood B2ε (v), wlog of

radius 2ε, such that |f (w)| ≤M for all w ∈ B2ε (v). Given w1, w2 ∈ B2ε (v), set

w3 = w2 +
ε

‖w2 − w1‖
(w2 − w1) .

Then, w3 ∈ B2ε (v) since

‖w3 − v‖ =

∥∥∥∥w3 − w2 +
ε

‖w2 − w1‖
(w2 − w1)

∥∥∥∥ ≤ 2ε.

Since

w2 =
ε

‖w2 − w1‖+ ε
w1 +

‖w2 − w1‖
‖w2 − w1‖+ ε

w3,

concavity implies

f (w2) ≥
ε

‖w2 − w1‖+ ε
f (w1) +

‖w2 − w1‖
‖w2 − w1‖+ ε

f (w3) ,

so that

f (w1)− f (w2) ≤
‖w2 − w1‖

‖w2 − w1‖+ ε
(f (w1)− f (w3)) ≤

‖w2 − w1‖
ε

2M. (8.13)

Interchanging the roles of w1 and w2, we get

f (w2)− f (w1) ≤
‖w1 − w2‖

‖w1 − w2‖+ ε
(f (w2) − f (w3)) ≤

‖w1 − w2‖
ε

2M.

Along with (8.13), this implies

|f (w1) − f (w2)| ≤
2M

ε
‖w1 − w2‖ ,

and so f is locally Lipschitz at v. �

Thanks to Theorem 432, the following properties are thus equivalent for a concave

functional f : C → R defined on an open and convex set C:
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(i) f is lower bounded at a point v of C;

(ii) f is continuous at a point v ∈ C;

(iii) f is locally Lipschitz at a point v of C

(iv) f is continuous on C;

(v) f is locally Lipschitz on C.

The equivalence between (i)-(v) is an impressive property of concavity, which gen-

eralizes to concave functionals what established in Proposition 338 and Theorem 342

for linear functionals.

Turn now to the finite dimensional case. Here Theorem 432 takes an even more

remarkable form since the next lemma shows that lower boundedness is always satisfied

in the finite dimensional case.

Lemma 433 A concave functional f : C → R defined on an open convex set C of a

finite dimensional normed vector space is lower bounded at a point v of C.

Proof. By Corollary 105, wlog consider Rn. Let v ∈ C. Since C is open, there is a

neighborhood Bε (v) of v such that Bε (v) ⊆ C. By Exercise 13.0.59, for 0 < δ < ε

v + δei ∈ C for all i = 1, ..., n. Consider the convex hull co (v, v + δe1, ..., v + δen).

Since C is convex, we have co (v, v + δe1, ..., v + δen) ⊆ C. To ease notation, denote by

G the interior of co (v, v + δe1, ..., v + δen). By Lemma 430, G is convex; by Exercise

13.0.54, G is nonempty.

Let w ∈ G. There is {ti}ni=0, with each ti ≥ 0 and
∑n

i=0 ti = 1, such that w =

t0v +
∑n

i=1 ti (v + δei). By concavity,

f (w) ≥ t0f (v) +
n∑

i=1

tif
(
v + δei

)
≥ min

i=1,...,n

{
f (v) , f

(
v + δei

)}
, ∀w ∈ G,

and so f is bounded on G. In particular, f is locally bounded at any point of G. �

Thanks to Lemma 433, Theorem 432 implies that in finite dimensional vector spaces

concave functions are always locally Lipschitz on open convex sets. This is a far

reaching generalization of Corollary 360, which showed a similar properties for the

very special case of linear functionals.

Corollary 434 Let f : C → R be a concave functional defined on an open convex set

C of a finite dimensional normed vector space. Then, f is locally Lipschitz on C and

is Lipschitz on each compact K ⊆ C.
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The next simple example shows that Corollary 434 does not hold for closed and

convex sets.

Example 435 Let f : [−1, 1] → R be defined by:

f (x) =

{
2− x2 if x ∈ (−1, 1)

0 if x ∈ {−1, 1}

This function is concave on the entire domain [−1, 1], and it is discontinuous at −1

and 1, i.e., at the boundary points of the domain (actually it is lower semicontinuous

at x ∈ {−1, 1}). According to Corollary 434, f is instead continuous when considered

on the open interval (−1, 1). �

Next examples further illustrate Corollary 434.

Example 436 Consider f : R++ → R given by f (x) =
√
x for each x > 0. It is the

restriction on (0,+∞) of the function
√
x studied in Example 420. By Corollary 434, f

is locally Lipschitz at each point of the domain. On the other hand, by proceeding as in

Example 420 it is easy to see that f is not Lipschitz on the entire domain. By Corollary

434, f is Lipschitz on each compact contained in the domain. In fact, in Example 420

we observed how f is Lipschitz on each closed and bounded interval [a, b], with a, b > 0.

�

Example 437 Consider f : R++ → R given by f (x) = lg x for each x > 0. By

Corollary 434, f is locally Lipschitz at each point of the domain, and it is Lipschitz on

each compact subset of the domain, for example on the closed and bounded intervals

[a, b] with a, b > 0. On the other hand, also this function is not Lipschitz on the entire

domain. In fact, we have:

lim
x→0+

|f (x)− f (y)|
|x− y| = lim

x→0+
|lg x− lg y|
|x− y| = +∞,

and therefore there does not existM > 0 such that |f (x)− f (y)| ≤M |x− y| for each
x, y ∈ R++. �

8.4 Differentiability

8.4.1 Directional Derivatives

Concave functionals have important differential properties. We begin by studying the

directional derivatives. Corollary 131 showed how directional derivatives are posit-

ively homogeneous functionals. The next fundamental result shows that for concave
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functionals such result can be improved in two important aspects: the directional de-

rivative in the concave case exists along all directions and is a superlinear functional,

i.e., positively homogeneous and superadditive.

Theorem 438 Let f : C → R be a concave functional defined on an open and convex

set C of a normed vector space V . Given any v ∈ C, the directional derivative

f ′ (v;w) = lim
t→0+

f (v + tw)− f (v)

t
(8.14)

exists at each direction w ∈ V . Moreover:

(i) f ′ (v; ·) : V → R is a superlinear functional;

(ii) f ′ (v; ·) is continuous on V provided f is continuous at v.

The proof relies on the following important lemma, which shows that the difference

quotient is decreasing.

Lemma 439 Let f : C → R be a concave functional defined on a convex set C of a

vector space V . Given any v ∈ C and w ∈ V , then the function

0 < t �−→ f (v + tw)− f (v)

t
(8.15)

is decreasing for all t > 0 values such that v + tw ∈ C.

Proof. Let v ∈ C. Assume first that v = 0 and f (0) = 0. Fix w ∈ V and let

0 < t1 < t2. By concavity,

f (t1w) = f

(
t1
t2
t2w

)
≥ t1
t2
f (t2w) +

(
1− t1

t2

)
f (0) =

t1
t2
f (t2w) ,

and so f (t1w) /t1 ≥ f (t2w) /t2. To complete the proof, define g : C − {v} → R

by g (z) = f (z + v) − f (v) for all z ∈ C − {v}. Then, g (0) = 0 and g (tw) /t =

(f (v + tw)− f (v)) /t. We can conclude that the difference quotient (8.15) has the

desired properties. �

Proof of Theorem 438. By Lemma 439, the difference quotient is decreasing, and

so the limit (8.14) exists and

lim
t→0+

f (v + tw) − f (v)

t
= sup

t>0

f (v + tw) − f (v)

t
.

It remains to show that such a limit is finite. Note that the scalar function t →
f (v + tw) is concave and, as C is open and v ∈ C, it is defined at least in a complete
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neighborhood of the origin. Therefore t→ f (v + tw) is locally Lipschitz at 0. Hence,

|f (v + tw)− f (v)| ≤ Lt for some L and for small values of t. Therefore,

f (v + tw)− f (v)

t
≤ L

and the right-hand side limit is finite and, in turn, f ′ (v;w) exists for all w ∈ V .

To prove (i), observe that the positive homogeneity of f ′ (v; ·) : V → R follows from

Corollary 131. Observe that, for each α ∈ [0, 1],

f (v + t (αw1 + (1− α)w2))− f (v)

t

≥ α (f (v + tw1)− f (v)) + (1− α) (f (v + tw2)− f (v))

t

Taking limits as t→ 0+, this implies that f ′ (v; ·) : V → R is concave. Hence,

f ′ (v;w1 + w2) = f ′
(
v; 2

w1 + w2
2

)
= 2f ′

(
v;
w1 + w2

2

)

≥ 2

(
f ′ (v;w1)

2
+
f ′ (v;w2)

2

)
= f ′ (v;w1) + f ′ (v;w2) .

This shows that f ′ (v; ·) : V → R is superadditive, and so superlinear.

It remains to show (ii). Let f be continuous at v ∈ C. By Theorem 432, f is locally

Lipschitz. Hence, there exists Bε (v) and Mv such that, if w ∈ V ,

|f (v + tw)− f (v)| ≤Mvt ‖w‖

provided t is small enough so that v + tw ∈ Bε (v). Thus, |f ′ (v;w)| ≤ Mv ‖w‖ for all

w ∈ V , and so f ′ (v; ·) : V → R is continuous. In fact, let wn → w. Then,

−Mv ‖wn − w‖ ≤ f ′ (v;wn − w) ≤Mv ‖wn − w‖ ,

which implies f ′ (v;wn − w) → 0. �

By Lemma 413, we therefore have that

−f ′ (v;−w) ≥ f ′ (v;w) , ∀w ∈ V,

and that f ′ (v; ·) : V → R is linear if and only if f ′ (v;−w) = −f ′ (v;w) for each w ∈ V .
Recalling what we saw in Chapter 4 about (4.11), it is easy to see that

−f ′ (v;−w) = lim
t→0−

f (v + tw)− f (v)

t
.

Hence, condition f ′ (v;−w) = −f ′ (v;w) is nothing but the equality between the right

and left limit of the difference quotient

f (v + tw)− f (v)

t
,

i.e., its bilateral limit. Thus:
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Corollary 440 Let f : C → R be a concave and continuous functional defined on an

open and convex set C of a normed vector space V . Then, f is Gateaux differentiable

at a point v ∈ C if and only if the bilateral limit

f ′ (v;w) = lim
t→0

f (v + tw)− f (v)

t
(8.16)

exists finite for each w ∈ V .

Proof Fix v ∈ V . For each w ∈ V we have:

−f ′ (v;−w) = − lim
t→0+

f (v + t (−w))− f (v)

t
= lim
t→0+

f (v + t (−w))− f (v)

−t
= lim

t→0−
f (v + tw) − f (v)

t
.

Hence, f ′ (v; ·) : V → R is linear if and only if

lim
t→0+

f (v + tw)− f (v)

t
= f ′ (v;w) = −f ′ (v;−w) = lim

t→0−
f (v + tw)− f (v)

t
,

i.e., if and only if the bilateral limit

f ′ (v;w) = lim
t→0

f (v + tw)− f (v)

t

exists finite for each w ∈ V .
If f is lower bounded at v, by Theorem 438 f ′ (v; ·) : V → R is continuous on V .

Hence, if the limit (8.16) exists, we can conclude that f ′ (v; ·) ∈ V ′, i.e., f is Gateaux

differentiable at v. �

The next result gives an important characterization of Gateaux differentiability of

concave functionals.

Theorem 441 Let f : C → R be a concave and continuous functional defined on an

open and convex subset C of a normed vector space V . Then, f is Gateaux differentiable

at a point v ∈ C if and only if there exists a unique functional L ∈ V ∗ such that

f (w) ≤ f (v) + L (w − v) , ∀w ∈ C, (8.17)

or, equivalently,

f ′ (v; z) ≤ L (z) ∀z ∈ V, (8.18)

In this case, f ′ (v;w) = L (w) for each w ∈ V .

We first prove as a separate lemma the equivalence of conditions (8.17) and (8.18),

an important fact that will be used later in the chapter.



240 CHAPTER 8. CONCAVITY

Lemma 442 Let f : C → R be a concave functional defined on an open convex subset

C of a normed vector space V . Then, L ∈ V ∗ satisfies (8.17) if and only if satisfies

(8.18).

Proof. Suppose L ∈ V ∗ satisfies (8.17). Let z ∈ V . For t > 0 small enough we have

v + tz ∈ C, and so

tL (z) = L ((v + tz) − v) ≥ f (v + tz)− f (v) .

This implies that L satisfies (8.17). Conversely, suppose L ∈ V ∗ satisfies (8.18). Let

w ∈ C and consider t > 0 small enough so that v + t (w − v) ∈ C. Then, by Lemma

439,

L (w − v) ≥ f ′ (v;w − v) ≥ f (v + t (w − v))− f (v)

t
, (8.19)

which is (8.17) when t = 1. This completes the proof. �

Proof of Theorem 441. Let v ∈ C. By Theorem 438, f ′ (v; ·) : V → R is superlinear.

Hence, by Corollary 416 f ′ (v; ·) : V → R is a continuous linear functional (and so f

is Gateaux differentiable at v) if and only if there exists a unique L ∈ V ∗ such that

L (w) ≥ f ′ (v;w) for all w ∈ V , i.e., a a unique L ∈ V ∗ that satisfies condition (8.18).

To complete the proof it remains to observe that, by Lemma 442, conditions (8.17)

and (8.18) are equivalent. �

Therefore, a necessary and sufficient condition for f to be Gateaux differentiable at

v is that there exists a unique linear and continuous functional L : V → R that satisfies

either of the equivalent conditions (8.17) and (8.18). When exists, this unique linear

functional is exactly the Gateaux differential f ′ (v; ·) of f at v, for which the following

inequality thus holds:

f (w) ≤ f (v) + f ′ (v;w − v) , ∀w ∈ C. (8.20)

Inequality (8.20) is a noteworthy property of Gateaux differentials of concave functions.

The Euclidean Case

In view of Theorem 65, in the special case V = Rn Theorem 441 takes the following

form, where the continuity of f is no longer required since, by Corollary 434, it is

already implied by concavity.

Corollary 443 Let f : C → R be a concave functional defined on an open convex set

C of Rn. Then, f is Gateaux differentiable at x ∈ C if and only if there exists a unique

vector χ ∈ Rn such that

f (y) ≤ f (x) + χ · (y − x) , ∀y ∈ C,
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or, equivalently,

f ′ (x; z) ≤ χ · z, ∀z ∈ Rn.

In this case, χ = ∇f (x).

By Theorem 140, in Rn we have f ′ (x; y) = ∇f (x) ·y. Therefore, in this case (8.20)

becomes:

f (y) ≤ f (x) +∇f (x) · (y − x) , ∀y ∈ C,

which in this version can be regarded as a remarkable property of the gradient of

concave functions.

We close by showing that in Rn the Gateaux and Frechet differentiability of concave

functions are equivalent notions, which are in turn equivalent to the mere existence of

the partial derivatives. Thus, for concave functions a substantially stronger version of

Theorem 150 holds.

Proposition 444 Let f : C → R be a concave functional defined on an open convex

subset C of Rn. Given x ∈ C, the following properties are equivalent:

(i) f is Gateaux differentiable at x;

(ii) f is Frechet differentiable at x;

(iii) the partial derivatives ∂f (x) /∂xi exist for i = 1, ..., n.

Proof. Since by Theorem 432 f is locally Lipschitz, by Proposition 376 (i) implies (ii).

Clearly, (ii) implies (iii). It remains to show that (iii) implies (i). Suppose the partial

derivatives ∂f (x) /∂xi exist for i = 1, ..., n. Let Tx : Rn → R be the linear functional

given by

Tx (y) =
n∑

i=1

yi
∂f (x)

∂xi
= y · ∇f (x) , ∀y ∈ Rn.

By (4.13), f ′ (x;αei) = αf ′ (x; ei) for every α ∈ R and i = 1, ..., n, and so

f ′
(
x; yie

i
)
= yif

′ (x; ei
)
= yi

∂f (x)

∂xi
= Tx

(
yie

i
)
, ∀i = 1, ..., n.

By Theorem 438, f ′ (x; ·) : Rn → R is superlinear. Hence,

Tx (y) =
n∑

i=1

Tx
(
yie

i
)
=

n∑

i=1

f ′
(
x; yie

i
)
≤ f ′

(
x;

n∑

i=1

yie
i

)
= f ′ (x; y) , ∀y ∈ Rn,

and so

f ′ (x; y) ≥ Tx (y) ≥ −f ′ (x;−y) ≥ f ′ (x; y) , ∀y ∈ Rn.
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This implies f ′ (x; y) = Tx (y) for all y ∈ Rn. We conclude that f ′ (x; ·) : Rn → R is

linear, and so f is Gateaux differentiable at x. �

The next example shows that without concavity the mere existence of the partial

derivatives in general does not guarantee Gateaux differentiability.

Example 445 Consider f : R2 → R given by

f (x1, x2) =

{
x1x2

|x1|+|x2| if (x1, x2) 	= (0, 0) ,

0 if (x1, x2) = (0, 0) .

It is easy to check that the partial derivatives exist at (0, 0), with

∂f (0, 0)

∂x1
=
∂f (0, 0)

∂x2
= 0.

But, for all α 	= 0,

f ((0, 0) + t (α,α))− f (0, 0)

t
=

α2

2 |α| =
1

2
|α| , ∀t > 0,

and so the Gateaux derivative at (0, 0) does not exist. �

8.4.2 Superdifferentials

Theorem 441 shows that for a concave functional Gateaux differentiability is equivalent

to the existence of a unique linear functional for which (8.17) holds. Hence, non

differentiability is equivalent to either the existence of more than one linear functional

for which (8.17) holds or to the non existence of any such linear functional. This

observation motivates the next definition.

Definition 446 Let f : A → R be a functional defined on a subset A of a normed

vector space V . Given v ∈ A, we call superdifferential of f at v the set ∂f (v) formed

by the functionals L ∈ V ∗ such that

f (w) ≤ f (v) + L (w − v) , ∀w ∈ A. (8.21)

The functional f : A→ R is called superdifferentiable at v if ∂f (v) 	= ∅.

The superdifferential consists therefore of all linear and continuous functionals for

which (8.17) holds. Clearly, it may not exist any such linear functional; in this case

the superdifferential is empty and the function is not superdifferentiable at the point

considered.4

Next we give few basic properties of the superdifferential.
4Even if the superdifferential is a notion motivated by the study of concave functionals, notice that

in Definition 446 we did not assume that f is concave and A convex (this observation will be useful
in the sequel).
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Proposition 447 Let f : A → R be a functional defined on a subset A of a normed

vector space V . Then, ∂f (v) is closed and convex. If, in addition, A is open and f is

locally Lipschitz on A, then ∂f (v) is also bounded.

In the important special case when f : C → R is a concave and continuous function

defined on an open convex subset of Rn, it follows that ∂f (v) is a nonempty convex

compact set at all v ∈ C.

Proof. It is immediate to check that ∂f (v) is closed and convex. Suppose f is

locally Lipschitz on the open set A. Wlog, suppose 0 ∈ A and f (0) = 0. Consider

v = 0. There exists a neighborhood Bε (0) ⊆ A and a constant M > 0 such that

|f (w)| ≤ M ‖w‖ for all w ∈ Bε (0). Let L ∈ ∂f (v). Since w ∈ Bε (0) if and only if

−w ∈ Bε (0), by (8.21) we have:

M ‖w‖ ≥ −f (−w) ≥ −L (−w) = L (w) ≥ f (w) ≥ −M ‖w‖ , ∀w ∈ Bε (0) ,

Hence,
|L (w)|
‖w‖ ≤M, ∀w ∈ Bε (0) .

It is easy to check that this implies ‖L‖ ≤ M . Since L is any element of ∂f (v), we

conclude that ‖L‖ ≤M for all L ∈ ∂f (v), i.e., ∂f (v) is a bounded set. �

By Theorem 65, in the special case V = Rn the superdifferential ∂f (x) of a function

f : A ⊆ Rn → R can be equivalently defined as the set of the vectors χ ∈ Rn such that

f (y) ≤ f (x) + χ · (y − x) , ∀y ∈ A. (8.22)

Clearly, (8.22) is altogether equivalent to (8.21), and it simply uses the fact that, thanks

to Theorem 65, we are able to fully describe the dual space of Rn and so to give a more

concrete form to (8.21).

To visualize graphically the superdifferential, consider the affine functional fv : A ⊆
V → R defined by:

fv (w) = f (v) + L (w − v) , ∀w ∈ V.

with L ∈ ∂f (v). The affine functional fv is therefore such that fv (v) = f (v) and

fv (w) ≥ f (w) for each w ∈ V . In other words, fv is equal to f at the point v and

dominates f at all the other points of A.

It follows that ∂f (v) characterizes the set of all affine functionals that touch the

graph of f at the point v and that lie above it at all other points of the domain.

If we draw the graph of a concave function defined on R, it is easy to see that at the

points in which the function is differentiable the only affine functional that enjoys this
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property is the tangent straight line f (x) + f ′ (x) (y − x). Where the function is not

differentiable, we can have several straight lines that touch the graphic of the function

at the point considered and that lie above such graph in the other points. The set of

these straight lines can be viewed as a surrogate of the tangent straight line, i.e., of

the differential. This is the idea that lies behind the superdifferential: a surrogate of

the differential when this does not exist.

There is a tight and very important relationship between the superdifferential and

the directional derivative. This is established in the next result, which easily follows

from Theorem 415 and Lemma 442. In particular, Lemma 442 implies (8.23), while

Theorem 415 implies (8.24).

Theorem 448 Let f : C → R be a concave and continuous functional defined on an

open and convex subset C of a normed vector space V . Then,

∂f (v) = {L ∈ V ∗ : L (w) ≥ f ′ (v;w) for all w ∈ V } (8.23)

and

f ′ (v;w) = min
L∈∂f(v)

L (w) , ∀w ∈ V . (8.24)

Thus, by (8.23) the superdifferential ∂f (v) can be viewed as the collection of

all continuous linear functionals that pointwise dominate the directional derivative

f ′ (v; ·) : V → R. In turn, by (8.24) the directional derivative can be regarded as the

the lower envelope of the superdifferential. This “dual” relationship between superdif-

ferentials and directional derivatives is a main feature of concavity.

A first important consequence of this duality is the next result, which shows that for

concave functions superdifferentiability is indeed a generalization of differentiability.

Corollary 449 Let f : C → R be a concave and continuous functional defined on an

open and convex subset C of a normed vector space V . Then, f is Gateaux differentiable

at a point v ∈ C if and only if ∂f (v) is a singleton. In such case, ∂f (v) = {f ′ (v; ·)}.

We omit the proof of this result since, in view of (8.23), it is a straightforward

consequence of Corollary 416. When C is a subset of Rn, the condition ∂f (v) =

{f ′ (v; ·)} becomes ∂f (x) = {∇f (x)}.

We are now ready to see an example.

Example 450 Consider f : R→ R defined as f (x) = 1 − |x| for each x ∈ R. The

only point in which the function has not a derivative is x = 0. Hence, by Theorem 449
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we have ∂f (x) = {f ′ (x)} for each x 	= 0. It remains to determine ∂f (0). By (8.22),

this is equivalent to determine for which α ∈ R the inequality

1− |y| ≤ 1− |0| + α (y − 0) , ∀y ∈ R,

holds, i.e., − |y| ≤ αy for each y ∈ R. This inequality holds always for any α if y = 0.

If y 	= 0, we have

α
y

|y| ≥ −1. (8.25)

Since
y

|y| =

{
1 if y ≥ 0

−1 if y < 0
,

(8.25) implies α ≥ −1 and α (−1) ≥ −1, that is, α ∈ [−1, 1]. It follows that ∂f (0) =

[−1, 1], and hence:

∂f (x) =





−1 if x > 0

[−1, 1] if x = 0

1 if x < 0

.

�

Example 450 can be nicely generalized to any concave function f : (a, b) → R

defined on a, possibly unbounded, interval (a, b) of the real line. To this end, we first

report some properties of its one-sided derivatives, which partly anticipate some more

general results that we will see later in the chapter. We leave the proof to the reader.

Lemma 451 Let f : (a, b) → R be concave. Then,

(i) the left f ′+ (x) and right f ′− (x) derivatives exist at all x ∈ (a, b) ;

(ii) the left f ′+ (x) and right f ′− (x) derivatives are both decreasing on (a, b) ;

(iii) f ′+ (x) ≤ f ′− (x) for all x ∈ (a, b).

Using this lemma we can characterize the superdifferential of scalar concave func-

tions.

Proposition 452 Let f : (a, b) → R be a concave function defined on a, possibly

unbounded, interval of the real line. Then,

∂f (x) =
[
f ′+ (x) , f ′− (x)

]
, ∀x ∈ (a, b) . (8.26)
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In other words, the superdifferential consists of all coefficients that lie between the

right and left derivatives. This makes precise the geometric intuition we gave above

through the graph of a scalar function.

Proof. By Exercise 13.0.61, for the scalar function f we have

f ′+ (x) = f ′ (x; 1) and f ′− (x) = −f ′ (x;−1) .

Hence, (8.26) amounts to ∂f (x) = [f ′ (x; 1) ,−f ′ (x;−1)]. By (8.23), we have ∂f (x) ⊆
[f ′ (x; 1) ,−f ′ (x;−1)]. To prove the converse inclusion, let χ ∈ [f ′ (x; 1) ,−f ′ (x;−1)].

Then, by the positive homogeneity of the directional derivative,

f ′ (x; t) = f ′ (x; 1) t ≤ χ · t ≤ −f ′ (x;−1) t = −f ′ (x;−t) , ∀t ≥ 0.

which implies χ · t ≥ f ′ (x; t) for all t ∈ R. By (8.23), χ ∈ ∂f (x). �

Next we give an example where the superdifferential is empty.

Example 453 Consider f : R+→ R defined by f (x) =
√
x for each x ∈ R. Also here

the only point of the domain in which the function has not a derivative is x = 0, so

that by Theorem 449 we have ∂f (x) = {f ′ (x)} for each x 	= 0. As to ∂f (0), it is given

by the α ∈ R such that

√
y ≤

√
0 + α (y − 0) , ∀y ∈ R+, (8.27)

i.e., such that
√
y ≤ αy for each y ≥ 0. This inequality holds always for any α if y = 0,

while for each y > 0 it is equivalent to:

α ≥
√
y

y
=

1√
y
.

But, letting y tend to 0, this implies:

α ≥ lim
y→0+

1√
y

= +∞,

and therefore there does not exist any α ∈ R for which (8.27) holds. It follows that

∂f (0) = ∅, and the function is not superdifferentiable at 0. �

Before we argued that the superdifferential is a surrogate of the differential when

this does not exist. In order to be a useful surrogate, however, it is necessary that it

often exists, otherwise it would be of very little help. The previous example showed an

instance where the superdifferential is indeed empty.

Fortunately, the next important result guarantees that concave functionals defined

on open convex sets are everywhere superdifferentiable and that, moreover, this is

exactly a property that characterizes concave functionals (another proof of the tight

link between superdifferentiability and concavity).
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Proposition 454 Let f : C → R be a concave and continuous functional defined on

an open and convex subset C of a normed vector space V . Then, f is concave if and

only if ∂f (v) is nonempty for all v ∈ C.

Proof. Suppose f is concave. Let v ∈ C. By proceeding as in the proof of Theorem

415, it is easy to check that the Hahn-Banach Theorem implies that there exists L ∈ V ∗
such that L (w) ≥ f ′ (v;w) for all w ∈ V . Hence, by (8.23), ∂f (v) is nonempty.

Conversely, suppose ∂f (v) 	= ∅ at all v ∈ C. Let v1, v2 ∈ C and t ∈ [0, 1]. Let

L ∈ ∂f (tv1 + (1− t) v2). By (8.21),

f (v1) ≤ f (tv1 + (1− t) v2) + L (v1 − (tv1 + (1− t) v2)) ,

f (v2) ≤ f (tv1 + (1− t) v2) + L (v2 − (tv1 + (1− t) v2)) ,

that is,

f (v1)− (1− t)L (v1 − v2) ≤ f (tv1 + (1− t) v2) ,

f (v2)− tL (v2 − v1) ≤ f (tv1 + (1− t) v2) .

Hence,

f (tv1 + (1− t) v2)

≥ tf (v1)− t (1− t)L (v1 − v2) + (1− t) f (v2)− (1− t) tL (v2 − v1)

= tf (v1) + (1− t) f (v2) ,

as desired. �

The fact that C is open is key for Proposition 454: in fact, the function with an

empty superdifferential in Example 453 is defined on the closed convex set R+. It is

noteworthy that in this example the superdifferential is empty at 0, a boundary point

of the domain. In fact, by Lemma 430, we could equivalently state Proposition 454 by

saying that a concave and continuous functional f : C → R , defined on a convex subset

C of a normed vector space V , is concave on intC if and only if ∂f (v) is nonempty

at all v ∈ intC, i.e., at all interior points v of C. Getting back to Example 453, the

concave function f (x) =
√
x is indeed differentiable (and so superdifferentiable) at all

x ∈ (0,∞), that is, at all interior points of the function’s domain R+.

We close with couple of examples.

Example 455 Let f : V → R be a superlinear continuous functional. Then, for all

v ∈ V ,

∂f (v) = {L ∈ V ∗ : L (v) = f (v) and L (w) ≥ f (w) for all w ∈ V } . (8.28)
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For, suppose L ∈ ∂f (v). If we consider w = 0 in (8.21), we have L (v) ≤ f (v). On the

other hand, if we consider w = 2v in (8.21), we have L (v) ≥ f (v). We conclude that

L (v) = f (v). In turn, by (8.21) this implies L (w) ≥ f (w) for all w ∈ V . Conversely,
suppose L ∈ V ∗ is such that L (v) = f (v) and L (w) ≥ f (w) for all w ∈ V . Then,

(8.21) trivially holds and so L ∈ ∂f (v).

Observe that ∂f (0) = {L ∈ V ∗ : L (w) ≥ f (w) for all w ∈ V }. We can thus write

(8.28) as

∂f (v) = {L ∈ ∂f (0) : L (v) = f (v)} , ∀v ∈ V. (8.29)

In other words, to find ∂f (v) is enough to determine the superdifferential ∂f (0) at 0.

�

Example 456 To make more concrete the previous example, consider the function

f : Rn → R given by

f (x) = min
i=1,...,n

xi, ∀x ∈ Rn.

The function f is superlinear (and so continuous, by Corollary 434). By (8.29), to find

∂f (x) is enough to determine ∂f (0), i.e., {χ ∈ Rn : χ · x ≥ f (x) for all x ∈ Rn}. Let
χ ∈ ∂f (0). From:

χi = χ · ei ≥ f
(
ei
)
= 0, ∀i = 1, ..., n,

n∑

i=1

χi = χ · (1, ..., 1) ≥ f (1, ..., 1) = 1,

−
n∑

i=1

χi = χ · (−1, ...,−1) ≥ f (−1, ...,−1) = −1,

we conclude that
∑n

i=1 χi = 1 and χi ≥ 0 for each i = 1, ..., n. That is, χ belongs to

the simplex ∆n−1 (see Exercise 385), so that ∂f (0) ⊆ ∆n−1. On the other hand, if

χ ∈ ∆n−1, then

χ · x ≥ χ ·
(

min
i=1,...,n

xi, ..., min
i=1,...,n

xi

)
= min
i=1,...,n

xi, ∀x ∈ Rn,

and so χ ∈ ∂f (0). We conclude that ∂f (0) = ∆n−1. By (8.29),

∂f (x) = {χ ∈ ∆n+1 : χ · x = f (x)} ,

i.e., ∂f (x) consists of the vectors x of the simplex such that χ · x = f (x). �

8.4.3 Concavity and Differentiability

Up to now we have considered the properties of differentiability of concave functionals.

We change now perspective and ask if, given a suitably differentiable function, there
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exist some criteria based on this differentiability that allow us to determine whether

the given function is concave.

The first thing to observe is that Theorem 441 has shown that for Gateaux differ-

entials of a concave functional f : C → R we have

f (w) ≤ f (v) + f ′ (v;w − v) , ∀w ∈ C.

A possible conjecture is that this is an inequality satisfied only by Gateaux differentials

of concave functions, and hence a property that is typical of concave functions. The

next result shows that this is true, thus establishing a first differential characterization

of concavity.

Theorem 457 Let f : C → R be Gateaux differentiable at each point of an open and

convex subset C of a normed vector space V . Then, f is concave if and only if

f (w) ≤ f (v) + f ′ (v;w − v) , ∀v, w ∈ C, (8.30)

while f is strictly concave if and only if inequality (8.30) is strict for each v, w ∈ C

with v 	= w.

Proof. “If.” Let f be concave. Fix v,w ∈ C. Let φv,w : Cv,w → R be given by (8.11).

By Lemma 428, Cv,w is an open interval, and by Proposition 429 φv,w is concave on

Cv,w. Hence,5

φ′+ (t) = lim
ε→0+

φ (t+ ε)− φ (t)

ε

= lim
ε→0+

f ((1− t) v + tw + ε (v − w))− f ((1− t) v + tw)

ε
= f ′ ((1− t) v + tw; v − w) .

for each t ∈ Cv,w. Since [0, 1] ⊆ Cv,w, by Corollary 443 we have

φ (1) ≤ φ (0) + φ′+ (0) = φ (0) + f ′ (v; v − w) ,

i.e., f (w) ≤ f (v) + f ′ (v;w − v).

Conversely, suppose (8.30) holds. For each v ∈ C, consider the affine function

Fv : C → R given by Fv (w) = f (v) + f ′ (v;w − v). By (8.30), f (w) ≤ Fv (w) for

all v, w ∈ C. Since Fv (v) = f (v), we conclude that f (w) = minv∈C Fv (w) for each

w ∈ C. Since each Fv is affine (why?), by Exercise 13.0.64 we conclude that f is

concave since is a minimum of a family of concave functions. �

5To ease notation, in the rest of the proof we use φ in place of φv,w.
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The Euclidean Case

By Theorem 457, a functional f : C → R Gateaux differentiable at each point of an

open convex subset C of Rn is concave if and only if

f (y) ≤ f (x) +∇f (x) · (y − x) , ∀x, y ∈ C. (8.31)

We now continue to study the special case Rn. A functional f : C ⊆ Rn → Rn is

monotone (decreasing) if

(f (x)− f (y)) · (x− y) ≤ 0, ∀x, y ∈ C, (8.32)

and strictly monotone (decreasing) if the inequality (8.32) is strict for each x, y ∈ C

with x 	= y.

When n = 1 we go back to the usual notion of monotonicity, that is, f : C ⊆ R→ R

is monotone decreasing if x ≤ y implies f (x) ≥ f (y), and strictly monotone if x < y

implies f (x) > f (y).6

Example 458 Consider an affine function f : Rn → Rn given by f (x) = Ax + b,

where A is a symmetric n×n matrix and b ∈ Rn. Then, f is monotone if and only if A

is negative semidefinite, and f is strictly monotone if and only if A is negative definite

(why?).

In Section 4.5.1 we called derivative of f the application f ′ : Ω ⊆ Rn → Rn defined

by f (x) = ∇f (x), where Ω is the set of the points where f is Frechet differentiable.

We now give a slightly more general meaning of this notion of derivative by assuming

that Ω is the set of the points where f is only Gateaux differentiable.

Theorem 459 Let f : C → R be Gateaux differentiable at each point of an open and

convex subset C of Rn. Then,

(i) f is concave if and only if its derivative f ′ : C → Rn is continuous and monotone.

(ii) f is strictly concave if and only if f ′ : C → Rn is continuous and strictly mono-

tone.

Proof (i) Suppose f is concave. Let x, y ∈ C. By (8.31),

f (y) ≤ f (x) +∇f (x) · (y − x) ,

f (x) ≤ f (y) +∇f (y) · (x− y) ,

6Notice that (8.32) cannot be defined on any vector space because it is based on internal products,
which we have defined only in Rn. This is why here we are only considering Rn.
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and so ∇f (x) · (x− y) ≤ f (x)− f (y) ≤ ∇f (y) · (x− y). Hence,

(f ′ (x) − f ′ (y)) · (x− y) ≤ 0.

and we conclude that f ′ : C → Rn is monotone decreasing.

Conversely, suppose f ′ : C → Rn is monotone decreasing, i.e., (8.32) holds. Suppose

first that n = 1. Let x ∈ C, and define ψx : C → R by ψx (y) = f (y) − f (x) −
f ′ (x) (y − x). Then, ψ′x (y) = f ′ (y)− f ′ (x), and so ψ′x (y) ≥ 0 if y < x and ψ′x (y) ≤ 0

if y > x. Hence, ψx has a minimum at x, i.e.,

0 = ψx (x) ≤ ψx (y) = f (y)− f (x)− f ′ (x) (y − x) , ∀y ∈ C.

Since x was arbitrary, we conclude that f (y) ≤ f (x) + f ′ (x) (y − x) for all x, y ∈ C.

By Theorem 457, f is concave. This completes the proof for n = 1.

Suppose now that n > 1. Let x, y ∈ C and let φx,y : Cx,y → R be given by (8.11).

By Lemma 428, Cx,y is an open interval, with [0, 1] ⊆ Cx,y. Then, φx,y is concave and

differentiable on (a, b), with

φ′x,y (t) = ∇f ((1− t) x+ ty) · (x− y) , ∀t ∈ Cx,y. (8.33)

Let t2 ≥ t1 ∈ Cx,y. Since f ′ is monotone, then

(∇f ((1− t1) x+ t1y)−∇f ((1− t2) x+ t2y)) · ((1− t1) x+ t1y − ((1− t2)x+ t2y))

= (t2 − t1) (∇f ((1− t1)x+ t1y)−∇f ((1− t2)x+ t2y)) · (x− y) ≤ 0

and so, by (8.33),

0 ≥ (∇f ((1− t1)x+ t1y)−∇f ((1− t2)x+ t2y)) · (x− y) = φ′x,y (t1)− φ′x,y (t2) ,

and we conclude that φ′x,y (t1) ≤ φ′x,y (t2), i.e., φ
′
x,y is monotone on Cx,y. By what

already proved, φx,y is then concave, and so:

f ((1− t) x+ ty) = φx,y (t) ≥ (1− t)φx,y (0) + tφx,y (1) = (1− t) f (x) + tf (y) ,

which shows that f is concave.

(ii) For simplicity, we consider the case n = 1. We leave to the reader the extension

to n ≥ 1, with the help of Proposition 429.

Suppose f is strictly concave. Since f is concave, f ′ is decreasing and continuous

by (i). Let x1, x2 ∈ U with x1 < x2. Suppose, per contra, that f ′ (x1) = f ′ (x2) ≡ α.

We have:

f (x) ≤ f (x1) + α (x− x1) , (8.34)

f (x) ≤ f (x2) + α (x− x2) ,
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for all x ∈ U . In particular, f (x2) ≤ f (x1) + α (x2 − x1) and f (x1) ≤ f (x2) +

α (x1 − x2), so that

f (x2)− f (x1) ≤ α (x2 − x1) ≤ f (x2)− f (x1) ,

which implies f (x2)− f (x1) = α (x2 − x1). Given β ∈ (0, 1), by (8.34),

f (βx1 + (1− β) x2) ≤ f (x1) + α (1− β) (x2 − x1) = βf (x1) + (1− β) f (x2) ,

which contradicts strict concavity.

Conversely, suppose f ′ is strictly decreasing. Then, the function f is concave. It

remains to show that it is strictly concave. Suppose, per contra, that there exist x1, x2 ∈
U , with x1 < x2, and λ ∈ (0, 1) such that f ((1− λ) x1 + λx2) = (1− λ) f (x1) +

λf (x2). Define φ : [0, 1] → R by φ (α) = f ((1− α)x1 + αx2). Then, φ is concave and

continuous, with φ (λ) = (1− λ)φ (0) + λφ (1). This implies φ (α) = (1− α)φ (0) +

αφ (1) for all α ∈ [0, 1]. Then,

f ′ (x1) = lim
α↓0

f ((1− α) x1 + αx2)− f (x1)

(1− α) x1 + αx2 − x1
=
f (x2)− f (x1)

x2 − x1
,

f ′ (x2) = lim
α↑1

f ((1− α) x1 + αx2)− f (x2)

(1− α) x1 + αx2 − x2
=
f (x1)− f (x2)

x1 − x2
,

so that f ′ (x1) = f ′ (x2), a contradiction. �

In the case n = 1 this means that a differentiable function on an interval (a, b) is

concave if and only if its derivative f ′ is monotone decreasing (and f is strictly concave

if f ′ is strictly monotonic decreasing).

Recall from Calculus that a differentiable function f : (a, b) → R is monotone if and

only if f ′ (x) ≤ 0 for each x ∈ (a, b), that is, if and only if f ′′ (x) ≤ 0 for each x ∈ (a, b)

when f is twice differentiable. On the other hand, f : (a, b) → R is strictly monotone

if f ′ (x) < 0 for each x ∈ (a, b), that is, if f ′′ (x) ≤ 0 for each x ∈ (a, b) when f is twice

differentiable. But, the “only if” is false for strict monotonicity, as f (x) = x3 shows.

This simple observation leads to the following result, in which the role of the second

derivative is played in the general case by the Hessian matrix.

Theorem 460 Let f : C → R be a functional defined on an open and convex subset

C of Rn. If f ∈ C2 (C), then

(i) f is concave if and only if the Hessian matrix ∇2f (x) is negative semidefinite

for each x ∈ C.

(ii) f is strictly concave if ∇2f (x) is negative definite for each x ∈ C.
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Proof. We only prove (i) and leave (ii) to the reader. By Theorem 459, we have to

prove that f ′ is monotone on C if and only if ∇2f (x) is negative semidefinite for each

x ∈ C. Suppose first that f ′ is monotone. Let x ∈ C and y ∈ Rn. Then, for t > 0

small enough we have (f ′ (x+ ty)− f ′ (x)) · ((x+ ty)− x) ≤ 0. Hence,

0 ≥ lim
t→0+

(f ′ (x+ ty) − f ′ (x)) · ((x+ ty)− x)

t

= lim
t→0+

(f ′ (x+ ty) − f ′ (x))

t
· y = ∇2f (x) y · y

and since this holds for any y ∈ Rn we conclude that ∇2f (x) is negative semidefinite.

Conversely, suppose that ∇2f (x) is negative semidefinite at all x ∈ C. Let x1, x2 ∈
C and consider the function φ : [0, 1] → R given by

φ (t) = (x1 − x2) · (f ′ (tx1 + (1− t)x2)− f ′ (x2)) .

To prove that f ′ is monotone we must show that φ (1) ≥ 0. But, φ (0) = 0 and φ is

monotone since, for all t ∈ (0, 1),

φ′ (t) = (x1 − x2) · ∇2f (tx1 + (1− t) x2) (x1 − x2) ≥ 0.

Hence, φ (1) ≥ φ (0) = 0. �

This is the most useful criterion to determine if a function is concave. Naturally,

specular results hold for convex functions, which are characterized by having positive

semidefinite Hessian matrices.

Example 461 Let f : R++ → R be defined as f (x) =
√
x for each x > 0. We have

f ′′ (x) = (−1/4) x−
3

2 for each x > 0, and hence f is strictly concave since f ′′ (x) < 0

for each x > 0. �

Example 462 Let f : R → R be defined as f (x) = ex for each x ∈ R. We have

f ′′ (x) = ex, and so f is strictly convex since f ′′ (x) > 0 for each x ∈ R. �

Example 463 In Example 191 we considered the function f : R3 → R defined by

f (x) = x21 + 2x22 + x23 + (x1 + x3)x2, ∀x ∈ R3,

and we saw how its Hessian matrix was positive definite. By Theorem 460, this function

is strictly convex. �



254 CHAPTER 8. CONCAVITY

8.5 Optimization

Concave functions have their most classical application in the study of optimization

problems, in which they enjoy remarkable properties. The first one is that concave

functions can only have global maxima.

Theorem 464 Let f : C → R be a concave functional defined on a convex subset C

of a normed vector space V . If the point v̂ ∈ C is a local maximum, then it is also a

global maximum.

Proof Let v̂ ∈ C be a local maximum. By definition, there exists a neighborhood

Bε (v̂) such that

f (v̂) ≥ f (v) , ∀v ∈ Bε (v̂) ∩ C. (8.35)

Suppose that v̂ is not a global maximum. There exists therefore w ∈ C such that

f (w) > f (v̂). Since f is concave, for each t ∈ (0, 1) we have:

f (tv̂ + (1− t)w) ≥ tf (v̂) + (1− t) f (w) > tf (v̂) + (1− t) f (v̂) = f (v̂) . (8.36)

Since C is convex, we have tv̂ + (1− t)w ∈ C for each t ∈ (0, 1). On the other hand,

lim
t→1−

‖tv̂ + (1− t)w − v̂‖ = ‖w − v̂‖ lim
t→1−

(1− t) = 0,

and therefore there exists t ∈ (0, 1) such that tv̂+(1− t)w ∈ Bε (v̂) for each t ∈
(
t, 1
)
.

Expression (8.36) implies that for such t we have f (tv̂ + (1− t)w) > f (v̂), which

contradicts (8.35). This contradiction proves that v̂ is a point of global maximum. �

By Theorem 464, the points of maximum of concave functions are necessarily points

of global maximum. We denote by argmaxC f (x) the set of such points, i.e.,

argmax
C

f =

{
v ∈ C : f (v) = max

v∈C
f (v)

}
.

When f is concave, this set is convex. In fact, let v1, v2 ∈ argmaxC f and let t ∈ [0, 1].

By concavity we have:

f (tv1 + (1− t) v2) ≥ tf (v1) + (1− t) f (v2) = max
v∈C

f (v) ,

and therefore

f (tv1 + (1− t) v2) = max
v∈C

f (v) ,

that is, tv1 + (1− t) v2 ∈ argmaxC f .

Being convex, for this set we have three possibilities:

(i) argmaxC f is empty, i.e., there are no global maxima;
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(ii) argmaxC f is a singleton, i.e., there exists a unique global maximum;

(iii) argmaxC f consists of infinite points, i.e., there exist infinite global maxima.

We illustrate these different possibilities with some examples.

Example 465 Let f : R++ → R be defined by f (x) = lg x for each x > 0. Since

f ′′ (x) = − (1/x2) < 0, this function is strictly concave by Theorem 460. On the other

hand, it is easy to see that this function does not have points of global maximum, i.e.,

argmaxR++ f = ∅. �

Example 466 Let f : R→ R be defined as f (x) = 1 − x2 for each x ∈ R. This

function is strictly concave and the only point of global maximum is x̂ = 0. Hence,

argmaxR++ f = {0}. �

Example 467 Let f : R→ R be defined by:

f (x) =





x if x ≤ 1

1 if x ∈ (1, 2)

3− x if x > 2

It is a concave function with argmaxR f = [1, 2]. �

In the last example, in which we have infinite global maxima, the function is concave

but not strictly concave. This is not by chance: the next result shows that, remarkably,

strict concavity implies that the maximum, if it exists, is unique. In other words, for

strictly concave functions argmaxC f is at most a singleton.

Theorem 468 A functional f : C → R strictly concave defined on a convex subset C

of a normed vector space V has at most a unique point of maximum.

Proof Suppose that v̂1, v̂2 ∈ C are two points of global maximum for f . We want to

prove that v̂1 = v̂2. Suppose that this is not the case, i.e., v̂1 	= v̂2. Since v̂1 and v̂2 are

global maxima, we have f (v̂1) = f (v̂2) = maxv∈C f (v). Set v = 1
2
v̂1 + 1

2
v̂2 ∈ C. By

strict concavity we have:

f (v) = f

(
1

2
v̂1 +

1

2
v̂2

)
>

1

2
f (v̂1) +

1

2
f (v̂2) = max

v∈C
f (v) ,

a contradiction. It follows that v̂1 = v̂2, as desired. �

Now that we have seen what are the remarkable properties that the points of max-

imum of a concave function enjoy, we face the problem of how to find them. The

next result gives an interesting characterization of the points of global maximum of

any functional, not necessarily concave. Notice that here 0 denotes the identically null

linear functional.
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Theorem 469 Let f : A→ R be a functional defined on a subset A of a normed vector

space V . Then, v̂ ∈ A is a global maximum if and only if f is superdifferentiable at v̂

and 0 ∈ ∂f (v̂).

Proof Let v̂ ∈ A be a maximum. We have:

f (v) ≤ f (v̂) + 0 (v − v̂) , ∀v ∈ C,

and hence 0 ∈ ∂f (v̂).

Viceversa, let 0 ∈ ∂f (v̂). We have

f (v) ≤ f (v̂) + 0 (v − v̂) , ∀v ∈ A,

that is, f (v) ≤ f (v̂) for each v ∈ A, which implies that v̂ is a maximum. �

By Proposition 454, the superdifferential of a concave and continuous functional

defined on an open convex set is nonempty. We therefore have the following funda-

mental consequence of Theorem 469, which gives us the more general version of the

so-called first order condition for concave functionals.

Corollary 470 Let f : C → R be a concave and continuous functional defined on

an open and convex subset C of a normed vector space V . Then, v̂ ∈ A is a global

maximum if and only if 0 ∈ ∂f (v̂).

The next example shows how this corollary makes it possible to find the global

maxima of a function for which the classical Fermat Theorem 194 does not apply since

there are points where it is not differentiable.

Example 471 We go back to Example 450, where we considered the function f :

R→ R defined as f (x) = 1− |x| for each x ∈ R. We have

∂f (x) =





1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

Hence, by Corollary 470 we have that x̂ = 0 is a global maximum since 0 ∈ ∂f (0). �

The most interesting aspect of Theorem 469 emerges when it is applied to con-

cave functions. In fact, by Corollary 449, Gateaux differentiability implies that the

superdifferential is a singleton, which consists exactly of the Gateaux differential. This

simple observation implies that by Theorem 469 we have the following version of Fer-

mat Theorem 194 for concave functions that are Gateaux differentiable on normed

spaces.
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Corollary 472 Let f : C → R be a concave functional defined on an open and convex

subset C of a normed vector space V . If f is Gateaux differentiable at v̂ ∈ C, then

v̂ ∈ C is a global maximum if and only if f ′ (v̂; ·) = 0.

Proof Since f is Gateaux differentiable at v̂ ∈ C, by Corollary 449 we have ∂f (v̂) =

{f ′ (v̂; ·)}. By Corollary 470, v̂ is a global maximum if and only if 0 ∈ ∂f (v̂), i.e., if

and only if f ′ (v̂; ·) = 0. �

In the special case V = Rn, which was exactly the one considered in Theorem 194,

Corollary 472 takes the following form.

Corollary 473 Let f : C ⊆ Rn → R be a concave functional defined on an open and

convex subset C of Rn. If f is Gateaux differentiable at a point x̂ of C, then x̂ ∈ C is

a global maximum if and only if ∇f (x̂) = 0.

Consider for a moment this corollary. Theorem 194 gave us the first order condition

for local maxima and minima. Corollary 473 has two very important consequences in

the concave case:

• the first order condition characterizes global maxima;

• the first order condition is necessary and sufficient for a point to be a maximum.

All this considerably simplifies the study of maxima of concave functions. Naturally,

specular considerations hold for convex functions, in which it is the study of minima

to be equally facilitated.

Example 474 Let f : R → R be defined as f (x) = 1 − x2. It is a strictly concave

function, and by Theorem 468 it has therefore at most a unique global maximum. To

find it, observe that f ′ (x) = −2x = 0 if and only if x = 0. By Corollary 473, we

conclude that x̂ = 0 is a global maximum for this function. �

Example 475 Consider the function f : R2 → R defined by

f (x) = 2x21 + x22 − 3 (x1 + x2) + x1x2 − 3, ∀x ∈ R2.

In Example 202 we saw how its Hessian matrix was negative definite at each point of

the domain. By Theorem 460, f is strictly convex, and hence by Theorem 468 it has

at most a unique global minimum. We have

∇f (x) = (4x1 − 3 + x2, 2x2 − 3 + x1) ,

and so ∇f (x) = 0 implies x = (3/7, 9/7). By Corollary 473, x̂ = (3/7, 9/7) is a global

minimum. We reached this conclusion also in Example 202, but using the second order

condition, which we now know is superfluous for this function. �
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8.5.1 Minima

We now consider global minima of concave functions. For these points we have the

following classical result.

Proposition 476 Let f : C → R be a concave functional defined on a convex subset

C of a normed vector space V . If f is not constant, then its global minima (if they

exist) belong to the frontier of C.

Proof Let v̂ be a minimum of f . Since f is not constant, there exists w ∈ C such that

f (w) > f (v̂). Suppose that v̂ is an interior point of C. Set zα = αv̂ + (1− α)w with

α ∈ R. The points zα are the points of the straight line that pass through v̂ and w.

Since v̂ is an interior point of C, there exists α > 1 such that zα ∈ C. On the other

hand,

v̂ =
1

α
zα +

(
1− 1

α

)
w,

and therefore we get the contradiction

f (v̂) = f

(
1

α
zα +

(
1− 1

α

)
w

)
≥ 1

α
f (zα) +

(
1− 1

α

)
f (w)

>
1

α
f (v̂) +

(
1− 1

α

)
f (v̂) = f (v̂) .

It follows that v̂ ∈ ∂C, as desired. �

Hence,

min
v∈C

f (v) = min
v∈∂C

f (v)

and the search of global minima can be restricted to the frontier ∂C of C.

Example 477 Consider the concave function f : [−1, 1] → R defined by:

f (x) =





2− x2 if x ∈ (0, 1)

0 if x = 0

−1 if x = 1

,

a slight modification of the function seen in Example 435. Since the frontier of [0, 1] is

given by {0, 1}, by Theorem 476 global minima belong to the set {0, 1}. In particular,

it is immediate to see that x = 1 is the global minimum. �

In the finite dimensional case we can refine the previous result by showing that

at least some of the points of global minimum are extreme points of C. This result

is interesting because the set of the extreme points can be a very small subset of the

frontier (think of Example 402).
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Theorem 478 Let f : C → R be a concave functional defined on a convex and compact

subset C of a finite dimensional normed vector space. If f is not constant, then

extC ∩ argmin
C
f 	= ∅,

i.e., at least one of the points of global minimum of f is an extreme point of C.

Proof Suppose that v∗ is a global minimum. By the Minkowski Theorem 404, we have

C = co (extC), and therefore there exist a finite collection {vi}i∈I ⊆ extC and a finite

collection {λi}i∈I , with λi ∈ [0, 1] and
∑

i∈I λi = 1, such that v∗ =
∑

i∈I λiv
i. Since v∗

is a global minimum, we have f (vi) ≥ f (v∗) for each i ∈ I. Together with concavity,

this implies that:

f (v∗) = f

(
∑

i∈I
λiv

i

)
≥
∑

i∈I
λif

(
vi
)
≥
∑

i∈I
λif (v∗) = f (v∗) . (8.37)

Hence,
∑

i∈I λif (vi) = f (v∗), which implies f (vi) = f (v∗) for at least one i ∈ I. In

fact, if it were f (vi) > f (v∗) for each i ∈ I, we would have
∑

i∈I λif (vi) > f (v∗),

which contradicts (8.37). It follows that for at least one i ∈ I we have vi ∈ argminC f ,

and so extC ∩ argminC f 	= ∅. �

By this theorem, if C is a compact and convex set of a finite dimensional space we

have:

min
v∈C

f (v) = min
v∈extC

f (v) , (8.38)

and at least some minima belong to extC.

Example 479 The function f : R2 → R defined by

f (x) = −2x21 − x22 + 3 (x1 + x2)− x1x2 + 3, ∀x ∈ R2,

is concave since −f is convex (see Example 475). We look for its points of global

minimum on the closed unit ball B1 (0) = {x ∈ R2 : ‖x‖1 ≤ 1}. By (7.23) and (8.38)

we have:

min
x∈B1(0)

f (x) = min
i=1,2

{
±f
(
ei
)}
.

Since

f
(
e1
)
= −2, f

(
e2
)
= 5, f

(
−e1

)
= −2, f

(
−e2

)
= −1,

the points e1 and −e1 are therefore global minima. �

Specular properties hold for convex functionals, whose global maxima enjoy the

properties that we have just seen hold for the global minima of concave functionals. If

we consider affine functionals, i.e., functionals that are both concave and convex, we

therefore have the following corollary of Theorem 478, which reinforces the conclusions

of the Weierstrass Theorem in the affine case.
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Corollary 480 Let f : C → R be an affine functional defined on a convex and compact

subset C of a finite dimensional normed vector space. If f 	= 0, then there exist

x1, x2 ∈ extC such that

f (x1) = max
x∈K

f (x) and f (x2) = min
x∈K

f (x) .

For affine functionals we therefore have a particularly effective version of the Wei-

erstrass Theorem: not only global maxima and minima exist, but at least some of

them are necessarily extreme points. This result and its variations play a fundamental

role in linear programming, whose object of study are problems of optimum in which

objective functions are affine.

Example 481 Consider the affine functional L : R2 → R

L (x) = 1 + x1 − 2x2 ∀x ∈ R2,

and study its points of global minimum andmaximum onB1 (0) = {x ∈ R2 : ‖x‖∞ ≤ 1}.
Since

extC = {(1, 1) , (1,−1) , (−1, 1) , (−1,−1)} ,

and

L (1, 1) = 0, L (1,−1) = 4, L (−1, 1) = −2, L (−1,−1) = 2

by Corollary 480 it follows that (−1, 1) is a global minimum, while (1,−1) is a global

maximum.

Notice that to find the points of global maximum and minimum on B1 (0) it has

been enough to examine only four points. �

8.5.2 Noncoercive Optimality

For concave functions we can establish existence results for global maxima that do not

rely on any form of compactness, unlike the Weierstrass-type theorems of Section 6.6.

This is a noteworthy feature of concavity, which we investigate in this section.

Though the main existence result of this section, Theorem 497, requires that the

space be finite dimensional, the key concept of recession cone and some of its properties

can be introduced in general normed vector spaces.

Definition 482 The recession cone RC of a set C of V is defined by

RC = {w ∈ V : v + tw ∈ C for all v ∈ C and all t ≥ 0} ,

with the convention R∅ = V .
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The vectors in RC are called directions of recession. Intuitively, along these direc-

tions the set C is unbounded.

Lemma 483 Let C be a subset of V . Then, RC is a convex cone, which is closed if C

is.

Proof. The set RC is a cone since, given any λ ≥ 0,

v + t (λw) = v + (tλ)w ∈ C, ∀v ∈ C, ∀t ≥ 0.

To show that it is convex, let w′, w′′ ∈ RC and α ∈ (0, 1). For all v ∈ C, we have

v + αtw′ ∈ C, and so v + t (αw′ + (1− α)w′′) = v + αtw′ + (1− α) tw′′ ∈ C.
We now show that it is closed when C is. Let {wn}n ⊆ RC with wn → w. Then,

v + λwn → v + λw for all v ∈ C and all t ≥ 0, and so v + λw ∈ C since C is closed.�

The next lemma gives some basic properties of recession cones of closed convex

sets. Observe that by point (i) to see if a vector w is a direction of recession is actually

enough to check a single v ∈ C.

Lemma 484 Let C be a closed convex subset of V . Then,

(i) A vector w ∈ V belongs to RC if and only if there is some v ∈ C such that

v + tw ∈ C for all t ≥ 0.

(ii) A vector w ∈ V belongs to RC if and only if there exist {vn}n ⊆ C and {λn}n ⊆
R+, with λn ↑ ∞, such that limn (vn/λn) = w.

(iii) If D is a closed convex subset of V such that C ∩D 	= ∅, then RC∩D = RC ∩RD.

Proof. (i) We prove the “if” part, the converse being trivial. Suppose there is v ∈ C

such that v + λw ∈ C for all t ≥ 0. Consider any z ∈ C and η ≥ 0. We want to show

that z + ηw ∈ C. By convexity (1 − η/t)z + (η/t) (v + λw) ∈ C for all t ≥ η. Setting

λ = t, we have

lim
t→∞

(1− η

t
)z +

η

t
(v + λw) = lim

t→∞

[
(1− η

t
)z +

η

t
v + ηw

]
= z + ηw ∈ C

by closedness of C.

(ii) Let w ∈ RC. Given v ∈ C and {λn}n ⊆ R+, with λn ↑ ∞, set vn = v+λnw. We

have vn ∈ C for all n ≥ 1 since w ∈ RC, and limn (vn/λn) = w. Conversely, suppose

w ∈ V is such that limn (vn/λn) = w for some {vn}n ⊆ C and {λn}n ⊆ R+, with

λn ↑ ∞. Given any v ∈ C and t ≥ 0, set

zn =

(
1− t

λn

)
v +

t

λn
vn, ∀n ≥ 1.
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We have zn ∈ C for all n large enough (i.e., such that t/λn ≤ 1), and limn zn = v+ tw.

Since C is closed, we have v + tw ∈ C, and so w ∈ RC.

(iii) We only prove that RC∩D ⊆ RC∩RD, the converse being trivial. Let w ∈ RC∩D
and v ∈ C ∩D. Then, v + tw ∈ C for all t ≥ 0. By point (i), w belongs to both RC
and RD. �

It is easy to see that (iii) can be generalized as follows: given a collection {Ci}i∈I
of closed convex sets with nonempty intersection, it holds

⋂
i∈I RCi = R⋂

i∈I Ci
.

Next we define the recession cone of a function as the intersection of all recession

cones of its upper level sets (f ≥ λ). We will see momentarily that for concave functions

all these cones actually coincide.

Definition 485 The recession cone Rf of a function f : C → R is defined by

Rf =
⋂

λ∈R
R(f≥λ),

The following result clarifies the nature of Rf for concave functions by showing that

Rf = R(f≥λ) for all nonempty (f ≥ λ).

Lemma 486 Let f : C → R be an upper semicontinuous concave function defined on

a closed convex subset C of V . Then, all its nonempty upper level sets (f ≥ λ) have

the same recession cone. In particular,

R(f≥λ) =
{
w ∈ V : (w, 0) ∈ Ripo(f)

}

for all λ ∈ R such that (f ≥ λ) 	= ∅.7

Proof. Fix λ ∈ R such that (f ≥ λ) 	= ∅. We have w ∈ R(f≥λ) if and only v + tw ∈
(f ≥ λ) for all v ∈ (f ≥ λ) and all t ≥ 0, i.e., if and only if f (v + tw) ≥ λ for all

v ∈ (f ≥ λ) and all t ≥ 0. Set A = {(v, λ) ∈ V × R : v ∈ (f ≥ λ)}. Then,

(w, s) ∈ RA ⇐⇒ (v, λ) + t (w, s) ∈ A, ∀ (v, λ) ∈ A, ∀t ≥ 0,

⇐⇒ (v + tw, λ+ ts) ∈ A, ∀ (v, λ) ∈ A, ∀t ≥ 0,

⇐⇒ f (v + tw) ≥ λ and s = 0, ∀v ∈ (f ≥ λ) , ∀t ≥ 0.

Hence, RA =
{
(w, 0) : w ∈ R(f≥λ)

}
. On the other hand, A = ipo (f)∩{(v, λ) : v ∈ V }.

Since R{(v,λ):v∈V } = {(w, 0) : w ∈ V }, by Lemma 484-(iii) we have RA = Ripo(f) ∩
R{(v,λ):v∈V } =

{
(w, 0) : (w, 0) ∈ Ripo(f)

}
. We conclude that

{
(w, 0) ∈ V × R : w ∈ R(f≥λ)

}
=
{
(w, 0) ∈ V × R : (w, 0) ∈ Ripo(f)

}
,

7Recall that the ipograph ipo (f) was defined in (8.9).
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i.e., R(f≥λ) =
{
w ∈ V : (w, 0) ∈ Ripo(f)

}
. �

Next we characterize Rf for concave functions. In particular, point (iii) shows that

Rf is the set of all directions of increase of f , that is, the directions along which f

increases.

Proposition 487 Let f : C → R be an upper semicontinuous concave function defined

on a closed convex subset C of V . Then, the following conditions are equivalent:

(i) w ∈ Rf ;

(ii) f (v + tw) ≥ f (v) for all t ≥ 0 and all v ∈ C;

(iii) f (v + tw) is, as a function of t, nondecreasing on [0,∞) for all v ∈ C;

(iv) limt→∞ f (v + tw) > −∞ for all v ∈ C;

(v) limt→∞ f (v + tw) /t ≥ 0 for all v ∈ C.

Remark. It is easy to see that properties (i)-(iii) are equivalent even if f is not upper

semicontinuous.

Proof. (i) implies (ii). Let v ∈ C and let t ≥ 0. Fix ε > 0. We have v ∈
(f ≥ f (v)− ε), and so w ∈ ⋂λ∈RR(f≥λ) implies v + tw ∈ (f ≥ f (v)− ε) for all t ≥ 0,

i.e., f (v + tw) ≥ f (v)− ε. Since ε is arbitrary, we conclude that f (v + tw) ≥ f (v).

(ii) implies (iii). Let v ∈ C. Let t′ > t′′. As f (v + tw) ≥ f (v) for all t ≥ 0, we have

v + tw ∈ C for all t ≥ 0. Hence, f (v + t′w) = f (v + (t′ − t′′)w + t′′w) ≥ f (v + t′′w)

since v + t′′w ∈ C.

(iii) trivially implies (iv).

(iv) implies (v). By Exercise 13.0.66, it is enough consider the function φ : [0,∞) →
R defined by φ (t) = f(v + tw).

(v) implies (i). Consider again the function φ. By Exercise 13.0.66, φ is non-

decreasing. Hence, f (v + tw) = φ (t) ≥ φ (0) = f (v). That is, (v, f (v)) ∈ ipo (f) is

such that (v, f (v)) + t (w, 0) ∈ ipo (f) for all t ≥ 0. By Lemma 484-(i), this implies

(w, 0) ∈ Ripo(f), and so, by Lemma 486, w ∈ Rf . �

Though conceptually illuminating, the properties established in Properties 487 are

less useful to actually find the elements of Rf . The next result shows that points (iv)

and (v) still characterize the elements of Rf if they just hold for some v ∈ V . This

greatly simplifies the identification of the elements of Rf .
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Proposition 488 Let f : C → R be an upper semicontinuous and concave function

defined on a closed convex subset C of V . Then, the following conditions are equivalent:

(i) w ∈ Rf ;

(ii) there is v ∈ C such that limt→∞ f (v + tw) > −∞;

(iii) there is v ∈ C such that limt→∞ f (v + tw) /t ≥ 0.

Proof. (i) implies (iii) by Theorem 487.

(iii) implies (ii). Let v0 ∈ C be such that limt→∞ f (v0 + tw) /t ≥ 0. Define

φ : [0,∞) → R by φ (t) = f(v0 + tw). By Exercise 13.0.66, limt→∞ f (v0 + tw) =

limt→∞ φ (t) > −∞.

(ii) implies (i). Let v0 ∈ C be such that limt→∞ f (v0 + tw) > −∞. Define

φ : [0,∞) → [−∞,∞) by φ (t) = f(v0 + tw). The function φ is concave. Since

limt→∞ f (v0 + tw) > −∞, by Exercise 13.0.66 φ is nondecreasing. Hence, f (v0 + tw) =

φ (t) ≥ φ (0) = f (v0). That is, (v0, f (v0)) ∈ ipo (f) is such that (v0, f (v0))+ t (w, 0) ∈
ipo (f) for all t ≥ 0. By Lemma 484-(i), this implies (w, 0) ∈ Rhyp(f), and so, by Lemma

486, w ∈ Rf . �

Example 489 Let f : V → R be an upper semicontinuous superlinear functional. Set

v = 0 in Proposition 488. Then, w ∈ Rf if and only if f (w) = limt→∞ f (tw) /t ≥ 0.

Hence, Rf = {w ∈ V : f (w) ≥ 0}. △

A vector w ∈ V is a direction of recession if, given any v ∈ C, we remain in

C by moving forward along the direction w, i.e., v + tw for all t ≥ 0. The next

stronger definition requires that this happens by moving both backward and forward,

i.e., v + tw ∈ C for all t ∈ R.

Definition 490 The lineality space LC of a set C of V is defined by

LC = {w ∈ V : v + tw ∈ C for all v ∈ C and all t ∈ R} ,

with the convention L∅ = V .

Under this stronger condition we get a vector space and not only a cone.

Lemma 491 The lineality space LC is a vector space, with

LC = RC ∩R−C = RC ∩ −RC . (8.39)
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Proof. It is easy to check that LC is a vector space. Let w ∈ RC ∩ R−C. Given any

t < 0 and v ∈ C, consider v + tw. Then, −v ∈ −C and so −v + (−t)w ∈ −C, i.e.,
v + tw ∈ C. This shows that w ∈ LC. Conversely, let w ∈ LC. Clearly, LC ⊆ RC.

Moreover, given any t < 0 and v ∈ C, we have v + tw ∈ C, i.e., −v + (−t)w ∈ −C.
This implies w ∈ R−C.

It remains to show that R−C = −RC. We have

w ∈ R−C ⇐⇒ v + tw ∈ −C ∀v ∈ −C, ∀t ≥ 0 ⇐⇒ z + t (−w) ∈ C ∀z ∈ C, ∀t ≥ 0

⇐⇒ −w ∈ RC ⇐⇒ w ∈ −RC ,

and so R−C = −RC. �

Definition 492 The lineality space of a function f : C → R is defined by

Lf =
⋂

λ∈R
L(f≥λ),

Next we show that also the vector spaces L(f≥λ) coincide for the nonempty upper

level sets (f ≥ λ) of concave functions.

Lemma 493 Let f : C → R be an upper semicontinuous concave function. Then,

Lf = L(f≥λ)

for all nonempty (f ≥ λ).

Proof. Define the auxiliary function g : −C → R by g (v) = f (−v) for all v ∈ −C.
The function g is upper semicontinuous, proper, and concave if f is. We show that

R−(f≥λ) =
{
w ∈ V : (w, 0) ∈ Rhyp(g)

}
(8.40)

for all λ ∈ R such that − (f ≥ λ) 	= ∅, i.e., such that (f ≥ λ) 	= ∅. Fix λ ∈ R such

that − (f ≥ λ) 	= ∅. We have R−(f≥λ) = R(g≥λ). In fact, w ∈ R−(f≥λ) if and only

v+ tw ∈ − (f ≥ λ) for all v ∈ − (f ≥ λ) and all t ≥ 0, i.e., if and only if g (v + tw) ≥ λ

for all v ∈ (g ≥ λ) and all λ ≥ 0. By Lemma 486, (8.40) holds.

We conclude that R−(f≥λ) are all equal provided (f ≥ λ) 	= ∅. In turn, this implies

Lf = L(f≥λ) for all (f ≥ λ) 	= ∅. �

Propositions 487 and 488 take the following form for lineality spaces.

Proposition 494 Let f : C → R be an upper semicontinuous concave function defined

on a closed convex subset C of V . Then, the following conditions are equivalent:

(i) w ∈ Lf ;
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(ii) f (v + tw) = f (v) for all t ∈ R and all v ∈ C;

(iii) f (v + tw) is, as a function of t, constant on R for all v ∈ C;

(iv) limt→±∞ f (v + tw) > −∞ for all v ∈ C;

(v) limt→±∞ f (v + tw) /t = 0 for all v ∈ C;

(vi) there is v ∈ C such that limt→±∞ f (v + tw) > −∞;

(vii) there is v ∈ C such that limt→±∞ f (v + tw) /t = 0.

Proof. (i) implies (ii). Let w ∈ Lf . Fix v ∈ C. By Proposition 487, f (v + tw) ≥ f (v)

for all t ≥ 0. Let t < 0 and consider v + tw. Since −v ∈ − (f ≥ λ) and w ∈ R−(f≥λ),

we have − (v + tw) = −v + (−t)w ∈ − (f ≥ λ), i.e., v + tw ∈ (f ≥ λ). We thus have

f (v + tw) ≥ f (v) for all t ∈ R and all v ∈ C.
The other implications follow by applying Exercise 13.0.67 to the function φ :

R→ R given by φ (t) = f (v + tw). �

Example 495 Let f : V → R be an upper semicontinuous superlinear functional. Set

v = 0 in Proposition 494. Then, w ∈ Lf if and only if

f (w) = lim
t→∞

f (tw)

t
= 0 and − f (−w) = lim

t→−∞
f (−t (−w))

t
= lim
t→−∞

f (tw)

t
= 0,

that is, Lf = {w ∈ V : f (w) = −f (−w) = 0}. △

Example 496 Given a collection {Fi}i∈I of lower semicontinuous convex functionals

Fi : V → R and a collection {bi}i∈I ⊆ R, consider the set

C = {v ∈ V : Fi (v) ≤ bi for all i ∈ I} .

If the closed and convex set C is nonempty, then

LC =
⋂

i∈I
LFi . (8.41)

For, suppose w ∈ ⋂i∈I LFi. Fix i ∈ I. By Proposition 494-(ii), Fi (v + tw) = Fi (v) for

all v ∈ V and all t ∈ R. Hence, if v ∈ C and t ∈ R, we have Fi (v + tw) = Fi (v) ≤ bi,

i.e., v + tw ∈ C. Since this holds for any i ∈ I, we conclude that w ∈ LC. Conversely,
suppose w ∈ LC. Let v ∈ C, i.e., Fi (v) ≤ bi for all i ∈ I. Then, for all t ∈ R

we have v + tw ∈ C, i.e., Fi (v + tw) ≤ bi for all i ∈ I. Define φi : R→ R by

φi (t) = Fi (v + tw). Each function φi is convex and φi (t) ≤ bi for all t ∈ R. By

Exercise 13.0.67, φi (t) = φi (0) for all t ∈ R, and so Fi (v + tw) = Fi (v) ≤ bi for all

i ∈ I. Hence, w ∈ ⋂i∈I LFi. �
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We can finally state and prove the main result of this section, an existence result for

global maxima of concave functions that does not rely on any compactness assumption.

Recall that we already observed that argmaxv∈B f (v) is a convex set.

Theorem 497 Let B and C be nonempty convex closed subsets of a finite dimensional

normed vector space V , with B ⊆ C. If a concave function f : C → R is upper

semicontinuous on B, then,

(i) argmaxv∈B f (v) is nonempty if RB ∩ Rf = LB ∩ Lf ;

(ii) argmaxv∈B f (v) is nonempty and compact if and only if RB ∩Rf = {0}.

By Lemmas 486 and 484-(iii), RB ∩ Rf = RB ∩ R(f≥t) = RB∩(f≥t) for each t ∈ R
such that (f ≥ t)∩B is nonempty. Similarly, LB∩Lf = LB∩(f≥t). Hence, the condition

RB ∩ Rf = LB ∩ Lf requires that each nonempty set (f ≥ t) ∩ B be “symmetrically

unbounded:” w is a direction of recession of (f ≥ t) ∩B if and only if also −w is.

It is important to observe that in this finite dimensional convex setup, Theorem

497 improves Theorem 317, the fundamental Weierstrass-type existence result proved

in Section 6.6. For, let B and C as in Theorem 497 and suppose that the concave

function f : C → R is upper semicontinuous and coercive on B. Then, there is t ∈ R
such that (f ≥ t) ∩B is compact and nonempty and so, by Lemmas 484-(iii) and 499,

RB ∩Rf = RB ∩ R(f≥t) = RB∩(f≥t) = {0} .

Hence, argmaxv∈B f (v) is nonempty and compact by Theorem 497-(ii). This shows

that Theorem 317 is a special case of Theorem 497 in this finite dimensional convex

setup. A constant function f : Rn → R is a trivial instance where Theorem 497, but

not Theorem 317, applies (see Example 320).

A final remark: an important example when the convex set argmaxv∈B f (v) is

nonempty and compact is when there is a unique a solution to the optimal problem

maxv∈B f (v). Hence, RB ∩Rf = {0} is also a necessary condition for such uniqueness.

Before proving it, we illustrate Theorem 497 with some examples.

Example 498 Given a superlinear (and so continuous) functional f : Rn → R, con-

sider maxx∈B f (x). In view of Examples 489 and 495, by Theorem 497-(i) we have

that argmaxx∈B f (x) is nonempty provided

{x ∈ LB : f (x) = −f (−x) = 0} = {x ∈ RB : f (x) ≥ 0} ,
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which is equivalent to

f (x) ≥ 0 =⇒ x ∈ −RB and − f (−x) = 0, ∀x ∈ RB. (8.42)

For example, consider the superlinear functional

f (x) = min
i=1,...,n

xi, ∀x ∈ Rn.

Intuitively, argmaxx∈B f (x) is nonempty if the set B has no positive directions of

recession, i.e., if RB ∩ Rn+ = {0}. In fact, these are directions along which f can keep

growing. Condition (8.42) makes precise this simple insight. For, let x ∈ RB be such

that f (x) ≥ 0. From f (x) ≥ 0 it follows that x ∈ Rn+, and so RB ∩ Rn+ = {0}
implies x = 0. Hence, condition (8.42) holds and we conclude that argmaxx∈B f (x) is

nonempty. �

The proof of Theorem 497 relies on two important lemmas, of independent in-

terest. The first one formalizes the intuition that a set without directions of recession

is bounded, an intuition that turns out to be correct as long as we consider finite

dimensional spaces.

Lemma 499 Let C be a closed convex subset of a finite dimensional normed vector

space V . Then, C is bounded (and so compact) if and only if RC = {0}.

Proof. We only prove the “if” part, the converse being trivial. Suppose RC = {0}
and suppose, per contra, that C is unbounded. Then, there is a sequence {vn}n ⊆ C

with ‖vn‖ ↑ ∞. Then, each vn/ ‖vn‖ belongs to the unit ball BV of V and so, being

BV compact, there is z ∈ BV and a subsequence {vnk}k such that vnk/ ‖vnk‖ → z. Let

v ∈ C and t ≥ 0. Set

zk =

(
1− t

‖vnk‖

)
v +

t

‖vnk‖
vnk , ∀k ≥ 1.

We have zk ∈ C for all k large enough so that t/ ‖vnk‖ ≤ 1. Moreover, zk → v + tz.

Since C is closed, this implies v+ tz ∈ C. We conclude that z ∈ RC, which contradicts

RC = {0} since z belongs to BV and so is nonzero. �

The next lemma gives a condition under which a monotone sequence of closed

convex sets has nonempty intersection. It generalizes Lemma 266 and is close in spirit

to Lemma 279. Here as well the finite dimensionality of V is required.

Lemma 500 Let {Cn}n be a monotone sequence of closed convex sets, with C1 ⊃ ··· ⊃
Cn ⊃ · · ·, of a finite dimensional normed vector space V . Then

⋂
nCn 	= ∅ provided⋂

nRCn =
⋂
nLCn.
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Proof. Given any νn ∈ Cn, by Theorem 364 the set {v ∈ C : ‖v‖ ≤ ‖vn‖} is compact

since V is finite dimensional. We can then take v∗n ∈ argminv∈Cn ‖vn‖ for all n ≥ 1.

The monotone sequence {‖v∗n‖}n is bounded. Suppose, per contra, that ‖v∗n‖ ↑ ∞.

The sequence v∗n/ ‖v∗n‖ belongs to the unit ball of V , which is compact by Theorem

364, and so there exist a subsequence
{
v∗nk
}
k
and w ∈ {v ∈ C : ‖v‖ ≤ 1} such that

limk

(
v∗nk/

∥∥v∗nk
∥∥) = w.

Fix m ≥ 1. Then, v∗nk ∈ Cm for all k large enough. By Lemma 484-(ii), w ∈ RCm.

Since m is arbitrary, w ∈ ⋂nRCn , and so, by hypothesis, w ∈ ⋂n LCn.
Since limk

(
v∗nk/

∥∥v∗nk
∥∥) = w, we have

lim
k

∥∥∥∥∥
v∗nk −

∥∥v∗nk
∥∥w∥∥v∗nk

∥∥

∥∥∥∥∥ = 0. (8.43)

Moreover, w ∈ ⋂n LCn implies v∗nk + tkw ∈ Cnk for all tk ∈ R and all k ≥ 1. Then,∥∥v∗nk + tkw
∥∥ ≥

∥∥v∗nk
∥∥ for all k ≥ 1 since by construction each v∗nk is a minimum norm

vector. Setting tk = −
∥∥v∗nk

∥∥, we then have
∥∥∥∥∥
v∗nk −

∥∥v∗nk
∥∥w∥∥v∗nk

∥∥

∥∥∥∥∥ ≥ 1, ∀k ≥ 1, (8.44)

which contradicts (8.43). We conclude that the sequence {‖v∗n‖}n is bounded. Since V
is finite dimensional, there is a subsequence

{
v∗nk
}
k
and z ∈ V such that limk v

∗
nk

= z.

It is easy to check that z ∈ ⋂nCn, and so
⋂
nCn 	= ∅. �

Proof of Theorem 497. (i) Set α = supv∈B f (v) and consider an increasing sequence

{αn}n ⊆ R with αn ↑ α. Set Bn = (f ≥ αn) ∩ B for all n ≥ 1. Since f is upper

semicontinuous and concave, each Bn is closed and convex. Moreover, C ∩ B 	= ∅
implies that each Bn is nonempty. Then, by Lemma 484-(iii),

RBn = R(f≥αn)∩B = R(f≥αn) ∩ RB = Rf ∩RB.

Similarly, LBn = Lf∩LB, and soRBn = LBn for all n ≥ 1. By Theorem 500,
⋂
nBn 	= ∅.

Let v∗ ∈ ⋂nBn. Since f is upper semicontinuous, we have

f (v∗) ≥ lim sup
n
f (v∗n) ≥ lim

n
αn = α

and so v∗ ∈ argmaxv∈B f (v).

(ii) Suppose RB ∩ Rf = {0}. Then, the condition RB ∩ Rf ⊆ LB ∩ Lf is trivially

satisfied, and so argmaxv∈B f (v) 	= ∅. Moreover, in this case we have RBn = Rf∩RB =

{0} for each n ≥ 1, and so, by Theorem 499, each Bn is compact. This implies that

argmaxv∈B f (v) is compact.
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Conversely, suppose argmaxv∈B f (v) is nonempty and compact. Set α = maxv∈B f (v).

Then, argmaxv∈B f (v) = (f ≥ α) ∩B and so, by Theorem 499,

{0} = Rargmaxv∈B f(v) = R(f≥α)∩B = R(f≥α) ∩RB = Rf ∩ RB,

as desired. �



Chapter 9

Classical Constrained Optimization

9.1 Introduction

In Chapter 5 we considered the problem of unconstrained optimization for functions

f : A ⊆ Rn → R, in which the search of maxima and minima was done on all the

domain A of the function, which was assumed to be an open set.

Nevertheless, in many economic problems the results of Chapter 5 are not very

satisfactory. To see this, consider the classical problem of the consumer. In this problem

a consumer has to choose the best bundle of goods for him, under the constraint of a

given wealth and given prices of the goods.

Formally, suppose that the preferences of the consumer are represented by a utility

function u : A ⊆ Rn → R, where A is an (open) set of bundles of goods, and that his

wealth is b ∈ R. Moreover, we denote by p ∈ Rn+ the vector of the prices of the goods.

If we assume that the consumer must spend all his income, his budget constraint

is given by the set

C (p, b) = {x ∈ A : p · x = b}

and his problem of optimum is given by:

max
x∈C(p,b)

u (x) , (9.1)

whose solutions have necessarily to be searched in the subset of A given by C (p, b).

Two are the aspects of this example to which pay attention:

• the search of the points of maximum does not take place on the entire domain

of the function, but on the subset C (p, b) of Rn of the points that satisfy an

equality constraint defined by the function g : Rn → R given by g (x) = p · x for

each x ∈ Rn;

271
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• the points of interest are those of global maximum, i.e., the bundles of goods

that are the best possible ones that the consumer can get given the constrains he

faces. Instead, the points that are only local maxima are of little interest.

In this chapter we will therefore try to solve problems of optimum in which the

search of the solutions is restricted to a subset of the domain of the function determined

by equality constraints (domain that we will continue to assume open) and in which

the solutions of interest are global. We will see that the resolution of these problems

is an elegant combination of local methods based on differential calculus and of global

existence results à la Weierstrass.

9.2 Formalization of the Problem

The general form of a problem of optimum with equality constraints is given by

max
x∈A

f (x) (9.2)

sub g1 (x) = b1, g2 (x) = b2, ..., gm (x) = bm,

where f : A ⊆ Rn → R is our objective function, while the functions gi : A ⊆ Rn → R

and the scalars bi ∈ R induce m equality constraints.

In an analogous way we can define a minimization problem:

min
x∈A

f (x) (9.3)

sub g1 (x) = b1, g2 (x) = b2, ..., gm (x) = bm.

Even if these two problems are specular, we will give more emphasis to the problem

(9.2) due to its greater relevance in economics. Furthermore, a problem of minimum

can be always transformed in a problem of maximum by considering −f as objective

function. In other words, (9.3) is equivalent to:

max
x∈A

−f (x)

sub g1 (x) = b1, g2 (x) = b2, ..., gm (x) = bm.

The set

C = {x ∈ A : gi (x) = bi for each i = 1, ...,m} , (9.4)

is the subset of A identified by the constraints, and hence the problem of optimum

(9.2) can be equivalently formulated as:

max
x∈C

f (x) .
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A point x̂ ∈ B is a (global) solution of the problem of optimum (9.2) if f (x̂) ≥ f (x)

for each x ∈ C, while x̂ ∈ B is called a local solution of such problem if there exists a

neighborhood Bx0 (ε) of x̂ such that f (x̂) ≥ f (x) for each x ∈ Bx0 (ε)∩C. Obviously,
a solution of the problem of optimum is also a local solution.

As we already observed, in the resolution of the problem of optimum a fundamental

role is played by the results of existence à la Weierstrass seen in Section 6.6, and

in particular Theorem 317, which was the most general among them. Though very

interesting, these results of existence have however the strong limit of telling nothing

on how to find these solutions. It is therefore necessary to develop some techniques

that allow us to find a set, hopefully small, of points that are the possible candidates

to be solutions of the problem of optimum, and on which to concentrate the search of

the solutions.

Since the set C is not in general open,1 the first order and second order conditions

seen in Chapter 5 cannot be applied to this problem. Fortunately, there exists a classical

method that allows to give first order and second order conditions also in presence of

constraints. In next section we begin to illustrate it for the case of a unique equality

constraint.

9.3 One Constraint

In this case the problem of optimum (9.2) has the form:

max
x∈A

f (x) (9.5)

sub g (x) = b

where f : A ⊆ Rn → R is our objective function, A is an open set, while the function

g : A ⊆ Rn → R and the scalar b ∈ R define the equality constraint.

The next fundamental lemma gives us the key to find the solutions of problem 9.5.

Lemma 501 Let x̂ be a local solution of the problem of optimum (9.5). If f and g are

of class C1 and if ∇g (x̂) 	= 0, then there exists a scalar λ̂ ∈ R such that

∇f (x̂) = λ̂∇g (x̂) . (9.6)

It should be noticed that we have assumed A to be an open set of Rn. Clearly we

can drop this assumption by assuming that the local solution x̂ ∈ int (A).

1Recall that the empty set and the set Rn itself are the only sets that are both open and closed in
Rn.
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Proof The proof of this lemma is a special case of that of Lemma 509 that we will see

below. �

Expression (9.6) tells us that a necessary condition for x̂ to be local solution of the

problem of optimum (9.5) is that the gradients of the functions f and g are between

them proportional. The “hat” over λ reminds us that such scalar depends on the point

x̂ considered.

Next example shows how condition (9.6) is necessary, but not sufficient.

Example 502 Consider the problem of optimum:

max
x∈R

x31 + x32
2

(9.7)

sub x1 − x2 = 0

It is of the form (9.5), where f : R2 → R and g : R2 → R are given by f (x) =

2−1(x31 + x32) and g (x) = x1 − x2, while b = 0. We have:

∇f (0, 0) = (0, 0) and ∇g (0, 0) = (1,−1)

and hence λ = 0 is such that ∇f (0, 0) = λ∇g (0, 0). The point (0, 0) satisfies therefore

with λ = 0 condition (9.6), but this point is not solution of the problem of optimum

(9.7). In fact,

f (t, t) = t3 > 0 = f (0, 0) , ∀t > 0. (9.8)

Notice that (0, 0) is not even a constrained (global) minimum since f (t, t) = t3 < 0

for each t < 0. �

To understand at an intuitive level condition (9.6), assume that f and g are defined

on R2, so that (9.6) has the form:

(
∂f

∂x1
(x̂) ,

∂f

∂x2
(x̂)

)
= λ̂

(
∂g

∂x1
(x̂) ,

∂g

∂x2
(x̂)

)
,

that is,
∂f

∂x1
(x̂) = λ̂

∂g

∂x1
(x̂) and

∂f

∂x2
(x̂) = λ̂

∂g

∂x2
(x̂) . (9.9)

The condition ∇g (x̂) 	= 0 requires that at least one of the two partial derivatives

(∂g/∂xi) (x̂) is different from zero. If, for simplicity, we suppose that both of them are

so and that λ̂ 	= 0, then (9.9) is equivalent to

∂f
∂x1

(x̂)
∂g
∂x1

(x̂)
=

∂f
∂x2

(x̂)
∂g
∂x2

(x̂)
(9.10)
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We try now to understand, through an heuristic argument, what is the intuition

for (9.10) to be a necessary condition for x̂ to be a solution of the optimum problem

(9.5). The differential of f and g at the point x̂ is given by

df (x̂) (h) = ∇f (x̂) · h =
∂f

∂x1
(x̂) h1 +

∂f

∂x2
(x̂) h2, ∀h ∈ R2,

dg (x̂) (h) = ∇g (x̂) · h =
∂g

∂x1
(x̂)h1 +

∂g

∂x2
(x̂)h2, ∀h ∈ R2,

and provides a linear approximation of the difference f (x̂+ h)− f (x̂) and g (x̂+ h)−
g (x̂), respectively, i.e., of the effect on f and g that results from moving from x̂ to x̂+h.

As well know, this approximation is the better the smaller is h. Suppose, heuristically,

that h is infinitesimal and that the approximation is exact, so that f (x̂+ h)− f (x̂) =

df (x̂) (h) and g (x̂+ h)− g (x̂) = dg (x̂) (h). Formally this is clearly incorrect, but here

we are proceeding heuristically, trying to understand at an intuitive level what lies

behind (9.10).

Proceeding heuristically, we start now from our point x̂ and consider changes x̂+h

with h infinitesimal. The first problem to face is to make sure that they are legit-

imate, i.e., that they respect the equality constraint g (x̂+ h) = b. This means that

g (x̂+ h) = g (x̂), and hence h must be such that dg (x̂) (h) = 0. It follows that:

∂g

∂x1
(x̂)h1 +

∂g

∂x2
(x̂)h2 = 0,

and so

h1 = −
∂g
∂x2

(x̂)
∂g
∂x1

(x̂)
h2. (9.11)

The effect of moving from x̂ to x̂+h on our objective function f is given by df (x̂) (h).

When h is legitimate, by (9.11) such effect is given by:

df (x̂) (h) =
∂f

∂x1
(x̂)

(
−

∂g
∂x2

(x̂)
∂g
∂x1

(x̂)

)
h2 +

∂f

∂x2
(x̂)h2. (9.12)

If x̂ is solution of our optimum problem, we must necessarily have df (x̂) (h) = 0 for

each legitimate change h. In fact, if it were df (x̂) (h) > 0 such change would give us a

point x̂ + h that satisfies the equality constraint and such that f (x̂+ h) > f (x̂). On

the other hand, if it were df (x̂) (h) < 0 a similar argument, this time for −h (which is

obviously a legitimate change), would lead us to the point x̂−h with f (x̂− h) > f (x̂).

The necessary condition of optimum df (x̂) (h) = 0 together with (9.12) gives us:

∂f

∂x1
(x̂)

(
−

∂g
∂x2

(x̂)
∂g
∂x1

(x̂)

)
h2 +

∂f

∂x2
(x̂) h2 = 0.
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If, as natural, we assume h2 > 0, we have

∂f

∂x1
(x̂)

(
−

∂g
∂x2

(x̂)
∂g
∂x1

(x̂)

)
+
∂f

∂x2
(x̂) = 0,

which is exactly (9.10). Intuitively, all this explains why (9.6) is a necessary condition

for x̂ to be solution of the optimum problem.

Lemma 501 therefore established a necessary condition for optimality, with a clear

intuitive meaning. This condition can be equivalently written as

∇f (x̂)− λ̂∇g (x̂) = 0.

Remembering the algebra of gradients, the expression ∇f (x)− λ∇g (x) leads nat-

urally to think of the function L : A× R ⊆ Rn+1→ R defined by:

L (x, λ) = f (x) + λ (b− g (x)) , ∀ (x, λ) ∈ A× R. (9.13)

This function is called the Lagrangian function and plays a fundamental role in optim-

ization problems. Its gradient is

∇L (x, λ) =

(
∂L

∂x1
(x, λ) , ...,

∂L

∂xn
(x, λ) ,

∂L

∂λ
(x, λ)

)
∈ Rn+1

and it is important to distinguish in it the two parts ∇xL and ∇λL given by:

∇xL (x, λ) =

(
∂L

∂x1
(x, λ) , ...,

∂L

∂xn
(x, λ)

)
∈ Rn,

∇λL (x, λ) =
∂L

∂λ
(x, λ) ∈ R.

Using this notation, we have

∇xL (x, λ) = ∇f (x)− λ∇g (x) (9.14)

and

∇λL (x, λ) = b− g (x) , (9.15)

which leads us to the following fundamental formulation in terms of the Lagrangian

function of the necessary optimality condition of Lemma 501.

Theorem 503 Let x̂ be a local solution of the optimum problem (9.5). If f and g

are of class C1 and if ∇g (x̂) 	= 0, then there exists a scalar λ̂ ∈ R, called Lagrange

multiplier, such that the pair
(
x̂, λ̂
)

∈ Rn+1 is a stationary point of the Lagrangian

function.
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Proof Let x̂ be a solution of the problem of optimum (9.5). By Lemma 501 there

exists λ̂ ∈ R such that

∇f (x̂)− λ̂∇g (x̂) = 0.

By (9.14), this condition is equivalent to

∇xL
(
x̂, λ̂
)

= 0.

On the other hand, by (9.14) we have ∇λL (x, λ) = b− g (x). Hence, we will also have

∇λL
(
x̂, λ̂
)

= 0 since b− g (x̂) = 0. It follows that
(
x̂, λ̂
)
is a stationary point of L. �

Thanks to Theorem 503, the constrained optimum problem (9.5) is reduced to the

search of stationary points of a suitable function in several variables, the Lagrangian

function. It is a more complicated function than the original function f because we

have the new variable λ. But, thanks to the Lagrangian the solutions of the optimum

problem can be found by solving a standard first order condition, of the type seen for

the unconstrained problems.

Naturally, we are talking of conditions that are only necessary, and so there is no

guarantee that the stationary points are actually solutions of the problem. But, to have

a first order condition that selects possible candidates to be solutions of the constrained

problem is a substantial advance.

Before going on, we have to make two important observations. First, notice that

in general the pair
(
x̂, λ̂
)
is not a point of maximum of the Lagrangian, even when x̂

is actually a solution of the optimum problem. The pair
(
x̂, λ̂
)
is a stationary point

for the Lagrangian, but nothing more. Therefore, to say that the the solution of the

constrained optimum problem is reduced to the search of the maximum points of the

Lagrangian is a big mistake, as Chapter 10 will further clarify.

The second observation to make is that the problem (9.5) has a specular version

min
x∈A

f (x) (9.16)

sub g (x) = b

where instead of constrained maxima we look for constrained minima. Condition (9.6)

is necessary also for this version of the problem (9.5) and therefore the stationary

points of the Lagrangian could be constrained minima instead of maxima, but they

could also be neither maxima nor minima. This is the usual ambiguity of the first

order conditions, already met in the case of unconstrained optimization, which reflects

the fact that first order conditions are only necessary.
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9.3.1 The Method of Elimination

Thanks to Theorems 503 and 317, we can establish a procedure for solving the optimum

problem (9.5) when both functions f and g are of class C1. We will call method of

elimination this procedure, and in order to describe it we set

D0 = {x ∈ A : ∇g (x) = 0} ,
D1 = {x ∈ A : ∇g (x) 	= 0} .

The elements of D0 and D1 are called singular points and regular points of g,

respectively. The method of elimination is based on four steps:

(i) We check if Theorem 317 can be applied, i.e., if f is upper semicontinuous and

coercive on C = {x ∈ A : g (x) = b}.

(ii) We find the set D0 ∩ C of the singular points that satisfy the constraint.

(iii) We find the set S of the points x ∈ D1 for which there exists λ such that the pair

(x, λ) is a stationary point of the Lagrangian.2

(iv) We construct the set {f (x) : x ∈ S ∪ (D0 ∩ C)}. If x̂ ∈ S∪(D0 ∩ C) is such that

f (x̂) ≥ f (x) for each x ∈ S ∪ (D0 ∩ C), then such x̂ is solution of the optimum

problem (9.5). In other words, we construct the set that consists of the stationary

points and of the singular points; the points of this set in which f has maximum

value are the solutions of the optimum problem.

To understand why the method of elimination works, note that by Theorem 503

the set S consists of the points of D1 that are candidates to be local solutions of the

optimum problem (9.5).

On the other hand, if f is upper semicontinuous and coercive on C, by Theorem

317 there exists at least one solution of the optimum problem. Since D0 ∪ D1 = A,

we have C = (D0 ∩ C) ∪ (D1 ∩ C) and hence such a solution must belong to either

D0 ∩ C or D1 ∩ C. But, if it belongs to D1 ∩ C, for what we just observed it must

be in S. It follows that the solutions belong to S ∪ (D0 ∩ C), and hence the points

x̂ ∈ S ∪ (D0 ∩ C) such that f (x̂) ≥ f (x) for each x ∈ S ∪ (D0 ∩ C) are the solutions

of the problem of optimum (9.5).

The method of elimination is an elegant combination of global existence results,

like Theorem 317, and of local results, like Theorem 503.

2Notice that these points x automatically satisfy the constraint and hence we always have S ⊆
D1 ∩C; it is therefore not necessary to verify if for a point x ∈ S we also have x ∈ C.
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Before illustrating this method with some examples, note that when in the first step

of the method of elimination we use Weierstrass Theorem, that is, a result stronger

than Theorem 317, as a “by-product” of this method we also find the points of global

minimum, that is, the points x ∈ C that solve problem (9.16). In fact, it is easy to

see that they are the points x∗ ∈ S ∪D0 such that f (x∗) ≤ f (x) for each x ∈ S ∪D0.

Naturally, this is no longer true if we use Theorem 317, or one of its variants seen in

Section 6.6, because these results guarantee only the existence of maximum points, and

they do not say anything on the existence of possible minimum points.

Example 504 Consider the optimum problem:

max
x∈R2

(
2x21 − 5x22

)
(9.17)

sub x21 + x22 = 1

It is of the form (9.5), where f : R2 → R and g : R2 → R are given by f (x1, x2) =

2x21 − 5x22 and g (x1, x2) = x21 + x22, while b = 1. The set C is compact, and this

completes the first step of the method of elimination (here the Weierstrass Theorem

holds). We have

∇g (x) = (2x1, 2x2)

and so x = 0 is the only singular point, i.e., D0 = {(0, 0)}. Since it does not satisfy

the constraint, we have D0 ∩ C = ∅. The Lagrangian L : R3 → R is given by

L (x1, x2, λ) = 2x21 − 5x22 + λ
(
1− x21 − x22

)
, ∀ (x1, x2, λ) ∈ R3,

and to find the set S of its stationary points it is necessary to solve the first order

condition given by 



∂L
∂x1

= 0
∂L
∂x2

= 0
∂L
∂λ

= 0

It is therefore necessary to solve the following (nonlinear) system of 3 equations





2x1 (2− λ) = 0

−2x2 (5 + λ) = 0

1− x21 − x22 = 0

in the 3 unknowns x1, x2 and λ. Clearly x1 = 0 and x2 = 0 do not satisfy the third

equation. While x1 = 0 and λ = −5 implies x2 = ±1. So λ = 2 and x2 = 0 lead to

x1 = ±1. In conclusion, we have

S = {(0, 1) , (0,−1) , (1, 0) , (−1, 0)} ,
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which coincides with S ∪D0 since D0 = ∅. We therefore have:

f (0, 1) = f (0,−1) = 5, f (1, 0) = f (−1, 0) = 2,

and this implies that the points (0, 1) and (0,−1) are solutions of the optimum problem

(9.17). Instead, (1, 0) and (−1, 0) are constrained (global) minima. �

Example 505 Consider the optimum problem:

max
x∈Rn

e−‖x‖
2

(9.18)

sub
n∑

i=1

xi = 1

It is of the form (9.5), where f : Rn → R and g : Rn → R are given by f (x) = e−‖x‖
2

and

g (x) =
∑n

i=1 xi, while b = 1. The set C is not compact, and hence the Weierstrass

Theorem cannot be applied. But, f is coercive. In fact,

(f ≥ t) =





Rn if t ≤ 0{
x ∈ Rn : ‖x‖ ≤ √− lg t

}
if t ∈ (0, 1]

∅ if t > 1

and hence (f ≥ t) is compact and nonempty for each t ∈ (0, 1]. By Theorem 317, f

has then at least one maximum point on C, and this completes the first step of the

method of elimination. We have

∇g (x) = (1, ..., 1)

and therefore there exist no singular points, that is, D0 = ∅. The Lagrangian L : Rn →
R is given by

L (x1, x2, λ) = e−‖x‖
2

+ λ

(
1−

n∑

i=1

xi

)
, ∀ (x, λ) ∈ Rn+1,

and to find the set S of its stationary points it is necessary to solve the first order

condition given by the following (nonlinear)system of n+ 1 equations

{
∂L
∂xi

= −2xie
−‖x‖2 − λ = 0 ∀i = 1, ..., n

∂L
∂λ

= 1 −∑n
i=1 xi = 0

The first n equations imply

xi = −λ
2
e‖x‖

2
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and by substituting these values in the last equation we find

1− n
λ

2
e‖x‖

2

= 0,

that is,

λ = −2

n
e−‖x‖

2

.

Substituting this value of λ in each of the first n equations we find xi = 1/n, and so S

is the singleton given by:

S =

{(
1

n
, ...,

1

n

)}
,

which coincides with S ∪ (D0 ∩ C) since D0 = ∅. As S ∪ (D0 ∩ C) is a singleton, the

method of elimination is completed and we conclude that the vector x = (1/n, ..., 1/n)

is the only solution of the optimum problem (9.17). �

The next example shows the importance of the set D0 ∩ C.

Example 506 Consider the optimum problem:

max
x∈R2

e−x1 (9.19)

sub x31 − x22 = 0

It is of the form (9.5), where f : R2 → R and g : R2 → R are given by f (x) = e−x1

and g (x) = x31 − x22, while b = 0. The set C is closed but not compact, and hence the

Weierstrass Theorem cannot be applied. The function f is continuous on R2 and we

have:

(f ≥ t) =





R2 if t ≤ 0

(−∞,− lg t] ×R if t ∈ (0, 1]

∅ if t > 1

The function f is therefore not coercive. On the other hand, the constraint x31 = x22 is

such that x1 can satisfy such constraint only if x1 ≥ 0. Hence, C ⊆ R+ ×R and

(f ≥ t) ∩ C ⊆ ((−∞,− lg t]× R) ∩ (R+ ×R)= [0,− lg t]× R, ∀t ∈ (0, 1] .

If x1 ∈ [0,− lg t], the constraint is such that x22 ∈
[
0, (− lg t)3

]
, that is,

x22 ∈
[
−
√

(− lg t)3,

√
(− lg t)3

]
.

It follows that:

(f ≥ t) ∩ C ⊆ [0,− lg t]×
[
−
√

(− lg t)3,

√
(− lg t)3

]
, ∀t ∈ (0, 1] ,
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and hence (f ≥ t)∩C is compact since it is a closed subset of a compact. The function

f is therefore coercive and continuous on C, and by Theorem 317 it has at least one

point of maximum on C. This completes the first step of the method of elimination.

As to the second step, we have

∇g (x) =
(
3x21, 2x2

)

and hence D0 ∩ C = {(0, 0)}.
The Lagrangian L : R2 → R is given by

L (x1, x2, λ) = e−x1 + λ
(
x22 − x31

)
, ∀ (x, λ) ∈ R3,

and to find the set S of its stationary points it is necessary to solve the first order

condition given by the following (nonlinear) system of 3 equations





∂L
∂x1

= −e−x1 − 3λx21 = 0
∂L
∂x2

= 2λx2 = 0
∂L
∂λ

= x22 − x31 = 0

We observe that in no solution we can have λ = 0. In fact, if it were λ = 0 the first

equation would become e−x1 = 0, which does not have solution. Suppose therefore

that λ 	= 0. The second equation implies x2 = 0, and from the third one it follows

that x1 = 0. The first equation becomes −1 = 0, and this contradiction shows that

the system does not have solution. Hence, S = ∅.
In conclusion, S ∪ (D0 ∩ C) = {(0, 0)} and the method of elimination allows us to

conclude that (0, 0) is the only solution of the optimum problem (9.19). �

Though the method of elimination is a very general procedure of resolution of

constrained optimum problems, it can happen that there are solutions of the problem

of optimum that are not found through this procedure. In fact, the first step of the

method of elimination is based on results of existence à la Weierstrass that are sufficient,

but not necessary, conditions for the existence of optimum points. In this regard,

recall Example 320, where the hypotheses of these existence results did not hold and,

nevertheless, there were points of global maximum.

It can therefore happen that the first step of the method of elimination does not

hold, though there exist solutions of the optimum problem. The only thing that we

can say when the first step does not hold is that the solutions, if they exist, belong

to the set S ∪D0. But, it can well happen that none of such points is solution of the

system.

Next examples shows these features of the method of elimination.



9.3. ONE CONSTRAINT 283

Example 507 Consider the optimum problem:

max
x∈Rn

x31 − x32 (9.20)

sub x1 − x2 = 0

It is of the form (9.5), where f : R2 → R and g : R2 → R are given by f (x) = x31−x32
and g (x) = x1 − x2, while b = 0. The set C is not compact and the function f is not

coercive on C. In fact,

(f ≥ t) ∩ C =

{
∅ if t > 0

C if t ≤ 0

It follows that the hypotheses of Theorem 317 are not satisfied, and therefore the first

step of the method of elimination does not hold. As a result, this method cannot be

applied to the optimum problem (9.20).

On the other hand, it is immediate to verify that f (x) = 0 for each x ∈ C, and hence
every point of C is solution of the problem (9.20). Therefore, the method of elimination

has not been able here to solve a quite simple constrained optimum problem. �

Example 508 We slightly change the previous example, and we consider the optimum

problem:

max
x∈Rn

x31 − x32 (9.21)

sub x1 + x2 = 0

The only difference with respect to the previous example is that g (x) = x1 + x2. Also

here the set C is not compact and the function f is not coercive on C. In fact,

(f ≥ t) ∩ C =

[
3

√
t

2
,+∞

)
, ∀t ∈ R.

The hypotheses of Theorem 317 do not hold and therefore the method of elimination

cannot be applied even to the optimum problem (9.21).

Unlike the previous example, this problem does not have solution. In fact, consider

the sequence {xn}n given by xn = (n,−n) for each n ≥ 1. We have {xn}n ⊆ C and

f (xn) = 2n3, so that limn f (xn) = +∞, what proves that the problem (9.21) does not

have solutions.

If we study the Lagrangian, we get S∪ (D0 ∩ C) = {(0, 0)}, and therefore the point

(0, 0) is the only candidate to be solution of the problem. But, f (n,−n) > f (0, 0) and

hence also by this way we conclude that problem (9.21) does not have solutions.3 �

3This second way that uses the Lagrangian is in this case convolute with respect to the direct
study of the sequence xn = (n,−n). But, there can be cases in which it is useful first to reduce to
S ∪ (D0 ∩C), and then to establish that none of these candidates is actually solution of the problem.
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Finally, observe that we did not mention any second order conditions to use in

solving constrained optimum problems, while in Chapter 5 we talked in detail of these

conditions in the problems without constraints. This omission is not by chance and

is due to the change of perspective, from local to global, that we did in this chapter

with respect to Chapter 5. The second order conditions are in fact of little interest in

the search of global maximum points, and their marginal contribution to such search is

usually more than compensated by the heaviness of the computations that they require.

For this reason we do not talk about them and we refer the interested reader to Section

5.4 of Montrucchio (1998).

9.4 Several Constraints

Consider now the general optimum problem (9.2), in which there can be several equality

constraints. Lemma 501 and Theorem 503 generalize in a natural way to the case of

several constraints. We write problem (9.2) as

max
x∈A

f (x) (9.22)

sub g (x) = b

where g = (g1, ..., gm) : A ⊆ Rn→ Rm and b = (b1, ..., bm) ∈ Rm. The Jacobian matrix

Dg (x) is given by

Dg (x) =




∇g1 (x)
∇g2 (x)
· · ·
∇gm (x)




and the points x where Dg (x̂) has maximum rank (i.e., rank m) are called regular,

while the points where this is not true are called singular.

The Jacobian Dg (x̂) has maximum rank if and only if the gradients ∇g1 (x̂),
∇g2 (x̂), ..., ∇gm (x̂) are linearly independent. In this case the vector subspace of

Rn generated by these gradients has dimension m and the condition of maximum rank

is such that m ≤ n, i.e., the condition of regularity can hold only if the number of

constraints does not exceed the dimensionality of the space.

When m = 1, we have Dg (x) = ∇g (x) and the condition of maximum rank is

equivalent to require ∇g (x) 	= 0. In this case we thus go back to the notions of regular

points and singular points previously seen.4

On the other hand, when m > 1 the Jacobian Dg (x̂) has maximum rank if and

only if the gradients ∇g1 (x̂), ∇g2 (x̂), ..., ∇gm (x̂) are linearly independent. In this

4Note that in a vector space V , a singleton {v} is linearly independent when αv = 0 implies α = 0,
which is equivalent to require v 	= 0.
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case the vector subspace of Rn generated by these gradients has dimension m and the

condition of maximum rank is such that m ≤ n, i.e., the condition of regularity can

hold only if the number of constraints does not exceed the dimensionality of the space.

Naturally, when m = n the Jacobian has maximum rank if and only if it is a non

singular matrix, i.e., if and only if detDg (x̂) 	= 0.

The next result extends Lemma 501 to the case of several constraints, and shows

that the condition of regularity ∇g (x̂) 	= 0 of Lemma 501 is generalized by requiring

that the Jacobian Dg (x̂) has maximum rank. In other words, also here x̂ must be a

regular point.

Lemma 509 Let x̂ be solution of the optimum problem (9.22). If the functions f, g1, ..., gm

are of class C1 and if Dg (x̂) has rank m, then there exists a vector λ̂ ∈ Rm such that

∇f (x̂) =
m∑

i=1

λ̂i∇gi (x̂) . (9.23)

Proof Let ‖·‖ be the Euclidean norm. Since A is an open, there exists ε̂ > 0 sufficiently

small such that Bε̂ (x̂) = {x ∈ A : ‖x− x̂‖ ≤ ε̂} ⊆ A. Given ε ∈ (0, ε̂], set Sε (x̂) =

{x ∈ A : ‖x− x̂‖ = ε}. In view of Exercise 13.0.56, the set Sε (x̂) is compact.

We first prove a property that we will use in the following.

Fact 1. For each ε ∈ (0, ε̂], there exists N > 0 such that

f (x) − f (x̂)− ‖x− x̂‖2 −N
m∑

i=1

(gi (x) − gi (x̂))
2 < 0, (9.24)

for each x ∈ Sε (x̂).

Proof of Fact 1. We proceed by contradiction, and we assume therefore that there

exists ε ∈ (0, ε̂] for which we do not have any N > 0 such that (9.24) holds. Take an

increasing sequence {Nn}n with Nn ↑ +∞, and for each of these Nn take xn ∈ Sε (x̂)

for which (9.24) does not hold, i.e., xn such that:

f (xn)− f (x̂)− ‖xn − x̂‖2 −Nn

m∑

i=1

(gi (xn)− gi (x̂))
2 ≥ 0.

Hence, for each n ≥ 1 we have:

f (xn)− f (x̂)− ‖xn − x̂‖2
Nn

≥
m∑

i=1

(gi (xn)− gi (x̂))
2 . (9.25)
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Since the sequence {xn}n just constructed is contained in the compact set Sε (x̂), by

Theorem 275 there exists a subsequence {xnk}k convergent in Sε (x̂), i.e., there exists
x∗ ∈ Sε (x̂) such that xnk → x∗. Expression (9.25) implies that, for each k ≥ 1, we

have:
f (xnk)− f (x̂)− ‖xnk − x̂‖2

Nnk
≥

m∑

i=1

(gi (xnk)− gi (x̂))
2 . (9.26)

Since f is continuous, we have limk f (xnk) = f (x∗). Moreover, limk ‖xnk − x̂‖ =

‖x∗ − x̂‖. Since limkNnk = +∞, we have

lim
k

f (xnk)− f (x̂)− ‖xnk − x̂‖2
Nnk

= 0,

and hence (9.26) implies, thanks to the continuity of the functions gi,

m∑

i=1

(gi (x
∗)− gi (x̂))

2 = lim
k

m∑

i=1

(gi (xnk)− gi (x̂))
2 = 0.

It follows that (gi (x
∗)− gi (x̂))

2 = 0 for each i = 1, ...,m, from which gi (x∗) = gi (x̂) =

bi for each i = 1, ...,m. Therefore, x∗ satisfies the equality constraints, and we therefore

have f (x̂) ≥ f (x∗) since x̂ is a solution of the optimum problem (9.22).

On the other hand, since xnk ∈ Sε (x̂) for each k ≥ 1, (9.26) implies

f (xnk)− f (x̂) ≥ ‖xnk − x̂‖2 +Nnk

m∑

i=1

(gi (xnk)− gi (x̂))
2 ≥ ε2, ∀k ≥ 1,

and therefore f (xnk) ≥ f (x̂) + ε2 for each k ≥ 1. By the continuity of f , this leads to

f (x∗) = lim
k
f (xnk) ≥ f (x̂) + ε2 > f (x̂) ,

what contradicts f (x̂) ≥ f (x∗). This contradiction proves Fact 1. △

Using Fact 1, we prove now a second property that we will need. Here we set

Sm+11 (0) = {x ∈ Rm+1 : ‖x‖ = 1}.

Fact 2. For each ε ∈ (0, ε̂], there exist xε ∈ Bε (x̂) and a vector (λε0, λ
ε
1, ..., λ

ε
m) ∈

Sm+11 (0) such that

λε0

(
∂f

∂xj
(xε)− 2

(
xεj − x̂j

))
−

m∑

i=1

λεi
∂gi
∂xj

(xε) = 0, ∀j = 1, ..., n. (9.27)

Proof of Fact 2. Given ε ∈ (0, ε̂], let Nε > 0 be the positive constant whose existence

is guaranteed by Fact 1. Define the function hε : A ⊆ Rn→ R by:

hε (x) = f (x)− f (x̂)− ‖x− x̂‖2 −Nε

m∑

i=1

(gi (x)− gi (x̂))
2 , ∀x ∈ A.
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We have hε (x̂) = 0 and, given how we chose Nε,

hε (x) < 0, ∀x ∈ Sε (x̂) . (9.28)

The function hε is continuous on the compact Bε (x̂) = {x ∈ A : ‖x− x̂‖ ≤ ε}, and by

the Weierstrass Theorem there exists xε ∈ Bε (x̂) such that hε (xε) ≥ hε (x) for each

x ∈ Bε (x̂). In particular, hε (xε) ≥ hε (x̂) = 0, and so (9.28) implies that ‖xε‖ < ε,

i.e., xε ∈ Bε (x̂). The point xε is therefore a maximum point on the open Bε (x̂) and

by Theorem 194 we have ∇hε (xε) = 0. Hence,

∂f

∂xj
(xε)− 2

(
xεj − x̂j

)
− 2Nε

m∑

i=1

gi (x
ε)
∂gi
∂xj

(xε) = 0, ∀j = 1, ..., n. (9.29)

Set:

cε = 1 +
m∑

i=1

(2Nεgi (x
ε))2 ,

λε0 =
1

cε
,

λεi =
2Nεgi (x

ε)

cε
, ∀i = 1, ...,m,

so that (9.27) is obtained dividing (9.29) by cε. Note that
√∑m

i=0 (λ
ε
i )
2 = 1, i.e.,

(λε0, λ
ε
1, ..., λ

ε
m) belongs to a Sm+11 (0). △

Using Fact 2, we can now complete the proof. Take a decreasing sequence {εn}n ⊆
(0, ε̂] with εn ↓ 0,5 and consider the relative sequence {(λn0 , λn1 , ..., λnm)}n ⊆ Rm+1, whose
existence is guaranteed by Fact 2.

Since the sequence {(λn0 , λn1 , ..., λnm)}n is contained in the compact set Sm+11 (0), by

Theorem 275 there exists a subsequence {(λnk0 , λnk1 , ..., λnkm )}k convergent in Sm+11 (0),

i.e., there exists (λ0, λ1, ..., λm) ∈ Sm+11 (0) such that

(λnk0 , λ
nk
1 , ..., λ

nk
m ) → (λ0, λ1, ..., λm) .

Thanks to Fact 2, for each εnk there exists xnk ∈ Bεnk (x̂) for which (9.27) holds,

that is,

λnk0

(
∂f

∂xj
(xnk)− 2 (xnk − x̂j)

)
−

m∑

i=1

λnki
∂gi
∂xj

(xnk) = 0, ∀j = 1, ..., n.

5Naturally, this use of the index nmust not be confused with the use of n as index of dimensionality
of the space Rn on which the functions f and gi are defined.
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Consider the sequence {xnk}k so constructed. From xnk ∈ Bεnk (x̂) it follows that

‖xnk − x̂‖ < εnk → 0,

and hence, for each j = 1, ..., n,

λ0
∂f

∂xj
(x̂)−

m∑

i=1

λi
∂gi
∂xj

(x̂) (9.30)

= lim
k

(
λnk0

(
∂f

∂xj

(
xk
)
− 2 (xnk − x̂j)

)
−

m∑

i=1

λnki
∂gi
∂xj

(xnk)

)
= 0.

On the other hand, λ0 	= 0. In fact, if it were λ0 = 0, then from (9.30) it follows that

m∑

i=1

λi
∂gi
∂xj

(x̂) = 0, ∀j = 1, ..., n.

Since the gradients ∇g1 (x̂), ∇g2 (x̂), ..., ∇gm (x̂) are linearly independent, this implies

λi = 0 for each i = 1, ...,m, which contradicts (λ0, λ1, ..., λm) ∈ Sm+11 (0).

In conclusion, if we set λ̂i = λi/λ0 for each i = 1, ...,m, (9.30) implies (9.23). �

The Lagrangian is now the function L : A× R ⊆ Rn+m→ R defined as:

L (x, λ) = f (x) +
m∑

i=1

λi (bi − gi (x)) = f (x) + λ · (b− g (x)) , (9.31)

for each (x, λ) ∈ A×Rm. Theorem 503 generalizes as follows (we omit the proof, which

is completely analogous to that of Theorem 503).

Theorem 510 Let x̂ be solution of the optimum problem (9.22). If the functions

f, g1, ..., gm are of class C1 and if Dg (x̂) has rank m, then there exists a vector λ̂ ∈ Rm
such that the pair

(
x̂, λ̂
)
∈ Rn+m is a stationary point of the Lagrangian function.

The components λ̂i of the vector λ̂ ∈ Rm are called Lagrange multipliers. It is

worthwhile remarking that the vector λ̂ of the multipliers associated with a solution

to (9.23) is necessarily unique: by assumption the vector {∇gi (x̂)}mi=1 are linearly

independent and thus the representation ∇f (x̂) =
∑m

i=1 λ̂i∇gi (x̂) is unique.

Theorem 510 allows to extend to the case of several constraints the method of

elimination that we introduced in the previous section for the search of the solutions of

the optimum problem with only one constraint. Next examples illustrate the procedure

in this more general form. It is however important to observe that the determination

of the singular points, satisfying the constraints, when m > 1, requires some job and
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the study of the rank of the Jacobian matrix is rather complicated and not the best

way to follow.

Observe that we must find points x such that gi (x) = bi and the gradients ∇gi (x)
be linearly dependent. Therefore, we must verify if the system

{ ∑m
i=1 λi∇gi (x) = 0

gi (x) = bi i = 1, ...,m

admits solutions (λi) which are not all null. Clearly this system can be write as




∑m
i=1 λi∂gi∂x1 = 0

.....∑m
i=1 λi∂gi∂xn = 0

gi (x) = bi i = 1, ...,m

. (9.32)

Example 511 Consider the optimum problem:

max
x∈R3

(7x1 − 3x3) (9.33)

sub x21 + x22 = 1 and x1 + x2 − x3 = 1

This problem is of the form (9.22), where f : R3 → R and g = (g1, g2) : R3 → R2 are

given by f (x1, x2) = 3x1−4x3, g1 (x1, x2, x3) = x21+x
2
2 and g2 (x1, x2, x3) = x1+x2−x3,

while b = (1, 1) ∈ R2. Since C is obviously closed, to prove that it is compact it is

sufficient to prove that it is also bounded. For the x1 and x2 such that x21 + x22 = 1 we

have x1, x2 ∈ [−1, 1] and hence for the x3 such that x3 = x1+x2−1 we have x3 ∈ [−3, 1].

It follows that C ⊆ [0, 1]× [0, 1]× [−3, 1] and the set C is therefore bounded, and hence

compact. This completes the first step of the method of elimination (because the

Weierstrass Theorem holds). Let us find the singular point. System (9.32) becomes




2λx1 + µ = 0

2λx2 + µ = 0

−µ = 0

x21 + x22 = 1

x1 + x2 − x3 = 1

.

Since µ = 0, λ must be different from 0. This implies x1 = x2 = 0 that contradicts the

forth equation. Hence no singular points satisfies the constraints.

The Lagrangian L : R3 → R is given by

L (x1, x2, λ) = 7x1 − 3x3 + λ1
(
1− x21 − x22

)
+ λ2 (1− x1 − x2 + x3)

for each (x1, x2, x3, λ1, λ2) ∈ R5 and to find the set S of its stationary points it is

necessary to solve the first order condition given by the following (nonlinear) system
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of 5 equations 



∂L
∂x1

= 7 − 2λ1x1 − λ2 = 0
∂L
∂x2

= −2λ1x2 − λ2 = 0
∂L
∂x3

= −3 + λ2 = 0
∂L
∂λ1

= 1 − x21 − x22 = 0
∂L
∂λ2

= 1 − x1 − x2 + x3 = 0

in the 5 unknowns x1, x2, x3, λ1 and λ2. The third equation implies λ2 = 3 and

therefore the system reduces to:




−2λ1x1 + 4 = 0

−λ1x2 − 3 = 0

1− x21 − x22 = 0

1− x1 − x2 + x3 = 0

The first equation implies λ1 	= 0. Hence, from the first two equations it follows that:

2

λ1
= x1 and − 3

2λ1
= x2

Substituting in the third equation we have:

λ1 = ±5

2
.

If λ1 = 5/2, we obtain x1 = 4/5, x2 = −3/5, x3 = −4/5. If λ1 = −5/2, we have

x1 = −4/5, x2 = 3/5, x3 = −7/5. We have therefore found two stationary points
{(

4

5
,−3

5
,−4

5
,
5

2
, 3

)
,

(
−4

5
,
3

5
,−7

5
,−5

2
, 3

)}
,

and hence

S =

{(
4

5
,−3

5
,−4

5

)
,

(
−4

5
,
3

5
,−7

5

)}
.

We have:

f

(
4

5
,−3

5
,−4

5

)
= 8

f

(
−4

5
,
3

5
,−7

5

)
= −7

5

and this implies that (
4

5
,−3

5
,−4

5

)

is the solution of the optimum problem (9.33), while
(
−4

5
,
3

5
,−7

5

)

is a constrained (global) minimum. �
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Example 512 Consider the optimum problem:

max
x∈R3

−x1 (9.34)

sub − x21 + x32 = 0 and x23 + x22 − 2x2 = 0

This problem is of the form (9.22), where f : R3 → R and g = (g1, g2) : R3 → R2

are given by f (x1, x2) = −x1, g1 (x1, x2, x3) = −x21+x32, g2 (x1, x2, x3) = x23+x
2
2− 2x2,

while b = (0,−1) ∈ R2. Since C is obviously closed, to prove that is compact it is

sufficient to prove that it is also bounded. The second constraint can be written as

x23 + (x2 − 1)2 = 1, and so the x2 and x3 that satisfy it are such that x2 ∈ [0, 2] and

x3 ∈ [−1, 1]. At this point the constraint x21 = x32 implies that x21 ∈ [0, 8], from which

x1 ∈
[
−
√

8,
√

8
]
. In conclusion,

C ⊆
[
−
√

8,
√

8
]
× [0, 2]× [−1, 1] ,

which shows that C is bounded, and so compact. As in the previous example, also

here the hypotheses of the Weierstrass Theorem are satisfied and this completes the

first step of the method of elimination.

To check the existence of singular points we solve the system




−2λx1 = 0

3λx22 + µ (2x2 − 2) = 0

2µx3 = 0

−x21 + x32 = 0

x23 + x22 − 2x2 = 0

In view of the first and the third equation, we discuss three cases:

i) λ = 0, x3 = 0

ii) µ = 0, x1 = 0

iii) x3 = 0, x1 = 0

Case (i) implies that µ 	= 0. We have x2 = 1 which contradicts the last equation.

Case (ii) implies λ 	= 0 and we get the solution x1 = x2 = x3 = 0.

Case (iii) clearly leads to the same solution x1 = x2 = x3 = 0. W can conclude that:

C ∩D0 = {(0, 0, 0)} . (9.35)

We now move to the set S of the stationary points of the Lagrangian, which is here

given by

L (x1, x2, λ) = −x1 + λ1
(
x21 − x32

)
+ λ2

(
−x23 − x22 + 2x2

)
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for each (x1, x2, x3, λ1, λ2) ∈ R5. To find S it is necessary to solve the first order

condition given by the following (nonlinear) system of 5 equations




∂L
∂x1

= −1 + 2λ1x1 = 0
∂L
∂x2

= −3λ1x
2
2 − 2λ2 (x2 − 1) = 0

∂L
∂x3

= −2λ2x3 = 0
∂L
∂λ1

= x21 − x32 = 0
∂L
∂λ2

= −x23 + x22 − 2x2 = 0

in the 5 unknowns x1, x2, x3, λ1 and λ2. The first equation implies λ1 	= 0 and x1 	= 0.

From the fourth equation it follows that x2 	= 0 and, hence, from the second equation

it follows that λ2 	= 0.

Since λ2 	= 0, from the third equation it follows x3 = 0, and hence the fifth equation

implies that x2 = 0 or x2 = 2. Since x2 = 0 contradicts what established above, we

consider x2 = 2. The fourth equation implies x1 = ±
√

8, and hence the first equation

implies

λ1 = ± 1

4
√

2
,

so that from the second equation it follows that

λ2 = ∓ 3

2
√

2
.

In conclusion, the stationary points are
{(√

8, 2, 0,
1

4
√

2
,− 3

2
√

2

)
,

(√
8, 2, 0,− 1

4
√

2
,

3

2
√

2

)}

and therefore S =
{(√

8, 2, 0
)
,
(√

8, 2, 0
)}
, from which

S ∪D0 =
{(√

8, 2, 0
)
,
(√

8, 2, 0
)
, (0, 0, 0)

}
.

We have:

f
(√

8, 2, 0
)

= −
√

8, f
(
−
√

8, 2, 0
)

=
√

8, f (0, 0, 0) = 0.

and this implies that
(
−
√

8, 2, 0
)
is the solution of the optimum problem (9.34). In-

stead,
(√

8, 2, 0
)
is the constrained (global) minimum. �

Example 513 Consider the optimum problem:

max
x∈R3

−
(
x21 + x22 + x23

)
(9.36)

sub x21 − x2 = 1 and x1 + x3 = 0
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This problem is of the form (9.22), where f : R3 → R and g = (g1, g2) : R3 → R2 are

given by f (x1, x2, x3) = − (x21 + x22 + x23), g1 (x1, x2, x3) = x21 − x2 and g2 (x1, x2, x3) =

x1 + x3, while b = (1, 1) ∈ R2. The set C is closed, but is not bounded (and

hence it is not compact). To see this, consider the sequence {xn}n given by xn =(√
1 + n, n, 1− n

)
. This sequence belongs to C, but ‖xn‖ → +∞ and hence there

does not exist any neighborhood in R3 that can contain it.

On the other hand, thanks to Proposition 323 f is coercive, and hence Theorem

317 holds. The first step of the method of elimination is therefore satisfied.

Let us in this case study directly the rank of the Jacobian:

Dg (x) =

[
−2x1 −1 0

1 0 1

]
.

It is easy to see how for no value of x1 the two row vectors, i.e., the two gradients∇g1 (x)
and ∇g2 (x), are linearly dependent (at a “mechanical” level it is easily verified that

there does not exist any value of x1 for which the matrix Dg (x) does not have full

rank). Therefore, there do not exist singular points, i.e., we have D0 = ∅.
We now determine the set S of the stationary points of the Lagrangian, here given

by

L (x1, x2, λ) = −
(
x21 + x22 + x23

)
+ λ1

(
1− x21 + x2

)
+ λ2 (1− x1 − x3)

for each (x1, x2, x3, λ1, λ2) ∈ R5. To find S it is necessary to solve the following (non-

linear) system of 5 equations





∂L
∂x1

= −2x1 − 2λ1x1 − λ2 = 0
∂L
∂x2

= −2x2 + λ1 = 0
∂L
∂x3

= −2x3 − λ2 = 0
∂L
∂λ1

= 1 − x21 + x2 = 0
∂L
∂λ2

= 1 − x1 − x3 = 0

We have λ1 = 2x2 and λ2 = −2x3, which substituted in the first equation leads to the

following nonlinear system of 3 equations:





x1 + 2x1x2 − x3 = 0

1− x21 + x2 = 0

1− x1 − x3 = 0

From the last two equations we have x2 = x21 − 1 and x3 = 1 − x1, which substituted

in the first one lead to 2x31 − 1 = 0, from which

x1 =
1
3
√

2
.
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In turn this implies:

x2 =
1
3
√

4
− 1 and x3 = 1 − 1

3
√

2
.

Being D0 = ∅, we therefore have:

S ∪D0 = S =

{(
1
3
√

2
,

1
3
√

4
− 1, 1− 1

3
√

2

)}
.

We can therefore conclude that the point
(

1
3
√

2
,

1
3
√

4
− 1, 1− 1

3
√

2

)

is the solution of the optimum problem (9.36). Notice that since we found just one

critical point of the Lagrangian, we can infer that there is no global (or local) minimum.

�



Chapter 10

Differential Non Linear

Programming

10.1 Introduction

Let us go back to the problem of the consumer seen at the beginning of the previous

chapter, in which we considered a consumer with utility function u : A ⊆ Rn → R and

with an income b ∈ R. Given the vector p ∈ Rn+ of prices of the goods, we wrote his

budget constraint as

C (p, b) = {x ∈ A : p · x = b} ,

and his optimum problem as:

max
x∈C(p,b)

u (x) .

In this formulation we assumed that the consumer has to spend all his income, from

which the sign of equality in the budget constraint, and we did not impose other

constraints on the bundle x except that of satisfying the budget constraint. As to

the income, the hypothesis that all the income is spent can be too strong. Think for

example of intertemporal problems, where it can be crucial to leave to the consumer

the possibility of saving in some periods, something that is impossible if we require that

the budget constraint is satisfied with equality at each period. It becomes therefore

natural to ask what happens to the optimum problem of the consumer if we weaken

the constraint to p · x ≤ b, that is, if the constraint is given by an inequality and not

anymore by an equality.

As to the bundles of goods x ∈ A, in many cases it can have no sense to talk

of negative quantities. Think for example of the purchase of physical goods, maybe

fruit or vegetables to the market, in which the quantity purchased of goods has to be

non-negative. This suggests to impose the constraint x ∈ Rn+ in the optimum problem.

295
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Keeping in mind these observations, the consumer problem becomes:

max
x∈A

u (x) (10.1)

sub p · x ≤ b and x ∈ Rn+

with constraints now given by inequalities. If we write the budget constraint as

C (p, b) =
{
x ∈ A : x ∈ Rn+ and p · x ≤ b

}
, (10.2)

the problem of optimum becomes:

max
x∈C(p,b)

u (x) , (10.3)

which has a form similar to the problem (9.1), though the set C (p, b) has now a different

definition.

The general form of an optimum problem, in which there can be both equality and

inequality constraints, is given by

max
x∈A

f (x) (10.4)

sub gi (x) = bi, ∀i ∈ I,
hj (x) ≤ cj, ∀j ∈ J,

where I and J are finite sets of indices (possibly empty), f : A ⊆ Rn → R is the

objective function, the functions gi : A ⊆ Rn → R and the associated scalars bi ∈ R
characterize |I| equality constraints, while the functions hj : A ⊆ Rn → R with the

associated scalars cj ∈ R induce |J | inequality constraints.

The set

C = {x ∈ A : gi (x) = bi and hj (x) ≤ cj , ∀i ∈ I,∀j ∈ J } (10.5)

identified by the constraints is called admissible region for the optimum problem. The

optimum problem (10.4) can be equivalently formulated as:

max
x∈C

f (x) .

A point x̂ ∈ B is called (global) solution of the optimum problem (10.4) if f (x̂) ≥ f (x)

for each x ∈ C, while x̂ ∈ B is called local solution of such problem if there exists a

neighborhood Bx0 (ε) of x̂ such that f (x̂) ≥ f (x) for each x ∈ Bx0 (ε) ∩ C.

The formulation (10.4) is extremely versatile. First observe that it encompasses as

special cases the optimum problems seen up to now. In fact:
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(i) If I = J = ∅, we go back to the unconstrained optimum problem of Chapter 5,

without constraints.

(ii) If I 	= ∅ and J = ∅, we go back to the optimum problem with only equality

constraints of the previous chapter.

Moreover, observe that:

(iii) A constraint of the form h (x) ≥ c can be included in the formulation (10.4) by

considering −h (x) ≤ −c. In particular, a constraint of the form x ≥ 0 can be

included in the formulation (10.4) by considering −x ≤ 0.

(iv) A constrained minimization problem for f can be written in the formulation

(10.4) by considering −f .

(v) In the light of (iii) it should be clear that also the choice of the sign≤ in expressing

the inequality constraints is simply a convention.

Observations (i)-(iv) show the scope and flexibility of formulation (10.4). Before

illustrating all this with some examples, we give a minimum of discipline to this for-

mulation.

Definition 514 The problem (10.4) is said to be well posed (or superconsistent) if

for each j ∈ J there exists x ∈ C such that hj (x) < c.

To understand this definition observe that an equality constraint g (x) = b can be

written in form of inequality constraint as g (x) ≤ b and −g (x) ≤ −b. This makes

uncertain the distinction between equality constraints and inequality constraints in

(10.4). To avoid this, and so to have a clear distinction between the two types of

constraints, in what follows we will consider always problems (10.4) that are well posed,

so that it is not possible to express possible equality constraints in the form of inequality

constraints. In fact, there cannot exist any x ∈ C for which we can have both g (x) ≤ b

and −g (x) < −b (naturally, if J = ∅, Definition 514 is automatically satisfied and

there is nothing to worry about).1

Example 515 The optimum problem:

max
x∈R3

(
x21 + x22 + x33

)

sub x1 + x2 − x3 = 1 and x21 + x22 ≤ 1

1For simplicity, in the statements of the results concerning problem (10.4) we will assume implicitely
that the problem is well posed, even without explicitely mention it.
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is of the form (10.4) with |I| = |J | = 1, f (x) = x21 + x22 + x33, g (x) = x1 + x2 − x3,

h (x) = x21 + x22 and b = c = 1.2 �

Example 516 The optimum problem:

max
x∈R3

−x1
sub − x21 + x32 = 0 and x23 + x22 − 2x2 = 0

is of the form (10.4) with I = {1, 2}, J = ∅, f (x) = −x1, g1 (x) = −x21 + x32, g2 (x) =

x23 + x22 − 2x2 and b1 = b2 = 0. �

Example 517 The optimum problem:

max
x∈R3

ex1+x2+x3

sub x1 + x2 + x3 = 1, x21 + x22 + x23 =
1

2
, x1 ≥ 0 and x2 ≥

1

10

is of the form (10.4) with I = J = {1, 2} , f (x) = ex1+x2+x3 , g1 (x) = x1 + x2 + x3,

g2 (x) = x21 + x22 + x23, h1 (x) = −x1, h2 (x) = −x2, b1 = 1, b2 = 2−1, c1 = 0 and

c2 = −10−1. �

Example 518 The optimum problem:

max
x∈R3

x31 − x32

sub x1 + x2 ≤ 1 and − x1 + x2 ≤ 1

is of the form (10.4) with I = ∅, J = {1, 2} , f (x) = x31 − x32, h1 (x) = x1 + x2,

h2 (x) = −x2 + x1 and c1 = c2 = 1. �

Example 519 The minimum problem:

min
x∈R3

x1 + x2 + x3

sub x1 + x2 = 1 and x22 + x23 ≤
1

2

can be written in the form (10.4) as

max
x∈R3

− (x1 + x2 + x3)

sub x1 + x2 = 1 and x22 + x23 ≤
1

2

�

2To be pedantic, here we should have set I = J = {1} , g1 (x) = x1+x2−x3, h1 (x) = x21+x22 and
b1 = c1 = 1. But, in this case in which we have only one equality constraint and only one inequality
constraint, pedices make the notation heavy without utility.
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10.1.1 An Alternative Formulation

An optimum problem with inequality constraints is often written as

max
x∈A

f (x) (10.6)

sub g1 (x) ≤ b1, g2 (x) ≤ b2, ..., gm (x) ≤ bm

where f : A ⊆ Rn → R is our objective function, while the functions gi : A ⊆ Rn → R

and the scalars bi ∈ R induce m inequality constraints.

In this formulation also possible equality constraints are included, by resorting to

the usual trick of writing the equality constraint g (x) = b as two inequality constraints

g (x) ≤ b and −g (x) ≤ −b. Note, however, that this formulation requires the presence

of at least one constraint (it is the case m = 1) and hence it is less general than (10.4).

Moreover, the indirect way in which (10.6) encompasses the equality constraints makes

sometimes less transparent the formulation of the results and this is a further reason

for which we chose formulation (10.4) with the equality constraints fully specified.

10.2 Resolution of the Problem

In this section we extend to the optimum problem (10.4) the solution methods studied

in the previous chapter for the problem (9.2), which we saw to be a special case of

(10.4).

The first thing to do is to find the general version of Lemma 509 that also holds for

problem (10.4). To this end set, for a given point x ∈ A,

A (x) = I ∪ {j ∈ J : hj (x) = cj} .

In other words, A (x) is the set of the so called binding constraints at x, that is, of the

constraints that hold as equalities at the given point x. The constraints that are not

binding are called non binding.

For example, in the problem

max
x∈R3

f (x)

sub x1 + x2 − x3 = 1 and x21 + x22 ≤ 1

the first constraint is binding at all the points of C, while the second constraint is for

example binding at the point
(
1/
√

2, 1/
√

2,
√

2− 1
)
and is not binding at the point

(1/2, 1/2, 0).

Definition 520 The problem (10.4) has regular constraints at a point x ∈ Rn if the

gradients ∇gi (x) and the gradients ∇hj (x) with j ∈ A (x) are linearly independent.
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In other words, the constraints are regular at a point x if the gradients of the

functions that induce constraints binding at such point are linearly independent. This

condition is the generalization to the problem (10.4) of the condition of linear inde-

pendence on which Lemma 509 was based, and in fact it implies that x is a regular

point for the function g : A ⊆ R|I| → R.

In particular, if we form the matrix whose rows consist of the gradients of the func-

tions that induce binding constraints at the point considered, the regularity condition

of the constraints is equivalent to require that such matrix has maximum rank.

Finally, observe that in view of Corollary 50-(ii) the regularity condition of the

constraints can be satisfied at a point x only if |A (x)| ≤ n, that is, only if the number

of the binding constraints at x does not exceed the dimension of the space on which

the optimum problem is defined.

We can now give the generalization of Lemma 509 for problem (10.4).

Lemma 521 Let x̂ be solution of the optimum problem (10.4). If the functions f, {gi}i∈I
and {hj}j∈J are of class C1 and if the constraints are regular in x̂, then there exist a

vector λ̂ ∈ R|I| and a vector µ̂ ∈ R|J |+ such that

∇f (x̂) =
∑

i∈I
λ̂i∇gi (x̂) +

∑

j∈J
µ̂j∇hj (x̂) , (10.7)

µ̂ · (c− h (x̂)) = 0. (10.8)

Note how the vector µ̂ associated to the inequality constraints has positive sign,

while there is no restriction on the sign of the vector λ̂ associated to the equality

constraints.

Lemma 521 generalizes Theorem 194 and Lemma 509. In fact, if I = J = ∅
(optimization without constraints), (10.7) reduces to the condition ∇f (x̂) = 0 of

Theorem 194, while if I 	= ∅ and J = ∅ (optimization with only equality constraints),

(10.7) reduces to the condition ∇f (x̂) =
∑

i∈I λ̂i∇gi (x̂) of Lemma 509.

With respect to Theorem 194 and to Lemma 509, the novelty of Lemma 521 is the

condition (10.8). Since µ̂ has positive sign, this condition is equivalent to require

µ̂j (c− hj (x̂)) = 0, ∀j ∈ J,

and often (10.8) is written in this form. To understand the role of this condition it is

useful the following characterization.

Lemma 522 Condition (10.8) holds if and only if µ̂j = 0 for each j such that hj (x̂) <

cj, that is, for each j /∈ A (x̂).
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Proof Assume (10.8). Since for each j ∈ J we have hj (x̂) ≤ cj, from the positive sign

of µ̂ it follows that (10.8) implies cj − hj (x̂) = 0 for each j ∈ J , and therefore µ̂j = 0

for each j such that hj (x̂) < cj.

On the other hand, if this last property holds we have

µ̂j · (cj − hj (x̂)) = 0, ∀j ∈ J. (10.9)

because, being hj (x̂) ≤ cj for each j ∈ J , we have hj (x̂) < cj or hj (x̂) = cj. Expression

(10.9) immediately implies (10.8). �

In other words, (10.8) is equivalent to require the nullity of each µ̂j associated to a

non-binding constraint. Hence, we can have µ̂j > 0 only if the constraint j is binding

in correspondence of the solution x̂.

For example, if x̂ is such that gj (x̂) < cj for each j ∈ J , i.e., if in correspondence

of x̂ all the inequality constraints are non-binding, then we have µ̂j = 0 for each j ∈ J
and the vector µ̂ does not play any role in the determination of x̂. Naturally, this

reflects the fact that for the solution x̂ the inequality constraints do not play any role.

The next example shows that conditions (10.7) and (10.8) are necessary but not

sufficient, similarly to what we saw for Theorem 194 and Lemma 509.

Example 523 Consider the optimum problem:

max
x∈R

x31 + x32
2

(10.10)

sub x1 − x2 ≤ 0

It is a simple modification of Example 502, and it is of the form (10.4) with f : R2 → R

and h : R2 → R given by f (x) = 2−1(x31 + x32) and h (x) = x1 − x2, while c = 0. We

have:

∇f (0, 0) = (0, 0) and ∇g (0, 0) = (1,−1)

and hence λ = 0 is such that

∇f (0, 0) = µ∇g (0, 0) ,

µ · (0− 0) = 0.

The point (0, 0) satisfies with µ = 0 the conditions (10.7) and (10.8), but (0, 0) is not

solution of the optimum problem (10.10), as (9.8) shows. �

We now move to the proof of Lemma 521. It is possible to give a partial proof of

this lemma by reducing problem (10.4) to a problem with only equality constraints,
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and then by exploiting the results seen in the previous chapter. For simplicity, we give

this argument for the special case

max
x∈A

f (x) (10.11)

sub g (x) = b and h (x) ≤ c

where f : A ⊆ Rn → R is the objective function, and g : A ⊆ Rn → R and h : A ⊆
Rn → R induce one equality and one inequality constraint.

Define H : A × R ⊆ Rn+1 → R as H (x, z) = h (x) + z2 for each x ∈ A and each

z ∈ R. Given x ∈ A, we have h (x) ≤ c if and only if there exists z ∈ R such that

h (x) + z2 = c, i.e., if and only if H (x, z) = c.3

Define F : A×R ⊆ Rn+1 → R and G : A×R ⊆ Rn+1 → R by F (x, z) = f (x) and

G (x, z) = g (x) for each x ∈ A and each z ∈ R. The dependence of F and G on z is

only fictitious, but it allows to formulate the following classical optimum problem:

max
(x,z)∈A×R

F (x, z) (10.12)

sub G (x, z) = b and H (x, z) = c

Problems (10.11) and (10.12) are equivalent: x̂ is solution of problem (10.11) if and

only if there exists ẑ ∈ R such that (x̂, ẑ) is solution of problem (10.12).

We have therefore reduced problem (10.11) to a problem with only equality con-

straints. By Lemma 509, (x̂, ẑ) is solution of such problem only if there exists a vector(
λ̂, µ̂

)
∈ R2 such that:

∇F (x̂, ẑ) = λ̂∇G (x̂, ẑ) + µ̂∇H (x̂, ẑ)

that is, only if

∂F

∂xi
(x̂, ẑ) = λ̂

∂G

∂xi
(x̂, ẑ) + µ̂

∂H

∂xi
(x̂, ẑ) , ∀i = 1, ..., n

∂F

∂z
(x̂, ẑ) = λ̂

∂G

∂z
(x̂, ẑ) + µ̂

∂H

∂z
(x̂, ẑ) ,

which is equivalent to:

∇f (x̂) = λ̂∇g (x̂) + µ̂∇h (x̂)

2µ̂z = 0

On the other hand, we have 2µ̂z = 0 if and only if µ̂z2 = 0. Recalling the equivalence

between problems (10.11) and (10.12), we can therefore conclude that x̂ is solution of

3Note that the positivity of the square z2 preserves the inequality g (x) ≤ b. The auxiliary variable
z is often called slack variable.
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problem (10.11) only if there exists a vector (λ, µ) ∈ R2 such that:

∇f (x̂) = λ̂∇g (x̂) + µ̂∇h (x̂)

µ̂ (c− h (x)) = 0

We therefore have conditions (10.7) and (10.8) of Lemma 521. What we have not been

able to prove is the positivity of the multiplier µ, and for this reason the proof just

seen is incomplete.4

To have a complete proof of Lemma 521 it is necessary to generalize the argument

used to prove Lemma 509; for the sake of completeness, the proof will be given in full

detail, at the cost of some repetitions relative to the proof of Lemma 509.

Proof of Lemma 521. Let ‖·‖ be the Euclidean norm. We have hj (x̂) < cj

for each j /∈ A (x̂). Since A is an open, there exists ε̃ > 0 sufficiently small such

that Bε̃ (x̂) = {x ∈ A : ‖x− x̂‖ ≤ ε̃} ⊆ A. Moreover, since each hj is continuous,

for each j /∈ A (x̂) there exists εj sufficiently small such that hj (x) < cj for each

x ∈ Bεj (x̂) = {x ∈ A : ‖x− x̂‖ ≤ εj}. Let ε′ = minj /∈A(x̂) εj and ε̂ = min {ε̃, ε′}; in
other words, ε̂ is the minimum between ε̃ and the εj. In this way we have Bε̂ (x̂) =

{x ∈ A : ‖x− x̂‖ ≤ ε̂} ⊆ A and hj (x) < cj for each x ∈ Bε̂ (x̂) and each j /∈ A (x̂).

Given ε ∈ (0, ε̂], set Sε (x̂) = {x ∈ A : ‖x− x̂‖ = ε}. In the light of Exercise 13.0.56,
the set Sε (x̂) is compact. Moreover, by what just seen hj (x) < cj for each x ∈ Sε (x̂)

and each j /∈ A (x̂), that is, in Sε (x̂) all the non binding constraints are always satisfied.

For each j ∈ J , let h+j : A ⊆ Rn → R be defined as h+j (x) = max {hj (x)− cj , 0}
for each x ∈ A. Thanks to Exercise 13.0.57, we have

(
h+j
)2 ∈ C1 (A) and

∂
(
h+j
)2

(x)

∂xp
= 2h+j (x)

∂hj (x)

∂xp
, ∀p = 1, ..., n (10.13)

We first prove a property that we will use after.

Fact 1. For each ε ∈ (0, ε̂], there exists N > 0 such that

f (x) − f (x̂)− ‖x− x̂‖2 (10.14)

−N


∑

i∈I
(gi (x)− gi (x̂))

2 +
∑

i∈J∩A(x̂)

(
h+j (x)− h+j (x̂)

)2

 < 0,

for each x ∈ Sε (x̂).

4Since it is, in any case, an incomplete argument, for simplicity we did not check the rank condition
required by Lemma 509.
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Proof of Fact 1. We proceed by contradiction, and we assume therefore that there

exists ε ∈ (0, ε̂] for which there is no N > 0 such that (10.14) holds. Take an increasing

sequence {Nn}n with Nn ↑ +∞, and for each of these Nn take xn ∈ Sε (x̂) for which

(10.14) does not hold, that is, xn such that:

f (xn)− f (x̂)− ‖xn − x̂‖2

−Nn


∑

i∈I
(gi (xn) − gi (x̂))

2 +
∑

i∈J∩A(x̂)

(
h+j (xn)− h+j (x̂)

)2

 ≥ 0.

Hence, for each n ≥ 1 we have:

f (xn)− f (x̂)− ‖xn − x̂‖2
Nn

≥
∑

i∈I
(gi (xn)− gi (x̂))

2 (10.15)

+
∑

j∈J∩A(x̂)

(
h+j (xn)− h+j (x̂)

)2

Since the sequence {xn}n just constructed is contained in the compact set Sε (x̂), by

Theorem 275 there exists a subsequence {xnk}k convergent in Sε (x̂), i.e., there exists
x∗ ∈ Sε (x̂) such that xnk → x∗. Expression (10.15) implies that, for each k ≥ 1, we

have:

f (xnk) − f (x̂)− ‖xnk − x̂‖2
Nnk

≥
∑

i∈I
(gi (xnk)− gi (x̂))

2 (10.16)

+
∑

j∈J∩A(x̂)

(
h+j (xnk)− h+j (x̂)

)2
.

Since f is continuous, we have limk f (xnk) = f (x∗). Moreover, limk ‖xnk − x̂‖ =

‖x∗ − x̂‖. Since limkNnk = +∞, we have

lim
k

f (xnk)− f (x̂)− ‖xnk − x̂‖2
Nnk

= 0,

and hence (10.16) implies, thanks to the continuity of the functions gi and h+j ,

∑

i∈I
(gi (x

∗)− gi (x̂))
2 +

∑

i∈J∩A(x̂)

(
h+j (x∗)− h+j (x̂)

)2

= lim
k


∑

i∈I
(gi (xnk)− gi (x̂))

2 +
∑

i∈J∩A(x̂)

(
h+j (xnk)− h+j (x̂)

)2

 = 0.

It follows that (gi (x
∗)− gi (x̂))

2 =
(
h+j (x∗)− h+j (x̂)

)2
= 0 for each i ∈ I and for each

j ∈ J ∩A (x̂), from which gi (x∗) = gi (x̂) = bi for each i ∈ I and h+j (x∗) = h+j (x̂) = cj

for each j ∈ J ∩ A (x̂).
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Since in Sε (x̂) the non binding constraints are always satisfied, i.e., hj (x) < cj for

each x ∈ Sε (x̂) and each j /∈ A (x̂), we can conclude that x∗ satisfies all the constraints.

We therefore have f (x̂) ≥ f (x∗) given that x̂ is a solution of the optimum problem

(9.22).

On the other hand, since xnk ∈ Sε (x̂) for each k ≥ 1, (10.16) implies

f (xnk)− f (x̂) ≥ ‖xnk − x̂‖2

+Nnk


∑

i∈I
(gi (xnk)− gi (x̂))

2 +
∑

j∈J∩A(x̂)

(
h+j (xnk)− h+j (x̂)

)2

 ≥ ε2,

for each k ≥ 1, and hence f (xnk) ≥ f (x̂)+ε2 for each k ≥ 1. Thanks to the continuity

of f , this leads to

f (x∗) = lim
k
f (xnk) ≥ f (x̂) + ε2 > f (x̂) ,

which contradicts f (x̂) ≥ f (x∗). This contradiction proves Fact 1. △

Using Fact 1, we prove now a second property that we will need. Here we set

U1 (0) =
{
x ∈ R|I|+|J |+1 : ‖x‖ = 1

}
.

Fact 2. For each ε ∈ (0, ε̂], there exist xε ∈ Bε (x̂) and a vector

(
λε0, λ

ε
1, ..., λ

ε
|I|, µ

ε
1, ..., µ

ε
|J |
)
∈ U1 (0) ,

with µεj ≥ 0 for each j ∈ J , such that

λε0

(
∂f

∂xz
(xε)− 2

(
xεj − x̂j

))
−
∑

i∈I
λεi
∂gi
∂xz

(xε) (10.17)

−
∑

j∈J∩A(x̂)
µεj
∂hj
∂xz

(xε) = 0,

for each z = 1, ..., n.

Proof of Fact 2. Given ε ∈ (0, ε̂], let Nε > 0 be the positive constant whose existence

is guaranteed by Fact 1. Define the function ρε : A ⊆ Rn→ R as:

ρε (x) = f (x)−f (x̂)−‖x− x̂‖2−Nε


∑

i∈I
(gi (x) − gi (x̂))

2 +
∑

j∈J∩A(x̂)

(
h+j (x)− h+j (x̂)

)2



for each x ∈ A. We have ρε (x̂) = 0 and, given how Nε has been chosen,

ρε (x) > 0, ∀x ∈ Sε (x̂) . (10.18)

The function ρε is continuous on the compact set Bε (x̂) = {x ∈ A : ‖x− x̂‖ ≤ ε} and,

by the Weierstrass Theorem, there exists xε ∈ Bε (x̂) such that ρε (x
ε) ≥ ρε (x) for
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each x ∈ Bε (x̂). In particular, ρε (x
ε) ≥ ρε (x̂) = 0, and hence (10.18) implies that

‖xε‖ < ε, that is, xε ∈ Bε (x̂). Point xε is therefore a maximum on the open set Bε (x̂)

and by Theorem 194 we have ∇ρε (xε) = 0. Therefore, by (10.13), we have:

∂f

∂xz
(xε)− 2 (xεz − x̂z)− 2Nε




m∑

i=1

gi (x
ε)
∂gi
∂xz

(xε) +
∑

j∈J∩A(x̂)
h+j (xε)

∂hj
∂xz

(xε)


 = 0,

(10.19)

for each z = 1, ..., n. Set:

cε = 1 +
m∑

i=1

(2Nεgi (x
ε))2 +

∑

j∈J∩A(x̂)

(
2Nεh

+
j (xε)

)2
,

λε0 =
1

cε
,

λεi =
2Nεgi (x

ε)

cε
, ∀i ∈ I,

µεj =
2Nεh

+
j (xε)

cε
, ∀j ∈ J ∩ A (x̂) ,

µεj = 0, ∀j /∈ A (x̂) ,

so that (10.17) is obtained by dividing (10.19) by cε. Observe that µεi ≥ 0 for each

j ∈ J and that
√∑

i∈I (λ
ε
i )
2 +

∑
j∈J
(
µεj
)2

= 1, i.e.,

(
λε0, λ

ε
1, ..., λ

ε
|I|, µ

ε
1, ..., µ

ε
|J |
)
∈ U1 (0) .

△

Using Fact 2, we can now complete the proof. Take a decreasing sequence {εn}n ⊆
(0, ε̂] with εn ↓ 0, and consider the associated sequence

{(
λn0 , λ

n
1 , ..., λ

n
|I|, µ

n
1 , ..., µ

n
|J|

)}
n
⊆

U1 (0) whose existence is guaranteed by Fact 2.

Since the sequence
{(
λn0 , λ

n
1 , ..., λ

n
|I|, µ

n
1 , ..., µ

n
|J |

)}
n
is contained in the compact set

U1 (0), by Theorem 275 there exists a subsequence
{(
λnk0 , λ

nk
1 , ..., λ

nk
|I| , µ

nk
1 , ..., µ

nk
|J |

)}
k

convergent in U1 (0), that is, there exists
(
λ0, λ1, ..., λ|I|, µ1, ..., µ|J |

)
∈ U1 (0) such that

(
λnk0 , λ

nk
1 , ..., λ

nk
|I| , µ

nk
1 , ..., µ

nk
|J |

)
→
(
λ0, λ1, ..., λ|I|, µ1, ..., µ|J |

)
.

By Fact 2, for each εnk there exists x
nk ∈ Bεnk (x̂) for which (10.17) holds, i.e.,

λnk0

(
∂f

∂xz
(xnk)− 2 (xnk − x̂z)

)
−
∑

i∈I
λnki

∂gi
∂xz

(xnk)−
∑

j∈J∩A(x̂)
µnkj

∂hj
∂xz

(xnk) = 0,
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for each z = 1, ..., n. Consider the sequence {xnk}k so constructed. From xnk ∈ Bεnk (x̂)

it follows that

‖xnk − x̂‖ < εnk → 0,

and hence, for each z = 1, ..., n,

λ0
∂f

∂xz
(x̂)−

∑

i∈I
λi
∂gi
∂xz

(x̂) −
∑

j∈J∩A(x̂)
µj
∂hj
∂xz

(x) (10.20)

= lim
k


λnk0

(
∂f

∂xz

(
xk
)
− 2 (xnk − x̂z)

)
−
∑

i∈I
λnki

∂gi
∂xz

(xnk)−
∑

j∈J∩A(x̂)
µnkj

∂hj
∂xz

(xnk)




= 0.

On the other hand, λ0 	= 0. In fact, if it were λ0 = 0, then by (10.20) it follows that

∑

i∈I
λi
∂gi
∂xz

(x̂) +
∑

j∈J∩A(x̂)
µj
∂hj
∂xz

(x̂) = 0, ∀z = 1, ..., n.

The linear independence of the gradients associated to the constraints that holds for

the hypothesis of regularity of the constraints implies λi = 0 for each i ∈ I, which

contradicts
(
λ0, λ1, ..., λ|I|, µ1, ..., µ|J |

)
∈ U1 (0).

In conclusion, if we set λ̂i = λi/λ0 for each i ∈ I and µ̂j = µj/λ0 for each j ∈ J ,

(10.20) implies (10.7). �

10.2.1 Kuhn-Tucker Conditions

In view of Lemma 521, the Lagrangian associated to the problem of optimum (10.4) is

the function

L : A× R|I| × R|J |+ ⊆ Rn+|I|+|J |→ R

defined by:5

L (x;λ, µ) = f (x) +
∑

i∈I
λi (bi − gi (x)) +

∑

j∈J
µj (cj − hj (x)) (10.21)

= f (x) + λ · (b− g (x)) + µ · (c− h (x)) ,

for each (x;λ, µ) ∈ A × R|I| × R|J|+ . Note that in this case µ is required to be a

non-negative vector.

We can now generalize Theorem 510 to the optimum problem (10.4). As we did

for Theorem 510, also here we omit the proof because it is analogous to the one of

Theorem 503.
5Observe the use of the notation (x;λ, µ) to underline the different status of x with respect to λ

and µ.
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Theorem 524 Let x̂ be solution of the optimum problem (10.4). If the functions

f, {gi}i∈I and {hj}j∈J are of class C1 and if the constraints are regular in x̂, then there

exists a pair of vectors
(
λ̂, µ̂

)
∈ R|I| × R|J |+ such that the triple

(
x̂; λ̂, µ̂

)
satisfies the

conditions:

∇Lx
(
x̂; λ̂, µ̂

)
= 0, (10.22)

µ̂ · ∇Lµ
(
x̂; λ̂, µ̂

)
= 0, (10.23)

∇Lλ
(
x̂; λ̂, µ̂

)
= 0, (10.24)

∇Lµ
(
x̂; λ̂, µ̂

)
∈ R|J |+ . (10.25)

The components λ̂i and µ̂j of the vectors λ̂ and µ̂ are called Lagrange multipliers,

while the conditions (10.22)-(10.25) are called Kuhn-Tucker conditions.

The points x ∈ A for which there exists a pair (λ, µ) ∈ R|I|×R|J |+ such that the triple

(x, λ, µ) satisfies the conditions (10.22)-(10.25) are called points of Kuhn-Tucker. The

points of Kuhn-Tucker are therefore the solutions of the system (typically nonlinear)

of equations and inequalities given by conditions (10.22)-(10.25). By Theorem 524 we

can say that a necessary condition for a point x in which the constrains are regular to

be solution of the optimum problem (10.4) is that it is a point of Kuhn-Tucker.6

Observe that a Kuhn-Tucker point (x;λ, µ) is not necessarily a stationary point for

the Lagrangian, since the condition (10.25) requires only ∇Lµ (x;λ, µ) ∈ R|J |+ , and not

the stronger property ∇Lµ (x;λ, µ) = 0.

Let (x, λ, µ) be a Kuhn-Tucker point, that is, a triple that satisfies conditions

(10.22)-(10.25). By Lemma 522, expression (10.23) is equivalent to require µj = 0

for each j such that hj (x) < cj. Hence, µj > 0 implies that the correspondent con-

straint is binding at the point x, that is, hj (x) = cj.

Given its importance, we state formally this observation.

Proposition 525 At a Kuhn-Tucker point (x, λ, µ) we have µj > 0 only if hj (x) = cj.

10.2.2 The Method of Elimination

Like Theorems 503 and 510, also Theorem 524 allows to solve the optimum prob-

lem (10.4) through a suitable generalization of the method of elimination seen in the

previous chapter.

6Note the caveat “in which the constraints are regular”. In fact, a point of Kuhn-Tucker in which
the constraints are not regular does not fall in the ambit of Theorem 524.
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In this case, let D0 be the set of the points x ∈ A where the regularity condition of

the constraints does not hold, and let D1 be instead the set of the points x ∈ A where

this condition holds.

The method of elimination consists of four steps:

1. We determine whether Theorem 317 can be applied, that is, if f is upper semi-

continuous and coercive on C.

2. We find the set D0 ∩ C.

3. We find the set S of the points of Kuhn-Tucker that belong to D1, i.e., the set of

the points x ∈ D1 for which there exists (λ, µ) ∈ R|I| × R|J |+ such that the triple

(x;λ, µ) satisfies the Kuhn-Tucker conditions (10.22)-(10.25).7

4. We build the set {f (x) : S ∪ (D0 ∩ C)}. If x̂ ∈ S ∪ (D0 ∩ C) is such that f (x̂) ≥
f (x) for each x ∈ S ∪ (D0 ∩ C), then such x̂ is solution of the optimum problem

(10.4).

The first step of the method of elimination is the same of the previous chapter,

while the other steps are the obvious extension of the method to the case of the problem

(10.4).

Example 526 Consider the optimum problem:

max
x∈R2

(
x1 − 2x22

)
(10.26)

sub x21 + x22 ≤ 1

This problem is of the form (10.4), where f : R2 → R and h : R2 → R are given by

f (x1, x2) = x1 − 2x22, h (x1, x2) = x21 + x22, while b = 1. Since C is compact, the first

step is completed by observing that here a solution exists by the Weierstrass Theorem.

We have

∇h (x) = (2x1, 2x2)

and hence the constraint is regular at each point x ∈ C, that is, D0 ∩ C = ∅.
The Lagrangian L : R3 → R is given by

L (x1, x2, µ) = x1 − 2x22 + µ
(
1− x21 − x22

)
, ∀ (x1, x2, µ) ∈ R3,

7Observe that these points x satisfy for sure the constraints and hence we always have S ⊆ D1∩C;
it is therefore not necessary to check if for a point x ∈ S we have also x ∈ C. A similar observation
was made in the previous chapter.
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and to find the set S of its Kuhn-Tucker points it is necessary to solve the system




∂L
∂x1

= 1 − 2µx1 = 0
∂L
∂x2

= −4x2 − 2µx2 = 0

µ∂L
∂µ

= µ (1− x21 − x22) = 0
∂L
∂µ

= 1 − x21 − x22 ≥ 0

µ ≥ 0

We start by observing that µ 	= 0, that is, µ > 0. In fact, if µ = 0 the first equation

becomes 1 = 0, a contradiction. We therefore assume that µ > 0. The second equation

implies x2 = 0, and in turn the third equation implies x1 = ±1. From the first equation

it follows µ = ∓ (1/2), and hence the only solution of the system is (−1, 0, (1/2)). The

only Kuhn-Tucker point is therefore (−1, 0) , i.e., S = {(−1, 0)}.
In conclusion, S ∪ (D0 ∩ C) = {(−1, 0)} and the method of elimination allows to

conclude that (−1, 0) is the only solution of the optimum problem 10.26. Note that

in this solution the constrain is binding (i.e., it is satisfied with equality), and in fact

µ = (1/2) > 0, as required by Proposition 525. �

Example 527 Consider the optimum problem:

max
x∈Rn

−
n∑

i=1

x2i (10.27)

sub
n∑

i=1

xi = 1, x1 ≥ 0, ..., xn ≥ 0

This problem is of the form (10.4), where f : Rn → R is given by f (x) = −∑n
i=1 x

2
i ,

g : Rn → R is given by g (x) =
∑n

i=1 xi and hj (x) : Rn → R are given by hj (x) =

−xj for j = 1, ..., n, while b = 1 and cj = 0 for j = 1, ..., n. Observe that C ={
x ∈ Rn+ :

∑n
i=1 xi

}
is the simplex ∆n+1 that we considered in Example 385. It is

a compact set and hence also in this case the first step is completed thanks to the

Weierstrass Theorem.

For each x ∈ Rn we have

∇g (x) = (1, ..., 1) and ∇hj (x) = −ej ,

and therefore the value of these gradients does not depend on the point x considered.

To verify the regularity of the constraints, we consider the collection {(1, ..., 1) , e1, ..., en}
of these gradients. This collection has n + 1 elements and it is obviously linearly de-

pendent (the fundamental versors e1,..., en are the most classic basis of Rn).

On the other hand, it is immediate to see that any subcollection with at most n

elements is instead linearly independent. Hence, the only way to violate the regularity
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of the constraints is that they are all binding, so that all the collection of n+1 elements

have to be considered. Fortunately, however, there does not exist any point x ∈ Rn
where all constraints are binding. In fact, the only point that satisfies with equality all

the constraints −xj ≤ 0 is the origin 0, which nevertheless does not satisfy the equality

constraint
∑n

i=1 xi = 1.

We can conclude that the constraints are regular at all the points x ∈ Rn, i.e.,

D0 = ∅. Hence, D0 ∩ C = ∅ and also the second step of the method of elimination is

complete.

The Lagrangian L : R2n+1 → R is given by

L (x1, x2, µ) = −
n∑

i=1

x2i + λ

(
1−

n∑

i=1

xi

)
+

n∑

i=1

µixi, ∀ (x, λ, µ) ∈ R2n+1,

and to find the set S of its Kuhn-Tucker points it is necessary to solve the system




∂L
∂xi

= −2xi − λ+ µi = 0, ∀i = 1, ..., n

λ∂L
∂λ

= λ (1−∑n
i=1 xi) = 0

∂L
∂λ

= 1 −∑n
i=1 xi = 0

µi
∂L
∂µi

= µixi = 0, ∀i = 1, ..., n
∂L
∂µi

= xi ≥ 0, ∀i = 1, ..., n

µi ≥ 0, ∀i = 1, ..., n

If we multiply by xi the first n equations, we get

−2x2i − λxi + µixi = 0, ∀i = 1, ..., n

Adding up these new equations, we have

−2
n∑

i=1

x2i − λ
n∑

i=1

xi +
n∑

i=1

µixi = 0,

and therefore

−2
n∑

i=1

x2i − λ = 0,

that is, λ = −2
∑n

i=1 x
2
i . We conclude that λ ≤ 0.

If xi = 0, from the condition ∂L/∂xi = 0 it follows that λ = µi. Since µi ≥ 0

and λ ≤ 0, it follows that µi = 0. In turn, this implies λ = 0 and hence using again

the condition ∂L/∂xi = 0 we conclude that xi = λ = 0 for each i = 1, ..., n. But

this contradicts the condition λ (1−∑n
i=1 xi) = 0, and we can therefore conclude that

xi 	= 0, that is, xi > 0.

Since this holds for each i = 1, ..., n, it follows that xi > 0 for each i = 1, ..., n.

From the condition µixi = 0 it follows that µi = 0 for each i = 1, ..., n, and the first n

equations become:

−2xi − λ = 0, ∀i = 1, ..., n
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that is,

xi = −λ
2
, ∀i = 1, ..., n.

The xi are therefore all equal, and from
∑n

i=1 xi = 1 it follows that

xi =
1

n
, ∀i = 1, ..., n.

In conclusion,

S =

{(
1

n
, ...,

1

n

)}
.

Since D0 = ∅, we have S∪ (D0 ∩ C) = {(1/n, ..., 1/n)}, and the method of elimination

allows to conclude that the point (1/n, ..., 1/n) is the solution of the optimum problem

10.27. �

Example 528 Let h : R→ R be a continuous function with h′ (t) < 0 and h′′ (t) < 0

for each t > 0. In view of Exercise 13.0.58, both h and h′ are strictly decreasing on

R+. Therefore, h is also strictly concave on R+. Instead, we do not ask anything on

the behavior of h on (−∞, 0). Still in view of Exercise 13.0.58, the inverse (h′)−1 is

strictly decreasing on h′ (R+).8

For example, the function h (t) = −t2m with m ≥ 1 satisfies these conditions, and

so does the function

h (t) =

{
t lg t if t > 0

0 if t ≤ 0

Consider the optimum problem:

max
x∈Rn

n∑

i=1

h (xi) (10.28)

sub
n∑

i=1

xi = 1, x1 ≥ 0, ..., xn ≥ 0

This problem is of the form (10.4), where f : Rn → R is given by f (x) =∑n
i=1 h (xi), g : Rn → R is given by g (x) =

∑n
i=1 xi and hj (x) : Rn → R are given

by hj (x) = −xj for j = 1, ..., n, while b = 1 and cj = 0 for j = 1, ..., n. Observe that

this optimum problem generalizes Example 527, in which we had h (xi) = −x2i . Now

we will see how a simple (but not trivial) modification of what we did in Example 527

allows to solve also this much more general problem.

8To require h′ (t) < 0 and h′′ (t) < 0 only for t > 0 and not more generally for t ≥ 0 is not pedantic.
In fact, there are important functions for which the differentiability at 0 is problematic (think for
example of roots and logarithms) and therefore it is better not to assume it unless necessary. This
explains also the interest of Exercise 13.0.58.
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The first two steps of the method of elimination are identical to those seen in

Example 527. In particular, we have D0 = ∅.
The Lagrangian L : R2n+1 → R is given by

L (x1, x2, µ) =
n∑

i=1

h (xi) + λ

(
1−

n∑

i=1

xi

)
+

n∑

i=1

µixi, ∀ (x, λ, µ) ∈ R2n+1,

and to find the set S of its Kuhn-Tucker points it is necessary to solve the system




∂L
∂xi

= h′ (xi)− λ+ µi = 0, ∀i = 1, ..., n

λ∂L
∂λ

= λ (1−∑n
i=1 xi) = 0

∂L
∂λ

= 1 −∑n
i=1 xi = 0

µi
∂L
∂µi

= µixi = 0, ∀i = 1, ..., n
∂L
∂µi

= xi ≥ 0, ∀i = 1, ..., n

µi ≥ 0, ∀i = 1, ..., n

If we multiply by xi the first n equations, we get

h′ (xi)xi − λxi + µixi = 0, ∀i = 1, ..., n

Adding up these new equations, we have

n∑

i=1

h′ (xi)xi − λ
n∑

i=1

xi +
n∑

i=1

µixi = 0,

and therefore λ =
∑n

i=1 h
′ (xi)xi. Since h′ (xi) ≤ 0 when xi ≥ 0, the condition xi ≥ 0

allows to conclude that λ ≤ 0.

The condition
∑n

i=1 xi = 1 is such that there exists i = 1, ..., n such that xi > 0.

From the condition µixi = 0 it follows that µi = 0 for such i. In turn the condition

∂L/∂xi = 0 implies that h′ (xi) = λ. Therefore, (h′)−1 (λ) = xi > 0.

If µi > 0, the condition µixi = 0 implies xi = 0. From the condition ∂L/∂xi = 0 it

follows that h′ (0) = λ− µi < λ, and so

0 = (h′)−1 (h′ (0)) > (h′)−1 (λ) > 0 (10.29)

because the inverse (h′)−1 is a strictly decreasing function on R+. The contradiction

(10.29) allows to conclude that µi = 0 for each i = 1, ..., n.

At this point the condition ∂L/∂xi = 0 implies h′ (xi) = λ for each i = 1, ..., n, and

therefore,

xi = (h′)−1 (λ) , ∀i = 1, ..., n.

The xi are therefore all equal, and from
∑n

i=1 xi = 1 it follows that

xi =
1

n
, ∀i = 1, ..., n.
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In conclusion,

S =

{(
1

n
, ...,

1

n

)}
.

Since D0 = ∅, we have S∪ (D0 ∩ C) = {(1/n, ..., 1/n)}, and the method of elimination

allows us to conclude that the point (1/n, ..., 1/n) is the solution also of the optimum

problem 10.28. �

10.3 Concave Programming

In Section 8.5 we saw how concave functions enjoy remarkable properties from the point

of view of optimization. In this section we will see how such remarkable properties make

the concave functions of particular interest in nonlinear programming.

We start with a simple but important result.

Proposition 529 Consider the optimum problem (10.4). If the functions gi are convex

for each i ∈ I and if the functions hj are affine for each j ∈ J, then the admissible

region C defined in (10.5) is convex. If A = Rn, then C is also closed.

It is very easy to give examples where C is no longer convex when the conditions

of convexity and affinity used in this result are not satisfied.

Notice that the convexity condition of the gi is much weaker than that of affinity

on the hj. This shows that the convexity of the admissible region is more natural for

inequality constraints than for equality ones. This is a crucial “structural” difference

between the two types of constraints, which differentiate them in a much stronger way

than it may appear prima facie.

Proof (i) Suppose that the functions gi are convex for each i ∈ I and that the functions
hj are affine for each j ∈ J . Set:

Ci = {x ∈ A : gi (x) ≤ bi} , ∀i ∈ I,
Cj = {x ∈ A : hj (x) = cj} , ∀j ∈ J .

Let x1, x2 ∈ Ci and t ∈ [0, 1]. By the convexity of gi we have:

gi (tx1 + (1− t)x2) ≤ tgi (x1) + (1− t) gi (x2) ≤ tbi + (1− t) bi = bi

and hence tx1 + (1− t) x2 ∈ Ci. Each set Ci is therefore convex. A similar argument

shows that also each Cj is convex, and this implies the convexity of the set C defined

in (10.5) since C =
(⋂

i∈I Ci
)
∩
(⋂

j∈J Cj
)
.

Let A = Rn. Since each gi is convex on Rn, by Corollary 434 the gi are also

continuous. This is true a fortiori for the functions hj. We have Ci = g−1i ((−∞, bi])
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and Cj = h−1j (cj) and therefore thanks to Theorem 299 the sets Ci and Cj are closed

because (−∞, bi] and {cj} are closed sets of R. Hence, also C is closed. �

Motivated by Proposition 529, we give the following definition.

Definition 530 An optimum problem (10.4) is called concave if the function f is

concave and if the functions gi are convex.
9

A concave problem of optimum has therefore the form

max
x∈A

f (x) (10.30)

sub gi (x) = bi, ∀i ∈ I,
hj (x) ≤ cj, ∀j ∈ J, (10.31)

where I and J are finite sets of indices (possibly empty), f : A ⊆ Rn → R is a concave

objective function defined on an open and convex A, the affine functions gi : A ⊆
Rn → R and the associated scalars bi ∈ R characterize |I| equality constraints, while

the convex functions hj : A ⊆ Rn → R with the associated scalars cj ∈ R induce |J |
inequality constraints.

Concave Programming studies concave optimum problems, and it has important

theoretical aspects that we will consider in the next chapter. Here we will study

instead the solution techniques of concave problems.

Recall from Corollary 473 of Section 8.5 that the search of the solutions of an un-

constrained optimum problem for concave functions was based on a very remarkable

property: the first order necessary condition for the existence of a local maximum be-

comes sufficient for the existence of a global maximum in the case of concave functions.

The next fundamental result is the “constrained” version of this property. Notice

that the regularity of the constraints does not play any role in this result.

Theorem 531 In a concave optimum problem in which the functions f, {gi}i∈I and
{hj}j∈J are Gateaux differentiable on A, the Kuhn-Tucker points are solutions of the

problem.

Proof Let (x∗;λ∗, µ∗) be a Kuhn-Tucker point for the optimum problem (10.4), that

is, (x;λ, µ) satisfies the conditions (10.22)-(10.25). In particular, this means that

∇f (x∗) =
∑

i∈I
λ∗i∇gi (x∗) +

∑

j∈A(x∗)
µ∗j∇hj (x∗) (10.32)

9Implicitely here we are assuming that A is convex.
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Since each gi is affine and each hj is convex, by (8.31) it follows that:

hj (x) ≥ hj (x
∗) +∇hj (x∗) (x− x∗) , ∀j ∈ J, ∀x ∈ A, (10.33)

gi (x) = gi (x
∗) +∇gi (x∗) (x− x∗) , ∀i ∈ I,∀x ∈ A, (10.34)

For each j ∈ A (x∗) we have hj (x∗) = cj, and hence hj (x) ≤ hj (x
∗) for each x ∈ C

and each j ∈ A (x∗). Moreover, gi (x∗) = gi (x) for each i ∈ I and each x ∈ C. By

(10.33) and (10.34) it follows

∇hj (x∗) (x− x∗) ≤ 0, ∀j ∈ A (x∗) , ∀x ∈ C,
∇gi (x∗) (x− x∗) = 0, ∀i ∈ I, ∀x ∈ C

Together with (10.32), we therefore have:

∇f (x∗) (x− x∗) =
∑

i∈I
λ̂i∇gi (x∗) (x− x∗) +

∑

j∈A(x∗)
µ̂j∇hj (x∗) (x− x∗) ≤ 0,

for each x ∈ C. On the other hand, by (8.31) we have:

f (x) ≤ f (x∗) +∇f (x∗) (x− x∗) , ∀x ∈ A,

and we conclude that f (x) ≤ f (x∗) for each x ∈ C, as desired. �

Theorem 531 gives us a sufficient condition of optimum: if a point is of Kuhn-

Tucker, then it is solution of the optimum problem. The condition is, however, not

necessary: there can be solutions of a concave optimum problem that are not Kuhn-

Tucker points. In view of Theorem 524, this can happen only if the solution is a point

in which the constraints are not regular. Next example illustrates this situation.

Example 532 Consider the optimum problem:

max
x∈R3

(
−x1 − x2 − x23

)
(10.35)

sub x21 + x22 − 2x1 ≤ 0 and x21 + x22 + 2x1 ≤ 0

This problem is of the form (10.4), where f : R3 → R, h1 : R3 → R and h2 : R3 → R are

given by f (x1, x2, x3) = −x1− x2− x23, h1 (x1, x2, x3) = x21+ x22− 2x1, h2 (x1, x2, x3) =

x21 + x22 + 2x1, while c1 = c2 = 0. Using Theorem 460 it is easy to verify that f is

concave and that h1 and h2 are convex, so that (10.35) is a concave optimum problem.

The system of inequalities

x21 + x22 − 2x1 ≤ 0

x21 + x22 + 2x1 ≤ 0
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has the point (0, 0) as its unique solution. Hence, C = {x ∈ R3 : x1 = x2 = 0} and the

unique solution of the problem (10.35) is the point (0, 0, 0). On the other hand,

∇h1 (0, 0, 0) = (−2, 0, 0) and ∇h2 (0, 0, 0) = (2, 0, 0) ,

and hence the constraints are not regular at (0, 0, 0). Since

∇f (0, 0, 0) = (−1,−1, 0)

there does not exist any pair (µ1, µ2) ∈ R2+ such that:

∇f (0, 0, 0) = µ1∇h1 (0, 0, 0) + µ2∇h2 (0, 0, 0)

and therefore the solution (0, 0, 0) is not a Kuhn-Tucker point. �

By combining Theorems 524 and 531 we get the following necessary and sufficient

optimality condition.

Theorem 533 Consider a concave optimum problem in which the functions f, {gi}i∈I
and {hj}j∈J are of class C1 on A. A point x ∈ A where the constraints are regular is

solution of such problem if and only if it is a Kuhn-Tucker point.

Theorem 533 is a refinement of Theorem 524, and as such it allows to refine the

method of elimination, which we will call convex method of elimination (convex method,

for brevity). Such method is based on the following steps:

1. We determine if the problem is concave, that is, if the function f is concave, if

the functions gi are affine and if the functions hj are convex.

2. We find the set D0 ∩ C.

3. We find the set T of the Kuhn-Tucker points,10 i.e., the set of the points x ∈ A

for which there exists (λ, µ) ∈ R|I| × R|J|+ such that the triple (x;λ, µ) satisfies

the Kuhn-Tucker conditions (10.22)-(10.25).11

4. If T 	= ∅, then taken any x∗ ∈ T , we construct the set

{f (x) : {x∗} ∪ (D0 ∩ C)} .

All the points of T are solutions of the problem,12 and a point x ∈ D0∩C is itself

solution if and only if f (x) = f (x∗).

10The set T considered here is therefore slightly different from the set T seen in the previous versions
of the method of elimination.

11These points x satisfy surely the constraints and hence we have always T ⊆ D1∩C; it is therefore
not necessary to verify if for a point x ∈ T we have also x ∈ C. A similar observation was done in
Chapter 9.

12The set T is at most a singleton when f is strictly concave because in such a case there is at most
a solution of the problem (Theorem 468).
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5. If T = ∅, we determine if Theorem 317 can be applied, i.e., if f is upper semi-

continuous and coercive on C. If this is the case, we then consider the optimum

problem maxx∈D0∩C f (x) and the solutions of this problem are also solutions of

problem (10.4).

Since either step 4 or 5 applies, depending on whether or not T is empty, the actual

steps of the convex method are four.

The convex method works thanks to Theorems 531 and 533. In fact, if T 	= ∅,
then by Theorem 531 all points of T are solutions of the problem. In this case, a point

x ∈ D0 ∩ C that does not belong to T can in turn be a solution only if its value f (x)

is equal to that of any point in T .

When, instead, we have T = ∅, then Theorem 533 guarantees that no point in D1 is

solution of the problem. At this stage, if Theorem 317 ensures the existence of at least

a solution, we can restrict the search to the set D0 ∩C. In other words, it is sufficient

to solve the optimum problem maxx∈D0∩C f (x): the solutions of this problem are also

solutions of problem (10.4), and viceversa.13

As it is easy to understand, the convex method becomes very powerful when T 	= ∅
because in such a case there is no need to verify the validity of existence theorems à la

Weierstrass, but it is sufficient to find the Kuhn-Tucker points.

If we are satisfied with the solutions that are points of Kuhn-Tucker, without wor-

rying about the possible existence of solutions that are not so, we can give a shortened

version of the convex method, based uniquely on Theorem 531, which we call the short

convex method.

This method is based only on two steps:

1. We determine whether the optimum problem (10.4) is concave, i.e., if the function

f is concave, if the functions gi are affine, and if the functions hj are convex.

2. We find the set T of the Kuhn-Tucker points.

By Theorem 531, all the points of T are solutions of the problem. The short

convex method is simpler than the convex method, and it does not require neither

the use of existence theorems à la Weierstrass nor the study of the regularity of the

constraints. The price of this simplification is in the possible inaccuracy of this method,

which, being based on sufficient conditions, is not able to find the solutions where these

conditions are not satisfied (by Theorem 533, these possible solutions are points where

13Observe that the problem maxx∈D0∩C f (x) of the step 5 has for sure solution. In fact, if
the problem maxx∈C f (x) has solutions and if none of them belong to D0 ∩ C, it follows that
argmaxx∈C f (x) = argmaxx∈D0∩C f (x).
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the constraints are not regular). Furthermore, the short method cannot be applied

when T = ∅, and in such a case it is necessary to apply the complete convex method.

The convex short method is particularly powerful when the objective function f

is strictly concave. In fact, in such a case a solution found with the short method is

necessarily also the unique solution of the concave optimum problem. Therefore, in

this case the short method is as effective as the complete convex method.

Example 534 Consider the optimum problem:

max
x∈R3

−
(
x21 + x22 + x23

)
(10.36)

sub 3x1 + x2 + 2x3 ≥ 1 and x1 ≥ 0

This problem is of the form (10.4), where f : R3 → R is given by f (x) = − (x21 + x22 + x23),

h1 : R3 → R is given by h1 (x) = − (3x1 + x2 + 2x3) and h2 (x) : R3 → R is given by

h2 (x) = −x1, while c1 = −1 and c2 = 0.

Using Theorem 460 it is easy to verify that f is strictly concave, while it is immediate

to verify that h1 and h2 are convex. Therefore, (10.36) is a concave optimum problem.

Since f is strictly concave, we apply without doubts the short convex method. To do

this we have to find the set T of the Kuhn-Tucker points.

The Lagrangian L : R5 → R is given by

L (x1, x2, x3, µ1, µ2) = −
(
x21 + x22 + x23

)
+ µ1 (−1 + 3x1 + x2 + 2x3) + µ2x1,

for each (x1, x2, x3, µ1, µ2) ∈ R3, and to find the set T of its Kuhn-Tucker points it is

necessary to solve the system of equalities and inequalities:




∂L
∂x1

= −2x1 + 3µ1 + µ2 = 0
∂L
∂x2

= −2x2 + µ1 = 0
∂L
∂x3

= −2x3 + 2µ1 = 0

µ1
∂L
∂µ1

= µ1 (−1 + 3x1 + x2 + 2x3) = 0

µ2
∂L
∂µ2

= µ2x1 = 0
∂L
∂µ1

= −1 + 3x1 + x2 + 2x3 ≥ 0
∂L
∂µ2

= x1 ≥ 0

µ1 ≥ 0, µ2 ≥ 0

(10.37)

We consider four cases, depending on the fact that the multipliers µ1 and µ2 are

null or not.

Case 1 : µ1 > 0 and µ2 > 0. The conditions µ2∂L/∂µ2 = ∂L/∂x1 = 0 imply x1 = 0

and 3µ1 + µ2 = 0. This last equation does not have strictly positive solutions µ1 and

µ2, and hence we conclude that we cannot have µ1 > 0 and µ2 > 0.
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Case 2 : µ1 = 0 and µ2 > 0. The conditions µ2∂L/∂µ2 = ∂L/∂x1 = 0 imply x1 = 0

and 3µ1 = 0, that is µ1 = 0. This contradiction shows that we cannot have µ1 = 0 and

µ2 > 0.

Case 3 : µ1 > 0 and µ2 = 0. The conditions µ1∂L/∂µ1 = ∂L/∂x1 = ∂L/∂x2 =

∂L/∂x3 = 0 imply: 



−2x1 + 3µ1 = 0

−2x2 + µ1 = 0

−2x3 + 2µ1 = 0

3x1 + x2 + 2x3 = 1

Solving for µ1, we get µ1 = 1/7, and hence x1 = 3/14, x2 = 1/14 and x3 = 1/7. The

quintuple (3/14, 1/14, 1/7, 1/7, 0) solves the system (10.37), and hence (3/14, 1/14, 1/7)

is a Kuhn-Tucker point.

Case 4 : µ1 = µ2 = 0. The condition ∂L/∂x1 = 0 implies x1 = 0, while the

conditions ∂L/∂x2 = ∂L/∂x3 = 0 imply x2 = x3 = 0. It follows that the condition

∂L/∂µ1 ≥ 0 implies −1 ≥ 0, and this contradiction shows that we cannot have µ1 =

µ2 = 0.

In conclusion,

T = {((3/14, 1/14, 1/7))}

and since f is strictly concave the short convex method allows to conclude that

(3/14, 1/14, 1/7) is the unique solution of the optimum problem (10.36). �

We conclude with a last observation. The methods of solution seen in this chapter

are based on the search of the Kuhn-Tucker points, and therefore they require the

resolution of systems of nonlinear equations. In general these systems are not easy to

solve and this limits the computational utility of these methods, whose importance is

mostly theoretical. At a numerical level, nonlinear programming problems are solved

with other methods, which the interested reader can find in books of numerical analysis.
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Explicit Constraints

The admissible region C of the optimum problem (10.4) is identified by a finite number

of equality and inequality constraints. This type of constraints are sometimes called

implicit constraints since they are defined through suitable functions g and h.

There are problems, especially in dynamic contexts, where it is required that the

solution belongs to a region X of Rn that cannot be identified through a finite number

of implicit constraints. In this case the constraint is of the general form x ∈ X and

this type of constraints are called explicit since they are not defined through functions.

Of course, explicit constraints are more general than the implicit ones: while there

are explicit constraints that cannot be written as implicit constraints, the converse is

always true: each implicit constraint can be always written in explicit form. In fact, the

implicit constraints gi (x) = bi and hj (x) = cj for each i ∈ I and j ∈ J are equivalent

to the explicit constraint x ∈ C, where C is given by (10.5).

When possible, the advantage of the implicit formulation of the constraints lies in

the possibility of using Theorems 510 and 524, while the study of the explicit constraints

x ∈ X is much less easy, though something interesting can still be said at least when

X is a closed and convex set, as it will be seen later. Note however that explicit

constraints are often necessary and in principle unavoidable.

We illustrate this point by an example. Suppose to have the following familiar

problem

max f (x)

sub hj (x) ≤ cj, ∀j ∈ J,
x ≥ 0

which has been widely discussed in the previous section. We have seen that the pos-

itivity constraint x ≥ 0 may be incorporated as constraints −x ≤ 0. Note that this

can be incorrect. The reason is that the implicit assumption is that objective function

f (x) has to be defined over an open set containing the positive orthant x ≥ 0. If f is

321
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just only defined over x ≥ 0 (think for instance of functions containing square roots or

logaritms) this reduction method fails.1

The possible existence of explicit constraints leads us to the following generalization

of the optimum problem (10.4):

max
x∈A

f (x) (11.1)

sub gi (x) = bi, ∀i ∈ I,
hj (x) ≤ cj , ∀j ∈ J,
x ∈ X

where X is a subset of A. In the general optimum problem (11.1) there are both

explicit and implicit constraints; in particular, we get back to the optimum problem

(10.4) when X = A.

Formulation (11.1) is actually more general than (10.4) when the explicit constraint

x ∈ X is irreducible, i.e., when it cannot be expressed through implicit constraints.

Formulation (11.1) is, however, also useful when there are conditions on the sign or

on the value of the xi. The classic example is the non-negativity condition of the xi,

which is very useful to express as an explicit constraint x ∈ Rn+, rather than implicitly

through n inequalities −xi ≤ 0 (on the other hand, in (10.1) we already wrote x ∈ Rn+).
In this case we write

max
x∈A

f (x)

sub gi (x) = bi, ∀i ∈ I,
hj (x) ≤ cj, ∀j ∈ J,
x ∈ Rn+

Here the use of the explicit constraint is done to simplify the exposition.

11.1 Variational Inequalities

Explicit constraints can either a necessity, when they are irreducible, or they can just

simplify the exposition when they provide a simpler way to express implicit constraints.

In any case, we want to generalize to the optimum problem (11.1) the solution methods

previously seen for problem (10.4).

1Of course we may extend the objective function outside of x ≥ 0. Unfortunately in several cases
these extensions may lose some nice properties such as differentiability and concavity properties.
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To this end, we will assume thatX is a closed and convex subset of Rn as, otherwise,

little can be said on explicit constraints. We start by considering directly the optimum

problem:

max
x∈X

f (x) (11.2)

where X is a generic closed and convex set of Rn, without asking whether it is irredu-

cible or if, instead, it can be written through equality/inequality constraints. Needless

to say, a point x̂ ∈ X is solution of the optimum problem (11.2) if f (x̂) ≥ f (x) for

each x ∈ X.

Consider the simplest case, i.e., X = [a, b] with a, b ∈ R. The optimum problem

(11.2) becomes:

max
x∈[a,b]

f (x) (11.3)

Suppose that x̂ ∈ [a, b] is solution of problem (11.3). It is easy to see that we can have

two cases:

(i) x̂ ∈ (a, b), i.e., x̂ is an interior point; in this case, f ′ (x̂) = 0.

(ii) x̂ ∈ {a, b}, i.e., x̂ is a boundary point; in this case, we have f ′ (x̂) ≤ 0 if x̂ = a,

while we have f ′ (x̂) ≥ 0 if x̂ = b.

The next lemma gives a simple and elegant way to unify these two cases.

Proposition 535 Let f : A ⊆ R→ R be a function differentiable on an open set A in

R and let [a, b] be a closed and bounded interval contained in A. If x̂ ∈ [a, b] is solution

of the optimum problem (11.3), then

f ′ (x̂) (x− x̂) ≤ 0, ∀x ∈ [a, b] . (11.4)

The viceversa holds if f is concave.

The proof of this result rests on the following lemma.

Lemma 536 Under the hypotheses of Proposition 535, expression (11.4) is equivalent

to f ′ (x̂) = 0 if x̂ ∈ (a, b), to f ′ (x̂) ≤ 0 if x̂ = a, and to f ′ (x̂) ≥ 0 if x̂ = b.

Proof We divide the proof in three parts, one for each of the equivalences to prove.

(i) Let x̂ ∈ (a, b). We prove that (11.4) is equivalent to f ′ (x̂) = 0. If it holds

f ′ (x̂) = 0, then f ′ (x̂) (x− x̂) = 0 for each x ∈ [a, b], and hence (11.4) holds. Viceversa,

suppose that (11.4) holds. Setting x = a, we have (a− x̂) < 0 and so (11.4) implies

f ′ (x̂) ≥ 0. On the other hand, setting x = b, we have (b− x̂) > 0 and so (11.4) implies

f ′ (x̂) ≤ 0. In conclusion, x̂ ∈ (a, b) implies f ′ (x̂) = 0.
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(ii) Let x̂ = a. We prove that (11.4) is equivalent to f ′ (a) ≤ 0. Let f ′ (a) ≤ 0.

Since (x− a) > 0 for each x ∈ (a, b], it follows that f ′ (a) (x− a) ≤ 0 for each x ∈ [a, b],

and hence (11.4) holds. Viceversa, suppose that (11.4) holds. Taking x ∈ (a, b], we

have (x− a) > 0 and so (11.4) implies f ′ (a) ≤ 0.

(iii) Let x̂ = b. We prove that (11.4) is equivalent to f ′ (b) ≥ 0. Let f ′ (b) ≥ 0.

Since (x− b) < 0 for each x ∈ [a, b), we have f ′ (b) (x− b) ≤ 0 for each x ∈ [a, b]

and (11.4) is valid. Viceversa, suppose that (11.4) holds. Taking x ∈ [a, b), we have

(x− b) < 0 and so (11.4) implies f ′ (b) ≥ 0. �

Proof of Proposition 535. In view of Lemma 536, it only remains to prove that

(11.4) becomes a sufficient condition when f is concave. Suppose therefore that f is

concave and that x̂ ∈ [a, b] is such that (11.4) holds. We prove that this implies that

x̂ is solution of problem (11.3). In fact, by Corollary 443 we have:

f (x) ≤ f (x̂) + f ′ (x̂) (x− x̂) , ∀x ∈ [a, b] ,

and (11.4) therefore implies that f (x) ≤ f (x̂) for each x ∈ [a, b]. Hence, x̂ is solution

of the optimum problem (11.3). �

Inequality (11.4) is an example of variational inequality. Beyond unifying the two

cases, this variational inequality is interesting because when f is concave it gives us a

necessary and sufficient condition for a point to be solution of the optimum problem

considered.

Even more interesting is the fact that this characterization can be naturally exten-

ded to the case of functions of several variables.

Theorem 537 Let f : A ⊆ Rn→ R be a function Gateaux differentiable on the open

and convex set A and let X be a closed and convex set contained in A. If x̂ ∈ X is

solution of the optimum problem (11.2), then

∇f (x̂) · (x− x̂) ≤ 0, ∀x ∈ X. (11.5)

The viceversa holds if f is concave.

Proof Let x̂ ∈ X be solution of the optimum problem (11.2), i.e., f (x̂) ≥ f (x) for each

x ∈ X. Given x ∈ X, set zt = (x+ t (x− x̂)) for t ∈ [0, 1]. Since X is convex, zt ∈ X

for each t ∈ [0, 1]. Moreover, by (4.8) we have f ′ (x̂; x− x̂) = φ′+ (0), where φ (t) =

f (zt) for each t ∈ [0, 1]. For each t ∈ [0, 1] we have φ (0) = f (x̂) ≥ f (zt) = φ (t), and

so φ : [0, 1] → R has a point of (global) maximum at t = 0. It follows that φ′+ (0) ≤ 0,

which implies f ′ (x̂; x− x̂) ≤ 0. By Proposition 140, f ′ (x̂; x− x̂) = ∇f (x̂) · (x− x̂)

and we can therefore conclude that (11.5) holds.



11.2. INTERMEZZO: CONVEX CONES 325

To prove the converse, assume that f is concave. By (8.31) we have f (x) ≤
f (x̂) + ∇f (x̂) · (x− x̂) for each x ∈ A, and therefore (11.5) implies f (x) ≤ f (x̂) for

each x ∈ X. �

Expression (11.5) is therefore a necessary condition for x̂ to be solution of the

optimum problem (11.2), and it becomes also sufficient when f is concave.

It is easy to check that (11.5) is equivalent to∇f (x̂) = 0 when x̂ is an interior point

of X. For such points we therefore find the classic condition ∇f (x̂) = 0 of Fermat

Theorem 194. But, the importance of (11.5) is that it is a necessary condition also

when x̂ is a boundary point. Note further that it is not "selfdual" in the sense that for

the minimum problems it has changed into ∇f (x̂) · (x− x̂) ≥ 0. Not so for interior

maximum and minimum for which the condition ∇f (x̂) = 0 is the same in both cases.

Theorem 537 provides interesting optimality conditions when the maximization is

restricted to a generic closed and convex set X. Even if elegant, this condition is,

however, of limited operational interest, i.e., in the actual resolution of the optimum

problem (11.2). In fact, to check condition (11.5) it is necessary to consider all the

points x belonging to X, something that can be very difficult.

Fortunately, there exists an important class of convex sets, the convex cones, in

which condition (11.5) becomes easier to verify. We pause therefore for a while to

introduce this class of convex sets.

11.2 Intermezzo: Convex Cones

11.2.1 Basic Properties

Cones can be defined in any vector space.

Definition 538 A subset C of a vector space V is a cone if v ∈ C implies αv ∈ C for

each α ≥ 0.

A cone is therefore a set closed with respect to non-negative scalar multiplication.

A first property of the cones to observe is that they always contain the neutral

element. In fact, given any vector v belonging to a cone C, we have 0v = 0 and

therefore 0 ∈ C.
In the sequel we will always consider convex cones and next simple result charac-

terizes them.

Lemma 539 A set C of a vector space is a convex cone if and only if αv + βw ∈ C

for each v, w ∈ C and each α, β ∈ R+.
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Proof Let C be a convex cone and let v, w ∈ C and α, β ∈ R+. Since C is a cone, αv

and βw belong to C. Since C is convex, we have

αv + βw = (α+ β)

(
α

α+ β
v +

β

α+ β
w

)
∈ C,

as desired.

Suppose now that αv + βw ∈ C for each v,w ∈ C and each α, β ∈ R+. Taken any

two v, w ∈ C, for each α ≥ 0 we have αv = αv + 0w ∈ C. Therefore, C is a cone.

Convexity of C is obvious, and so C is a convex cone. �

A convex cone is therefore closed with respect to any positive linear combination,

without the requirement that the coefficients must add to one. The basic properties

of convex cones reflect this strong form of convexity that they feature. We now briefly

state these properties, without proofs as they are obvious counterparts of similar results

that we saw for convex sets in Section 7.8.

We first introduce a natural generalization of convex combinations: a linear com-

bination
∑n

i=1 αiv
i is a positive combination of the vectors {vi}ni=1 if αi ≥ 0 for each

i = 1, ..., n. In the case n = 2, positive combinations can be written in the form αv+βw

with α, b ∈ R+.

Lemma 540 A set C of a vector space V is a convex cone if and only if it is closed

with respect to all the positive combinations of its own elements.

We now see some examples of convex cones.

Example 541 Both the positive orthant Rn+ and the whole space Rn are convex cones.

�

Example 542 Taken a vector x ∈ Rn, the half-line {αx : α ≥ 0} that passes through

the point x is a convex cone. More generally, given a finite set of vectors {vi}ni=1 of a
vector space, the set {

n∑

i=1

αiv
i : αi ≥ 0 ∀i = 1, ..., n

}

of all their positive combinations is a convex cone. �

Example 543 Given a family of linear functionals {Li}mi=1 of the form Li : V → R,

the set:

{v ∈ V : Li (v) ≤ 0 ∀i = 1, ...,m}
is a convex cone in V . In particular, given a matrix A

m×n
, the set

{x ∈ Rn : Ax ≤ 0} (11.6)

is a convex cone in Rn. This cone is determined by the m linear inequality constraints

Ax ≤ 0. �
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Example 544 Given two linear functionals L1 : V → R and L2 : V → R, the set

H = {v ∈ V : L1 (v) ≤ L2 (v)} is a convex (possibly empty) cone. In fact, for each

v ∈ H we have

L1 (αv) = αL1 (v) ≤ αL2 (v) = L2 (αv) , ∀α ≥ 0,

and therefore αv ∈ H. Similarly, it is possible to prove the convexity. �

Next lemma shows that the intersection preserves the structure of convex cone.

Lemma 545 The intersection of any collection of convex subsets of a vector space is

a convex set.

This lemma leads us to the next fundamental notion of generated cone.

Definition 546 Given any set S of vectors in a vector space V , we denote by cone (S)

the smallest convex cone in V that contains S. If V is normed, we denote by cone (S)

the smallest closed and convex cone in V that contains S.

The parallel with the notions of convex envelope seen in Section 7.8 should be clear.

Proposition 547 Given a subset C of a vector space V , let {Cα} be the collection of

all convex cones of V that contain C. We have cone (C) =
⋂
αCα. If, moreover, V is

normed, we have cone (C) = cone (C).

The next result is the analog of Theorem 383 for convex cones and shows that

cone (S) is the set of all possible positive combinations of vectors of S.

Proposition 548 Let A be a subset of a vector space V . A vector v ∈ V belongs to

cone (S) if and only if it is a positive combination of vectors of S, i.e., if and only if

there exist a finite set {vi}i∈I of S and a finite set {αi}i∈I of scalars, with αi ≥ 0 for

each i ∈ I, such that v =
∑

i∈I αiv
i.

Example 542 is a first illustration of this result. In fact, if we set S = {vi}ni=1, we
have

cone (S) =

{
n∑

i=1

αiv
i : αi ≥ 0 ∀i = 1, ..., n

}
. (11.7)

In the special case where S is the singleton {x}, with x ∈ Rn, cone (S) is the half-line

passing through that point. If, instead, S = {e1, ..., en} ⊆ Rn, (11.7) becomes:

cone (S) = {(α1, ..., αn) : αi ≥ 0 ∀i = 1, ..., n} = Rn+. (11.8)

Hence, the positive orthant Rn+ is the convex cone generated by the fundamental ver-

sors. Instead, the space Rn can be viewed as the convex cone generated by S =

{±ei : i = 1, ..., n}.
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Example 549 Let S = {1, x, ..., xn, ...} be the collection of the powers in the space of

the polynomialsP . Here cone (S) is the set of the polynomials with positive coefficients.

�

Note that in all these examples the cardinality of S is much smaller than that of

the generated cone cone (S). When S is a finite set, the generated cone cone (S) is

called polytope. For example, (11.8) shows that Rn+ is a polytope.

The following result, due to Weyl (1935), shows that polytopes are precisely the

cones determined by a finite set of linear inequality constraints (we omit the proof of

this classic theorem).

Theorem 550 (Weyl) A cone C in Rn is a polytope if and only if there exists a

matrix A
m×n

such that C = {x ∈ Rn : Ax ≤ 0}.

This result is important because linear inequality constraints are a classic class of

constraints in optimization problems and Weyl’s Theorem characterizes them in terms

of polytopes.

Given a norm ‖·‖ on Rn, set U = {x ∈ Rn : ‖x‖ = 1}; that is, U is the unit sphere

in Rn according to this norm.

Theorem 551 Given a closed and convex cone C in Rn, we have

C = cone (ext (C ∩ U)) . (11.9)

Proof The set C ∩ U is compact and convex, and hence by Theorem 404 we have

C ∩ U = co (ext (C ∩ U)). On the other hand, given x ∈ C, we have x/ ‖x‖ ∈ C ∩ U .
Hence, C = cone (C ∩ U), from which it follows (11.9). �

Theorem 551 is a version of the Minkowski Theorem for cones. Its importance lies

in reducing the study of the cone to a set of extreme points. Two observations: (i)

thanks to the special structure of the cones, relative to Theorem 404 here compactness

is not required; (ii) the choice of the norm ‖·‖ in Rn is arbitrary and, depending on

the set C considered, a certain norm can turn out to be particularly useful in the

construction of ext (C ∩ U).

Notice that when C ⊆ Rn+, if we consider the norm ‖·‖1 expression (11.9) becomes

C = cone (ext (C ∩∆n−1)) , (11.10)

and so C is determined by the extreme points of its intersection with the simplex.

For example, if C = Rn+, we have ext
(
Rn+ ∩ ∆n−1

)
= {ei}ni=1 and so (11.10) becomes

Rn+ = cone
(
{ei}ni=1

)
. We thus find again expression (11.8).
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11.2.2 The Normal Cone and Equation (11.5)

Given a convex set C of Rn and a point x ∈ C, the normal cone NC (x) of C with

respect to x is given by

NC (x) = {y ∈ Rn : y · (x− x) ≤ 0 ∀x ∈ C} .

Next we give couple of important properties of NC (x). In particular, (ii) shows that

NC (x) is non trivial only if x is a boundary point.

Lemma 552 Let C be a convex set of Rn and let x ∈ C. We have:

(i) NC (x) is a closed and convex cone;

(ii) NC (x) = {0} if x is an interior point of C.

Proof (i) The set NC (x) is clearly closed. Moreover, given x1, x2 ∈ NC (x) and

α, β ≥ 0, we have

(αx1 + βx2) · (x− x) = αx1 · (x− x) + βx2 · (x− x) ≤ 0 ∀x ∈ C

and so αx1 + βx2 ∈ NC (x). By Lemma 539, NC (x) is a convex cone.

(ii) Let x be an interior point of C. Then, there exists a neighborhood Bε (x)

included in C, so x+ ε′ei and x− ε′ei belong to C for each i = 1, ..., n and 0 < ε′ ≤ ε.

Hence, for each y ∈ NC (x) and each i = 1, ..., n, we have:

y ·
(
x+ ε′ei − x

)
= ε′yi ≤ 0 and y ·

(
x− ε′ei − x

)
= −ε′yi ≤ 0,

which implies yi = 0, that is, y = 0. It follows that NC (x) = {0}. �

To see the importance of normal cones, observe that the fundamental equation

(11.5) can be written as:

∇f (x̂) ∈ NX (x̂) . (11.11)

Therefore, x̂ is solution of the optimum problem (11.2) only if the gradient ∇f (x̂)

belongs to the normal cone of X with respect to x̂. This way of writing condition

(11.5) is useful because, given a set X, if we can describe the form that the normal

cone has — something that does not require any knowledge of the objective function f

— we can then have an idea of the form that take the “first order condition” for the

optimum problems that have X as an explicit constraint.

In other words, (11.11) allows to distinguish two parts in the first order condition:

the part NX (x̂), determined by the explicit constraint X, and the part ∇f (x̂), de-

termined by the objective function. This distinction between the roles of the objective
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function and of the constraint allows to face the optimum problem (11.2) with greater

effectiveness.

The next result characterizes the normal cone for a fundamental class of convex

sets.

Proposition 553 Let C = cone (S) be the closed and convex cone generated by a set

S in Rn. If x̂ ∈ C, then

NC (x̂) = {y ∈ Rn : y · x̂ = 0 and y · x ≤ 0 ∀x ∈ S} . (11.12)

Proof Let y ∈ Rn be such that y · x̂ = 0 and y · x ≤ 0 for each x ∈ S. We prove that

y ∈ NC (x̂). Given x ∈ cone (S), by Theorem 551 there exist a finite set {xi}i∈I in S
and a finite set {αi}i∈I of scalars with αi ≥ 0 for each i ∈ I, such that x =

∑
i∈I αixi.

Hence, we have:

y · x = y ·
(
∑

i∈I
αixi

)
=
∑

i∈I
αi (y · xi) ≤ 0. (11.13)

Let x ∈ C. Since C = cone (S), there exists a sequence {xn}n ⊆ cone (S) such

that xn → x. Expression (11.13) implies y · xn ≤ 0 for each n ≥ 1, and hence

y ·x = limn y ·xn ≤ 0. Since y · x̂ = 0, we therefore have y · (x− x̂) = 0 for each x ∈ C,
which implies y ∈ NC (x̂), as desired.

Viceversa, let y ∈ NC (x̂). Since 0 ∈NC (x̂), we have y · x̂ ≥ 0. On the other hand,

x̂ ∈ C implies 2x̂ ∈ C since C is a cone. Therefore, y · x̂ = y · (2x̂− x̂) ≤ 0, and we

can conclude that y · x̂ = 0. In turn, this implies y · x = y · (x− x̂) ≤ 0 for each x ∈ C,
and in particular y · x ≤ 0 for each x ∈ S. This completes the proof. �

By Theorem 551, for each closed and convex cone C in Rn we have

C = cone (ext (C ∩ U)) .

Therefore, (11.12) implies

NC (x̂) = {y ∈ Rn : y · x̂ = 0 and y · x ≤ 0 ∀x ∈ ext (C ∩ U)} ,

which is an especially useful representation of the cone NC (x̂).

Example 554 If C = Rn+, (11.12) becomes:

NC (x̂) = {y ∈ Rn : yix̂i = 0 and yi ≤ 0 ∀i = 1, ..., n} . (11.14)

The condition yi ≤ 0 for each i = 1, ..., n follows directly from (11.8), that is, from

cone
(
{ei}ni=1

)
= Rn+. On the other hand, from y · x̂ = 0 it follows that yi ≤ 0 for each

i = 1, ..., n implies yixi = 0 for each i = 1, ..., n. �
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11.3 Variational Inequalities on Cones

After having introduced cones, we get back to the analysis of the optimum problem

(11.2). Thanks to (11.11) and to Proposition 553, for convex cones Theorem 537 takes

the following form.

Proposition 555 Let f : A ⊆ Rn→ R be Gateaux differentiable on the open set A and

let X = cone (S) be the closed and convex cone generated by a set S ⊆ A. If x̂ ∈ X is

solution of the optimum problem (11.2), then

∇f (x̂) · x̂ = 0, (11.15)

∇f (x̂) · x ≤ 0, ∀x ∈ S. (11.16)

The viceversa holds if f is concave.

Relative to condition (11.5), conditions (11.15) and (11.16) are easier to verify since

they only involve x̂ and the elements of S, which are in general much fewer than those

of cone (S).

Proof By (11.11) and (11.12), expression (11.5) is equivalent to

∇f (x̂) ∈ NX (x̂) = {y ∈ Rn : y · x̂ = 0 and y · x ≤ 0 ∀x ∈ S} ,

which proves that conditions (11.15) and (11.16) are in this case equivalent to (11.5).

The result is therefore a consequence of Theorem 537. �

In the important special case X = Rn+, thanks to (11.14) Proposition 555 takes a

particularly interesting form. In fact, conditions (11.15) and (11.16) reduce to check n

equalities — i.e., (11.17) — and n inequalities — i.e., (11.18).

Corollary 556 Let f : A ⊆ Rn→ R be Gateaux differentiable on the open set A

containing Rn+ and let X = Rn+. If x̂ ∈ X is solution of the optimum problem (11.2),

then, for each i = 1, ..., n, we have:

x̂i
∂f

∂xi
(x̂) = 0, (11.17)

∂f

∂xi
(x̂) ≤ 0. (11.18)

The viceversa holds if f is concave.
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11.4 Resolution of the General Optimum Problem

(sketch)

We now have all we need to extend Theorem 524 to the general optimum problem (11.1).

We first extend to the general case Definition 520 of regularity of the constraints. As

usual, A (x) denotes the set of inequality constraints non binding at x.

Definition 557 Problem (11.1) has regular constraints at a point x ∈ X if there does

not exist a vector α ∈ R|I|+|A(x)| such that α 	= 0 and

∑

i∈I
αi∇gi (x) +

∑

j∈A(x)
αj∇hj (x) ∈ NX (x) . (11.19)

Definition 557 thus generalizes Definition 520 to optimum problems with explicit

constraints. In fact, the optimum problem (10.4) is the special case of problem (11.1)

in which X = A. Since A is an open, Lemma 552 implies NA (x) = {0} for each x ∈ A,
and (11.19) becomes

∑

i∈I
αi∇gi (x) +

∑

j∈A(x)
αj∇hj (x) = 0.

In the caseX = A the regularity of the constraints at x is precisely the requirement that

the gradients∇gi (x) and the gradients∇hj (x) with j ∈ A (x) are linearly independent,

and therefore we find again Definition 520.

The next result, proved as Theorem 4.2 p. 198 in Rockafellar (1993), generalizes

Theorem 524 to the optimum problem (11.1).

Theorem 558 Let x̂ be local solution of the optimum problem (11.1), where X is a

closed and convex subset of A. If the functions f, {gi}i∈I and {hj}j∈J are of class C1 and
if the constraints are regular at x̂, then there exists a pair of vectors

(
λ̂, µ̂

)
∈ R|I|×R|J|+

such that the triple
(
x̂; λ̂, µ̂

)
satisfies the conditions:

∇Lx
(
x̂; λ̂, µ̂

)
∈ NX (x̂) , (11.20)

µ̂ · ∇Lµ
(
x̂; λ̂, µ̂

)
= 0, (11.21)

∇Lλ
(
x̂; λ̂, µ̂

)
= 0, (11.22)

∇Lµ
(
x̂; λ̂, µ̂

)
∈ R|J |+ . (11.23)

Conditions (11.20)-(11.23) are theKuhn-Tucker conditions of the optimum problem

(11.1), while the points x ∈ A for which there exists a pair (λ, µ) ∈ R|I| × R|J |+ such
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that the triple (x, λ, µ) satisfies conditions (11.20)-(11.23) are the Kuhn-Tucker points

of problem (11.1). For them still apply the considerations made after Theorem 524

about the Kuhn-Tucker points of the problem without explicit constraints (10.4).

Thanks to Proposition 553, Theorem 558 takes a simpler form when X = cone (S) .

Corollary 559 Let x̂ be local solution of the optimum problem (11.1), where X =

cone (S) is the closed and convex cone generated by a set S contained in A. If the

functions f, {gi}i∈I and {hj}j∈J are of class C1 and if the constraints are regular at x̂,

then there exists a pair of vectors
(
λ̂, µ̂

)
∈ R|I| × R|J |+ such that the triple

(
x̂; λ̂, µ̂

)

satisfies the conditions:

∇Lx
(
x̂; λ̂, µ̂

)
· x ≤ 0, ∀x ∈ S, (11.24)

∇Lx
(
x̂; λ̂, µ̂

)
· x̂ = 0, (11.25)

µ̂ · ∇Lµ
(
x̂; λ̂, µ̂

)
= 0, (11.26)

∇Lλ
(
x̂; λ̂, µ̂

)
= 0, (11.27)

∇Lµ
(
x̂; λ̂, µ̂

)
∈ R|J |+ . (11.28)

When X = Rn+, thanks to Corollary 556 conditions (??) and (11.23) are equivalent

to:

x̂i
∂f

∂xi
(x̂) = 0, ∀i = 1, ..., n. (11.29)

∂f

∂xi
(x̂) ≤ 0, ∀i = 1, ..., n. (11.30)

Theorem 558 allows to solve the problem (11.1) with the Method of Elimination,

which is based on the following steps:

(i) We determine if Theorem 317 can be applied, i.e., if f is upper semicontinuous

and coercive on C ∩X.

(ii) We find the set D0 ∩ C ∩X.

(iii) We find the set T of the Kuhn-Tucker points that belong to D1, that is, the set

of the points x ∈ D1 for which there exists (λ, µ) ∈ R|I|×R|J |+ such that the triple

(x;λ, µ) satisfies the Kuhn-Tucker conditions (11.20)-(11.23).

(iv) We construct the set {f (x) : T ∪ (D0 ∩ C ∩X)}. If x̂ ∈ T ∪ (D0 ∩ C ∩X) is

such that f (x̂) ≥ f (x) for each x ∈ T ∪ (D0 ∩ C ∩X), then such x̂ is solution of

the optimum problem (10.4).
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Chapter 12

Abstract Equations

Given any two spaces X and Y , in its most general form an equation has the form

f (x) = y0, (12.1)

where f is a function f : X → Y and y0 is a given element of Y .1 The solutions of

equation (12.1) are all x ∈ X such that f (x) = y0.

For example, the second order equation

α0 + α1x+ α2x
2 = 0.

can be written as

f (x) = 0 (12.2)

where f : R→ R is the polynomial f (x) = α0 + α1x+ α2x
2 and y0 = 0. Its solutions

are all x ∈ R that satisfy (12.2). Also the linear equation system

Ax = b, (12.3)

where A is a m× n matrix and x and b are vectors in Rn, can be written as

T (x) = b,

where T : Rn → Rm is the linear application T (x) = Ax (see Section 3.5.2). Here the

solutions are all x ∈ Rn such that T (x) = b.

Two main questions can be asked on the solutions of equation (12.1):

(i) can the equation be solved globally: given any y0 ∈ Y is there x ∈ X that satisfies

(12.1)? if so, is the solution unique?

1We write y0 in place of y to make clear that y0 should be regarded as a fixed element of Y and
not as a variable.

335
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(ii) can the equation be solved locally: given a y0 ∈ Y is there x ∈ X that satisfies

(12.1)? if so, is the solution unique?

To discuss these questions, consider the weak inverse (correspondence) f−1 : Y →
2X given by f−1 (y) = {x ∈ X : f (x) = y}. We say that f is weakly invertible at y ∈ Y
if f−1 (y) is nonempty, while we say that f is invertible at y if f−1 (y) is a singleton. If

f is weakly invertible (resp., invertible) at all y ∈ Y , we say that f is weakly invertible

(resp., invertible).

Using this terminology, the above two questions can be rephrased in more precise

terms as follows:

(i) is f weakly invertible? if so, is it invertible?

(ii) is f weakly invertible at y0 ∈ Y ? if so, is it invertible at y0?

Question (i) is clearly much more demanding than (ii). In fact, (i) requires the

global invertibility of f , while (ii) only requires f to be locally invertible. Nevertheless,

in Section 3.5.2 we were able to answer question (i) for linear equation systems (12.3).

In fact, by Proposition 124 the linear application T : Rn → Rn is invertible if and

only if A is invertible, that is, if detA 	= 0. Condition detA 	= 0 thus ensures that in

correspondence of each b ∈ Rn there is a unique solution x ∈ Rn given by T−1 (b) =

A−1b.

12.1 Operator Equations

At this point, to make further progress we consider the special case of (12.1) where

both X and Y are a vector space V . That is, we consider the operator equation

T (v) = w0, (12.4)

where T : V → V is an operator and w0 ∈ V . Though special, (12.4) includes many

equations of interest. For example, observe that equations (12.2) and (12.3), when

m = n, are special cases of (12.4) with V = R and V = Rn, respectively.

A first taxonomy: the operator equation (12.4) is

(i) linear if the operator T : V → V is linear and is nonlinear otherwise;

(ii) homogeneous if w0 = 0 and nonhomogeneous otherwise.
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For example, equation (12.2) is nonlinear and homogeneous, while equation (12.3) is

linear and nonhomogeneous, unless b = 0.2 Next we present few other classic operator

equations.

Volterra Integral Equations

Given a continuous function ψ : [a, b] × [a, b] × R → R, consider the operator F :

C ([a, b]) → C ([a, b]) given by

F (f) (s) =

∫ s

a

ψ (s, t, f (t)) dt, ∀s ∈ [a, b] , (12.5)

for each f ∈ C ([a, b]). The Volterra operator equation is

f (s) =

∫ s

a

ψ (s, t, f (t)) dt+ g (s) , ∀s ∈ [a, b] ,

for a given g ∈ C ([a, b]). The unknown function f ∈ C ([a, b]) has to be determined.

In operator notation, the Volterra equation can be written as

f − F (f) = g. (12.6)

In terms of equation (12.4) we have w0 = g and T = I −F . It is a nonlinear equation,

which is homogeneous when g is zero.

In (12.5) there is a variable limit s of integration. When this limit is constant, we

need to consider the operator G : C ([a, b]) → C ([a, b]) given by

G (f) (s) =

∫ b

a

ψ (s, t, f (t)) dt, ∀s ∈ [a, b] , (12.7)

for each f ∈ C ([a, b]). Given a g ∈ C ([a, b]), the equation

f (s) =

∫ b

a

ψ (s, t, f (t)) dt+ g (s) , ∀s ∈ [a, b] ,

is called a Fredholm operator equation. In operator notation we have

f −G (f) = g. (12.8)

2Notice that a nonhomogeneous equation T (v) = w0 can be made homogeneous by considering the
transformation Tw0 (v) = T (v)−w0. However, as the above discussion on equation (12.1) showed, it
is important to consider explicitly the term w0. This is why we study equation (12.4) rather than a
general homogeneous equation T (v) = 0.
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Hammerstein Equation We now present an important class of Volterra and Fred-

holm equations. Given a continuous function φ : [a, b]×R→ R, the Nemitski operator

N : C ([a, b]) → C ([a, b]) is given by:

N (f) (t) = φ (t, f (t)) , ∀t ∈ [a, b] ,

for each f ∈ C ([a, b]). Moreover, given any continuous kernel k : [a, b]× [a, b] → R, let

K : C ([a, b]) → C ([a, b]) be the linear operator given by

K (f) (s) =

∫ s

a

k (s, t) f (t) dt, ∀s ∈ [a, b] , (12.9)

for each f ∈ C ([a, b]). For instance, the operator of Example 351 features an additively

separable kernel k (s, t) = h1 (t) + h2 (s).

The Volterra-Hammerstein operator equation is

f (s) =

∫ s

a

k (s, t)φ (t, f (t)) dt+ g (s) , ∀s ∈ [a, b] , (12.10)

for a given g ∈ C ([a, b]). The unknown function f ∈ C ([a, b]) has to be determined.

In operator notation, the Volterra-Hammerstein equation can be written as3

f −KN (f) = g.

Hence, in terms of equation (12.4) here we have w0 = g and T = I −KN . A Volterra-

Hammerstein equation is thus a Volterra equation with F = KN in (12.6).

If in (12.9) we make constant the limit s of integration we get a Fredholm-Hammerstein

equation

f (s) =

∫ b

a

k (s, t)φ (t, f (t)) dt+ g (s) , ∀s ∈ [a, b] ,

for a given g ∈ C ([a, b]).

12.1.1 Fixed Points

Thanks to the vector structure of V , the solution of vector equations can be reduced

to the search of fixed points of suitable operators. For, given any function λ : V → R

with λ (v) 	= 0 for all v ∈ V , define Tw0 : V → V by

Tw0 (v) = λ (v) (T (v)− w0) + v.

Then, v ∈ V solves the operator equation (12.4) if and only if Tw0 (v) = v, that is, if

and only if v is a fixed point of Tw0 . To solve the operator equation (12.4) thus amounts

to find the fixed points of the application Tw0.

3Recall from Definition 90 that the product KN of operators is the composition K ◦N .
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For this reason, the results that provide conditions for the existence of fixed points,

the so-called fixed point theorems, play a key role in the solution of the vector equation

(12.4). Motivated by this observation, we now study these theorems in some detail.

In particular, we present two fundamental classes of fixed point theorems, originated

respectively by the Banach Contraction Theorems of Banach (1922) and by the Brouwer

Fixed Point Theorem of Brouwer (1912).

12.2 Banach Contraction Theorem

The first fundamental fixed point theorem we present is the Banach Contraction Map-

ping Theorem, due to Banach (1922).4 It can be stated in any metric space (X, d)

and is based on successive approximations. The notion of contraction is key in its

derivation.

Definition 560 A selfmap T : X → X defined on a metric space X is a contraction

if there exists a scalar 0 < α < 1 such that

d (Tx, Ty) ≤ αd (x, y) , ∀x, y ∈ X. (12.11)

That is, contractions are Lipschitz (and so continuous) functions with constant

α ∈ (0, 1).5

To see the basic properties of contractions we need some notation. Given any

selfmap T : X → X, its second iterate T ◦ T : X → X is denoted by T 2. More

generally, T n denotes the n-th iterate T n = T n−1 ◦T , i.e., T n (x) = T (T n−1 (x)) for all

x ∈ X. We adopt the convention T 0 = I, that is, T 0 is the identity map.

Using the iterates T n of a selfmap T : X → X we can construct a sequence

{Tn (x0)}n of points in X by starting from any initial point x0 of X. These sequences

will play a key role.

Lemma 561 If exists, the fixed point x of a α-contraction T : X → X is unique and

globally attracting, that is,

lim
n→∞

d (T n (x0) , x) = 0, ∀x0 ∈ X. (12.12)

4It is sometimes called the Banach-Caccioppoli Contraction Mapping Theorem since it was inde-
pendently discovered by Caccioppoli (1930).

5To ease notation, we call α-contractions the contractions with constant α ∈ (0, 1). Moreover,
throughout the book, the terms functions and maps are synonyms (a selfmap is a map with the same
domain and codomain).
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By (12.12), any sequence {T n (x0)}n of iterates converges to the fixed point (if

exists). Therefore, the iterates can be regarded as successive, better and better, ap-

proximations of the fixed point, which can thus be actually computed, when it exists.

Uniqueness and global attractivity are thus truly remarkable properties of contractions’

fixed points.

Proof We first prove uniqueness. Suppose x1 and x2 are fixed points. Then, for some

α ∈ (0, 1),

0 ≤ d (x1, x2) = d (T (x1) , T (x2)) ≤ αd (x1, x2) ,

and so d (x1, x2) = 0. This implies x1 = x2, as desired.

As to attractivity, let x0 ∈ X. We have, d (T (x) , T (x0)) ≤ αd (x, x0), i.e.,

d (x, x1) ≤ αd (x, x0). By iterating we get

d (T n (x0) , x) ≤ αnd (x, x0) , ∀n ≥ 1,

and so limn→∞ d (Tn (x0) , x) = 0. �

We can now state and prove Banach’s fundamental theorem.

Theorem 562 (Banach) Let T : X → X be a α-contraction defined on a complete

metric space X. Then, T has a unique and globally attracting fixed point x. Moreover,

the following error estimate holds:

d (x, T n (x0)) ≤
αn

1− α
d (T (x0) , x0) . (12.13)

Under the only mild assumption that X is complete, this theorem ensures the

existence of fixed points of contractions, which, by Lemma 561, have the remarkable

properties of being unique and globally attracting. The latter property, through the

successive approximations T n (x0) from any initial point x0 ∈ X, gives a procedure to

actually compute the unique fixed point, with an error upper bound given by (12.13).

As the use of the exponential supnorm in the proof of Proposition 581 illustrates, the

true power of this result lies in the careful choice of the metric. In fact, the contractive

nature of a selfmap T : X → X is not an intrinsic property of T but it entirely depends

on the metric d. A clever choice of a metric may thus make contractive even selfmaps

T : X → X that, prima facie, do not appear to be contractive.

Proof Let {xn}n be the sequence of iterates defined by xn = T n (x0), given any initial

x0 ∈ X. We want to prove that this sequence is Cauchy. Fix n and take any m ≥ n.

We have d (xm, xn) ≤ αd (xm−1, xn−1). By iterating, we get

d (xm, xn) ≤ αnd (xm−n, x0) .
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By the triangular inequality,

d (xm, xn) ≤ αn [d (xm−n, xm−n−1) + d (xm−n−1, xm−n−2) + ....+ d (x1, x0)] .

Hence,

d (xm, xn) ≤ αn
[
αm−n−1 + αm−n−2 + ....+ 1

]
d (x1, x0) (12.14)

d (xm, xn) ≤ αn

1− α
d (x1, x0) .

Therefore, if m, p ≥ n, we have

d (xm, xp) ≤ d (xm, xn) + d (xn, xp) ≤ 2αn (1− α)−1 d (x1, x0) .

As αn → 0, this implies that the sequence is Cauchy. By the completeness of the

space, xn → x. Clearly, x is a fixed point. Since contractions are continuous, we have

T (xn) → T (x), i.e., xn+1 → T (x) = x. By (12.14), letting m → ∞, we get the

estimate (12.13) and this completes the proof as the rest follows from Lemma 561. �

The uniqueness and global attractivity of contractions’ fixed points gives Banach’s

Theorem a central role in the solution of vector equations. In this regard it is useful to

give the vector space version of this theorem. Because of the completeness hypothesis,

the result holds in Banach spaces, i.e., in complete normed vector spaces (see Definition

333).

Corollary 563 Let T : V → V be a α-contraction defined on a Banach space V .

Then, T has a unique and globally attracting fixed point v, that is,

lim
n

‖T n (v0)− v‖ = 0, ∀v0 ∈ V.

Moreover, the following estimate holds:

‖T n (v0)− v‖ ≤ αn

1− α
‖T (v0)− v0‖ .

A simple but useful principle of localization easily follows from Banach’s Theorem

562.

Corollary 564 Under the assumption of Theorem 562, if D is a closed subset of X

that is invariant under T ,6 then the fixed point of T lies in D.

Proof Given any point x0 ∈ D, by assumption the sequence T n (x0) belongs to D. As

D is closed, T n (x0) → x ∈ D by Theorem 254. �

This corollary can be equivalently stated in the following version, which we report

for later reference.
6That is, x ∈ D implies T (x) ∈ D (equivalently, T (D) ⊆ D).
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Corollary 565 Let T : D → D be a α-contraction defined on a closed subset D of

a complete metric space X.7 Then, T has a unique and globally attracting fixed point

x ∈ D.

12.2.1 Variations on the theme

Consider the following application of Corollary 564. Let x0 ∈ X and consider the

closed ball Br (x0) with center x0 and radius

r =
d (x0, T (x0))

1− α
.

Then, Br (x0) is invariant under T and the fixed point lies in Br (x0). For, given any

x ∈ Br (x0),

d (T (x) , x0) ≤ d (T (x) , T (x0)) + d (T (x0) , x0) ≤ αd (x, x0) + d (T (x0) , x0)

≤
(

α

1− α
+ 1

)
d (T (x0) , x0) =

1

1− α
d (T (x0) , x0) = r,

and so T (x) ∈ Br (x0). By Corollary 564, T has a fixed point in Br (x0).

This observation leads to the next powerful “local” formulation of the contraction

theorem, for operators defined on open balls (an open domain, and so outside the scope

of Corollary 564). It plays a fundamental role in many existence theorems.

Proposition 566 Let X be a complete metric space. Given x0 ∈ X, suppose:

(i) T : Br (x0) → X is a α-contraction

(ii) d (x0, T (x0)) < (1− α) r,

Then, T has a unique fixed point x ∈ Br (x0) that attracts all points of Br (x0).8

Proof. By the triangular inequality, the open ball Br (x0) is invariant under T . In

fact, if x ∈ Br (x0), then d (x, x0) < r. Hence,

d (T (x) , x0) ≤ d (T (x) , T (x0)) + d (T (x0) , x0) ≤ αd (x, x0) + d (T (x0) , x0)

< αr + (1− α) r = r.

It follows that in Br (x0) there is at most a fixed point. Notice that Br (x0) is not

complete and therefore we cannot deduce the existence of the fixed point.

7That is, there is α ∈ (0, 1) such that d (Tx, Ty) ≤ αd (x, y) for each x, y ∈ D.
8That is, limn d (x, Tn (x0)) = 0 for all x0 ∈ Br (x0).
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Consider any closed ball Br1 (x0) with

d (x0, T (x0))

1− α
≤ r1 < r.

It is invariant, i.e., T
(
Br1 (x0)

)
⊆ Br1 (x0). In fact, from x ∈ Br1 (x0), it follows

d (T (x) , x0) ≤ d (T (x) , T (x0)) + d (T (x0) , x0) ≤ αd (x, x0) + d (T (x0) , x0)

≤ αr1 + (1− α) r1 = r1.

By Corollary 564, there exists a fixed point in the closed ball Br1 (x0), and so in Br (x0),

as desired. �

The next theorem weakens the hypotheses of the Banach Theorem 562 by requiring

that only some iterate Tn be a contraction, and not necessarily T itself as in Theorem

562.

Proposition 567 Let T : X → X be a selfmap defined on a complete metric space X.

If Tn is an α-contraction for some n ≥ 1, then T has a unique and globally attracting

fixed point.

Proof. Set Q = T n. By Theorem 562, Q has a unique fixed point x. Notice that if x1
is a fixed point of T , then x1 is a fixed point of Q as well. We deduce that T has at

most the fixed point x. On the other hand,

T (x) = (T ◦Q) (x) = Tn+1 (x) = Q (T (x)) .

Hence, T (x) is a fixed point of Q, and so T (x) = x. It remains to prove that it is

globally attracting. Set β = n
√
α and define

ρ (x, y) = d (x, y) +
1

β
d (T (x) , T (y)) + · · · + 1

βn−1
d
(
Tn−1 (x) , Tn−1 (y)

)
. (12.15)

It is immediately seen that ρ is a new metric on X. Moreover,

ρ (T (x) , T (y)) = d (T (x) , T (y)) +
1

β
d
(
T 2 (x) , T 2 (y)

)
+ · · · + 1

βn−1
d (T n (x) , Tn (y))

≤ d (T (x) , T (y)) +
1

β
d
(
T 2 (x) , T 2 (y)

)
+ · · · + βd (x, y)

= β

[
d (x, y) +

1

β
d (T (x) , T (y)) + · · ·+ 1

βn−1
d
(
T n−1 (x) , T n−1 (y)

)]

= βρ (x, y) .

Hence, T is a contraction for the metric ρ. It follows that ρ (T nx0, x) → 0. On the

other hand, d (x, y) ≤ ρ (x, y). Therefore, d (T nx0, x) → 0 for all x0 ∈ X. �
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Even the weaker hypothesis of Proposition 567 that a selfmap T : X → X has

a contracting iterate can be difficult to check. A useful criterion is condition (12.16)

below, which controls the growth of Lipschitz constants of the iterates. Another well

known unpleasant fact is that a selfmap may be contracting with respect to a metric

and not with respect to another, equivalent, metric. These two facts are closely related

and will be discussed in the next result. We first define a notion of equivalence for

metrics, related to that for norms given in Definition 357.

Definition 568 Two metrics d1 and d2 on X are (Lipschitz) equivalent if there exist

c1, c2 > 0 such that c1d1 (x, y) ≤ d2 (x, y) ≤ c2d1 (x, y) for all x, y ∈ X.

Clearly, d1 is complete if and only if d2 is.

Proposition 569 Let T : X → X be a selfmap defined on a metric space X. The

following conditions are equivalent.

(i) T is Lipschitz and T n is an contraction for some n ≥ 1;

(ii) there is some k > 0 and α ∈ (0, 1) such that

d (T nx, T ny) ≤ kαnd (x, y) ∀n ≥ 0, ∀x, y ∈ X; (12.16)

(iii) T is a contraction for a metric ρ that is equivalent to d;

(iv) there is a sequence kn of Lipschitz constants of the iterates T
n such that9

lim inf
n→∞

n
√
kn < 1;

(v) there exists a sequence kn of Lipschitz constants of the iterates such that

lim
n→∞

n
√
kn < 1.

Proof. (ii) implies (i). From (12.16) it follows that d (T (x) , T (y)) ≤ kd (x, y) and

T is Lipschitz. Moreover, there is some n such that kαn ∈ (0, 1). Therefore, T n is a

contraction.

(i) implies (iii). As in the proof of Proposition 567, we can construct the metric

ρ given by (12.15) and T is a contraction with respect to ρ. If T is Lipschitz with

constant k > 0, from (12.15) it follows

d (x, y) ≤ ρ (x, y) ≤
(

1 +

(
k

β

)
+ ...+

(
k

β

)n−1)
d (x, y)

9That is, d (Tnx, Tny) ≤ knd (x, y) for each n.
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and ρ is Lipschitz equivalent to d.

(iii) implies (ii). Assume that ρ (T (x) , T (y)) ≤ αρ (x, y) with α ∈ (0, 1) and

where ρ is equivalent to d. We have ρ (T n (x) , T n (y)) ≤ αnρ (x, y). Therefore, if

Ad (x, y) ≤ ρ (x, y) ≤ Bd (x, y) , we have

Ad (Tn (x) , Tn (y)) ≤ ρ (T n (x) , T n (y)) ≤ αnρ (x, y) ≤ αnBd (x, y) .

Hence, d (T n (x) , T n (y)) ≤ αn (B/A) d (x, y) .

(v) clearly implies (iv).

(iv) implies (i). There exists some n ≥ 1 such that n
√
kn ≤ β < 1, so that kn ≤ βn.

Therefore, Tn is a contraction.

(ii) implies (v). From kn = kαn, it follows n
√
kn = α n

√
k. Consequently, α n

√
k → α,

as n→ ∞. �

Remarks. (i) By Propositions 567 and 569, if the sequence {kn}n of the Lipschitz

constants of the iterates T n satisfies

lim inf
n→∞

n
√
kn = α,

then for each ε > 0 there is an equivalent metric ρ such that ρ (T (x) , T (y)) ≤
(α+ ε) ρ (x, y).

(ii) Even if X is a Banach space, and consequently d (x, y) = ‖x− y‖, the new

distance ρ (x, y) given by (12.15) may not be induced by some norm. This is case,

however, if T is linear. For,

‖x‖ρ = ‖x‖+
1

β
‖T (x)‖+ ......+

1

βn−1
∥∥T n−1 (x)

∥∥

is the new norm associated with ρ (x, y).

(iii) The condition that T is Lipschitz in (i) of Proposition 569 is essential. In gen-

eral, if T n is a contraction with n > 1 it does not follow not even that T is continuous.

For instance, consider the discontinuous selfmap T : R→ R given by T (x) = (1/2) |x|
if |x| ≤ 1, and T (x) = −1/2 else. The second iterate is T 2 (x) = (1/4) |x| for |x| ≤ 1

and T 2 (x) = 1/4 else. Clearly, T 2 is a contraction.

The contraction condition d (T (x) , T (y)) ≤ αd (x, y) in (12.11) is stronger than

the condition

d (T (x) , T (y)) < d (x, y) , ∀x 	= y, (12.17)
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which in general does not ensure the existence of fixed points. For instance, the function

f (x) = x+
1

1 + x

satisfies (12.17) on R+ and it does not have fixed points.

The next result, due to Edelstein (1962), shows that under a stronger condition on

X — that is, compactness in place of completeness — selfmaps that satisfy the weaker

contraction condition (12.17) have a fixed point.

Proposition 570 If the selfmap T : X → X satisfies (12.17) on a compact metric

space X, then it has a unique and globally attracting fixed point.

Proof As T is continuous, the function x→ d (x, T (x)) is continuous on X. Consider

infx∈X d (x, T (x)). As X is compact, the infimum is attained. Hence, d (x, T (x)) ≥
d (x, T (x)) for some x ∈ X. Clearly x is a fixed point. Otherwise, T (x) 	= x implies

d (T 2 (x) , T (x)) < d (x, T (x)), a contradiction.

We must prove that x attracts every point. Consider a trajectory xn = T n (x0).

From d (xn+1, x) ≤ d (xn, x) it follows that d (xn, x) → infn d (xn, x) = λ. If λ = 0

the claim is proved. Assume, by contradiction, λ > 0. By compactness (Corollary

277), there is a convergent subsequence xnk → y ∈ X and d (y, x) = λ > 0. Hence,

d (T (y) , x) < λ. On the other hand, from xnk → y, it follows that xnk+1 → Ty which

implies d (T (y) , x) = λ, a contradiction. �

Example 571 Consider an increasing and concave function f : R+ → R with f (0) >

0 and limx→∞ f ′+ (x) < 1. If f ′+ (0) < 1, then f is a contraction. If 1 ≤ f ′+ (0) < ∞,

there is an iterate fn that is a contraction. If f ′+ (0) = ∞ (e.g., f (x) = 1 +
√
x), no

iterate is a contraction though there is a globally attracting fixed point.

An additional remark is useful to understand the Definition 568 on Lipschitz equi-

valent metrics. In a general ground, two metrics d1 and d2 onX are said to be equivalent

provided they induce the same topology on X. This is a much weaker condition than

Lipschitz equivalence. This fact will be illustrated by an example.

Example 572 Consider in R the standard metric d1 (x, y) = |x− y| induced by the

norm t→ |t|. Now we introduce the new metric

d2 (x, y) = |arctan (x)− arctan (y)| .

We show the following properties:

i) d2 (x, y) is a metric;

ii) d1 and d2 are equivalent;
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iii) d2 is incomplete and consequently the two metrics are not Lipschitz equivalent.

Point (i) is trivial to check. Observe that the property d2 (x, y) = 0 ⇐⇒ x = y

is a direct consequence of the fact that arctan (x) is strictly increasing. To prove

that d1 and d2 are equivalent, it suffices to show that for any sequence xn we have

d1 (xn, x) → 0 ⇐⇒ d2 (xn, x) → 0. Clearly this follows easily from the continuity of

arctan (x).

Consider any sequence xn → +∞. It is Cauchy for the metric d2. Actually, limn→∞ arctan (xn) =

π/2. Given any ε > 0, there is an index n0 such that |arctan (xn)− π/2| < ε/2. Hence,

if n,m ≥ n0 we have

|arctan (xn)− arctan (xm)| =
∣∣∣arctan (xn) −

π

2
+
π

2
− arctan (xm)

∣∣∣

≤
∣∣∣arctan (xn)−

π

2

∣∣∣+
∣∣∣π
2
− arctan (xm)

∣∣∣ < ε,

and (xn) is Cauchy for d2, though (xn) does not convergent to any point.

12.2.2 Parametric Versions

We close by considering a parametric version of Banach Theorem, in which there is a

family of contractions that depend on a parameter θ ∈ Θ.

Theorem 573 Let T : X × Θ → X be a continuous map, where X is a complete

metric space and Θ is a metric space. Assume that, for some α ∈ (0, 1),

d (T (x1, θ) , T (x2, θ)) ≤ αd (x1, x2) , ∀x1, x2 ∈ X, ∀θ ∈ Θ.

Then, there exists a unique function x : Θ → X such that

T (x (θ) , θ) = x (θ) , ∀θ ∈ Θ.

Moreover, x : Θ → X is a continuous function and can be obtained by successive

iterations.

Proof. By Theorem 562, there is a unique fixed point x (θ) for each θ ∈ Θ. Therefore,

there is a unique function x : Θ → X such that T (x (θ) , θ) = x (θ) for all θ. It remains

to prove that x (θ) is continuous. If the starting point x0 (θ) depends continuously on

θ, then the first iterate x1 (θ) = T (x0 (θ) , θ) is continuous. By iterating we have that

x (θ) is the limit of continuous functions xn (θ). It suffices to prove that this limit is

uniform. From (12.13) we have

d (x (θ) , xn (θ)) ≤ αn

1− α
d (x1 (θ) , x0 (θ)) =

αn

1− α
d (T (x0 (θ) , θ) , x0 (θ)) .
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Taking x0 (θ) ≡ x0,

d (T (x0 (θ) , θ) , x0 (θ)) = d (T (x0, θ) , x0)

which is bounded on a neighborhood of θ = θ0. We conclude that the limit is uniform

over a neighborhood of θ0. Hence, x (θ) is continuous over that neighborhood. This

argument is valid for any point θ0 and this concludes the proof. �

Also the local fixed point result formulated in Proposition 566 has a parametric

counterpart.

Proposition 574 Let T : Br (x0) × Θ → X a continuous map, where Br (x0) is an

open ball of a complete metric space X and Θ is a metric space. Assume that, for some

α ∈ (0, 1),

d (T (x1, θ) , T (x2, θ)) ≤ αd (x1, x2) , ∀x1, x2 ∈ Br (x0) ,∀θ ∈ Θ

If d (x0, T (x0, θ0)) < (1− α) r, then there exists a continuous function x : Θ → X,

defined over a neighborhood of θ0, such that x (θ) ∈ Br (x0) and T (x (θ) , θ) = x (θ).

Proof From the condition d (x0, T (x0, θ0)) < (1− α) r and the continuity of T , we

have d (x0, T (x0, θ)) < (1− α) r for all θ sufficiently close to θ0. Therefore we can

apply Proposition 566. �

12.2.3 Contractions on Functions Spaces

A very useful contraction theorem holds in the Banach space (B (X) , ‖·‖∞), due to

Blackwell (1965). Observe that in B (X) there is a natural pointwise order ≤, where
f ≤ g if and only if f (x) ≤ g (x) for all x ∈ X.10

Theorem 575 (Blackwell) Suppose the selfmap T : B (X) → B (X) satisfies the

following conditions:

(i) T is monotone, i.e., f ≤ g =⇒ Tf ≤ Tg;

(ii) T has the discounting property, i.e., there is β ∈ (0, 1) such that

T (f + c) ≤ Tf + βc, ∀c ∈ R+.

Then, T is a β-contraction.

10In the statement, a scalar number λ denotes also the constant function f ≡ λ. For instance, the
notation f ≤ λ means f (x) ≤ λ for all x.
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Proof. Let f, g ∈ B (X). Clearly, f − g ≤ ‖f − g‖. Hence, f ≤ g + ‖f − g‖ and so,

by conditions (i) and (ii),

Tf ≤ T (g + ‖f − g‖) ≤ Tg + β ‖f − g‖ .

which implies Tf − Tg ≤ β ‖f − g‖. Changing the role between f and g, we also have

Tg − Tf ≤ β ‖f − g‖. Hence, |Tf − Tg| ≤ β ‖f − g‖, and so T is a β-contraction. �

When X is a metric space, we may consider the subspace C (X) of all bounded and

continuous functions. It can be shown that (C (X) , ‖·‖∞) is also a Banach space (as a

special case we have the Banach space (C ([0, 1]) , ‖·‖∞) of Chapter 7). It is easy to see

that the Blackwell Contraction Theorem holds also for selfmaps on this Banach space.

12.3 Brouwer Fixed Point Theorem

The Brouwer Fixed Point Theorem, due to Brouwer (1912), and its generalizations are

a second fundamental class of fixed points. In its simplest form it is an immediate

consequence of the Intermediate Value Theorem.

Lemma 576 A continuous selfmap f : [0, 1] → [0, 1] has a fixed point.

Proof The result is obviously true if either f (0) = 0 or f (1) = 1. Suppose f (0) > 0

and f (1) < 1. Define the auxiliary function g : [0, 1] → R by g (x) = x− f (x). Then,

g (0) < 0 and g (1) > 0. Since g is continuous, by the Intermediate Value Theorem

there exists x ∈ (0, 1) such that g (x) = 0. Hence, f (x) = x, and so x is a fixed point.

�

The generalization to Rn (and so to any finite dimensional vector space) of this

lemma is Brouwer’s result. It is an highly nontrivial generalization and, in fact, its

proof is surprisingly complicated. For this reason we omit it and refer the interested

reader to Border (1985) for a combinatorial proof and to Rogers (1980) for an analytic

one.

Theorem 577 (Brouwer) A continuous selfmap f : K → K defined on a convex

compact subset K of a finite dimensional vector space has a fixed point.

Let us compare the fixed point results of Banach and Brouwer. In particular,

compare Theorem 577 with Corollary 565, which is the version of Banach’s result that

is best compared with Brouwer’s result. Relative to Corollary 565, Brouwer’s Theorem

is less demanding on the selfmap, which is only required to be continuous. On the other

hand, Brouwer’s Theorem is more demanding on the domain, which is no longer any
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closed subset of a complete metric space, but has to be a convex compact subset of a

finite dimensional vector space. More importantly, Brouwer’s Theorem is dramatically

less informative on the fixed point since it only guarantees its existence, without any

information about its uniqueness and attractivity, two key features of Banach’s result.

For this reason, Brouwer’s Theorem can be viewed as a “surrogate” of Banach’s one,

which at least ensures the existence of fixed points for selfmaps that do not have the

Lipschitzianity required by Banach’s result.

Brouwer’s Theorem has been extended to infinite dimensional spaces by Schauder

(1930).

Theorem 578 (Schauder) A continuous selfmap f : K → K defined on a convex

compact subset K of a Banach space has a fixed point.

Proof By Theorem 303, f (K) is compact. Hence, it is totally bounded (see Theorem

281), i.e., given any n there exists a finite collection {wi}Nni=1 ⊆ f (K) of vectors such

that

min
i=1,...,Nn

‖f (v)− wi‖ <
1

n
, ∀v ∈ f (K) . (12.18)

Let Mn = span (w1, ..., wNn) be the vector subspace generated by the finite collec-

tion {wi}mi=1, and let ∆n = co (w1, ..., wNn) be its convex hull. Observe thatMn is finite

dimensional and so, by Corollary 387, ∆n ⊆ f (K) is a compact subset of Mn. Later

in the proof this observation will make it possible to invoke the Brouwer Theorem.

For each wi define the real valued function φi : f (K) → R by

φi (v) = max

{
1

n
− ‖f (v)− wi‖ , 0

}
, ∀v ∈ f (K) .

The function φi is continuous (why?) and, by (12.18), is nonzero. Define the selfmap

gn : ∆n → ∆n by

gn (v) =

∑Nn
i=1 φi (v)wi∑Nn
i=1 φi (v)

, ∀v ∈ ∆n.

The selfmap gn is continuous. Moreover,

‖gn (v)− f (v)‖ =

∥∥∥∥∥

∑Nn
i=1 φi (v)wi∑Nn
i=1 φi (v)

− f (v)

∥∥∥∥∥ =

∥∥∥∥∥

∑Nn
i=1 φi (v) (wi − f (v))
∑Nn

i=1 φi (v)

∥∥∥∥∥

=

∥∥∥
∑Nn

i=1 φi (v) (wi − f (v))
∥∥∥

∑Nn
i=1 φi (v)

≤
∑Nn

i=1 φi (v) ‖wi − f (v)‖
∑Nn

i=1 φi (v)
≤ 1

n
.

By the Brouwer Theorem 577, there exists vn ∈ ∆n such that gn (vn) = vn. Since

∆n ⊆ f (K) for each n, by Theorem 275 there exists a subsequence {vnk}k and v ∈
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f (K) ⊆ K such that limk ‖vnk − v‖ = 0. Since

‖vnk − f (v)‖ = ‖gnk (vnk)− f (v)‖ ≤ ‖gnk (vnk)− f (vnk)‖+ ‖f (vnk)− f (v)‖
≤ 1

nk
+ ‖f (vnk)− f (v)‖ ,

we then conclude that limk ‖vnk − f (v)‖ = 0. In turn this implies f (v) = v, i.e., v ∈ K
is a fixed point of f . �

As we discussed in Section 7.5, compactness is a strong property in infinite di-

mensional spaces. This limits the scope of this version of Schauder’s Theorem. The

following generalization, due to Leray and Schauder (1934), has a wider applicability.

Theorem 579 (Leray-Schauder) A continuous selfmap f : C → C defined on a

convex closed and bounded subset C of a Banach space has a fixed point provided f (C)

is relatively compact (i.e., its closure f (C) is compact).

Proof Since C is closed, we have f (C) ⊆ C. Moreover, f (C) is totally bounded,

i.e., given any n there exists a finite collection {wi}Nni=1 ⊆ f (C) of vectors such that

mini=1,...,Nn ‖f (v)− wi‖ < 1/n for each v ∈ f (C). A simple modification of the

previous proof is now enough to prove the theorem. �

12.4 Application I: Volterra Integral Equations

12.4.1 Existence

Consider the Volterra integral equation (12.5), namely

f (s) =

∫ s

a

ψ (s, t, f (t)) dt+ g (s) , ∀s ∈ [a, b] ,

for a given g ∈ C ([a, b]). Here the unknown function f ∈ C ([a, b]) has to be determ-

ined.

We first give a general existence result, based on the Leray-Schauder Fixed Point

Theorem 579, which shows that under very mild conditions on ψ the Volterra equations

has a solution.

Proposition 580 Suppose the function ψ : [a, b] × [a, b] × R → R is bounded and

continuous. Then, given any g ∈ C ([a, b]), the Volterra integral equation (12.5) has a

solution f ∈ C ([a, b]).

Proof To ease the derivation, consider the homogeneous equation
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f (s) =

∫ s

a

φ (t, f (t)) dt, ∀s ∈ [a, b] . (12.19)

Let G : C ([a, b]) → C ([a, b]) be the operator given by

G (f) (t) = φ (t, f (t)) , ∀ (s, t) ∈ [a, b]× [a, b] .

Since φ is continuous and bounded,

‖G (f)‖∞ ≤ max
t∈[a,b]

φ (t, f (t)) , ∀f ∈ C ([a, b]) .

Hence, the image G (C ([a, b])) is bounded in (C ([a, b]) , ‖·‖∞).

Let S : C ([a, b]) → C1 ([a, b]) be the integral operator given by

S (f) (s) =

∫ s

a

f (x) dx, ∀s ∈ [a, b] , ∀f ∈ C ([a, b]) .

Since S (f)′ (s) = f (s) for all s ∈ [a, b] (see, e.g., Rudin (1976) p. 133), we have∥∥S (f)′
∥∥
∞ = ‖f‖∞. Moreover, ‖S (f)‖∞ ≤ ‖f‖∞ (b− a), so that

‖S (f)‖1 ≤ ‖f‖∞max {b− a, 1} .

Hence, SG (C ([a, b])) is bounded in (C1 ([a, b]) , ‖·‖1).
Finally, let J : C1 ([a, b]) → C ([a, b]) be the natural embedding J (f) = f for all

f ∈ C1 ([a, b]). Clearly, JSG (C ([a, b])) is also bounded in (C1 ([a, b]) , ‖·‖1). Hence,

by Proposition 373, JSG (C ([a, b])) is relatively compact in (C ([a, b]) , ‖·‖∞).

Consider the operator T : C ([a, b]) → C ([a, b]) given by

T (f) (s) =

∫ s

a

φ (t, f (t)) dt, ∀f ∈ C ([a, b]) .

A function f ∈ C ([a, b]) is a solution of the Volterra equation (12.19) if and only if

is a fixed point of this operator. We have T = JSG, and so T (C ([a, b])) is relatively

compact in (C ([a, b]) , ‖·‖∞). By the Leray-Schauder Fixed Point Theorem 579, T has

a fixed point. �

12.4.2 Uniqueness

Though very general, Proposition 580 does not say anything about the uniqueness,

let alone the attractivity, of the solutions. The next result, based on the Banach

Contraction Theorem 562, addresses this issue by showing that, under a Lipschitz

condition, the solution is indeed both unique and attractive.
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Proposition 581 Suppose the continuous function ψ : [a, b] × [a, b] × R → R is such

that, for all (s, t) ∈ [a, b]× [a, b],

|ψ (s, t, z1)− ψ (s, t, z2)| ≤ K |z1 − z2| , ∀z1, z2 ∈ R.

Then, given any g ∈ C ([a, b]), the Volterra integral equation (12.5) has a unique solu-

tion f ∈ C ([a, b]). In particular, the sequence {fn}n ⊆ C ([a, b]) defined inductively by

choosing f0 ∈ C ([a, b]) and setting

fn+1 (s) =

∫ s

a

ψ (s, t, fn (t)) dt+ g (s) , ∀s ∈ [a, b] ,

is such that ‖fn − f‖∞ → 0.

Proof Endow C ([a, b]) with the exponential supnorm

‖f‖e∞ = max
t∈[a,b]

e−Kt |f (t)| .

The norm ‖·‖e∞ is complete and equivalent (in the sense of Definition 357) to the

supnorm ‖·‖∞ (why?). The vector space (C ([a, b]) , ‖·‖e∞) is thus Banach.

Consider the operator T : C ([a, b]) → C ([a, b]) given by:

T (f) (s) =

∫ s

a

ψ (s, t, f (t)) dt+ g (s) , ∀s ∈ [a, b] .

A function f ∈ C ([a, b]) is a solution of the operator equation (12.5) if and only if it

is a fixed point of T . Given any h1, h2 ∈ C ([a, b]), we have:

‖T (h1)− T (h2)‖e∞

=

∥∥∥∥
(∫ s

a

ψ (s, t, h1 (t)) dt+ g (s)

)
−
(∫ s

a

ψ (s, t, h2 (t)) dt+ g (s)

)∥∥∥∥
e∞

=

∥∥∥∥
∫ s

a

ψ (s, t, h1 (t)) dt−
∫ s

a

ψ (s, t, h2 (t)) dt

∥∥∥∥
e∞

= max
s∈[a,b]

e−Ks
∣∣∣∣
∫ s

a

ψ (s, t, h1 (t)) dt−
∫ s

a

ψ (s, t, h2 (t)) dt

∣∣∣∣

≤ max
s∈[a,b]

e−Ks
∫ s

a

|ψ (s, t, h1 (t)) dt− ψ (s, t, h2 (t))| dt
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≤ K max
s∈[a,b]

e−Ks
∫ s

a

|h1 (t) − h2 (t)| dt

= K max
s∈[a,b]

e−Ks
∫ s

a

eKte−Kt |h1 (t)− h2 (t)| dt

≤ K ‖h1 − h2‖e∞ max
s∈[a,b]

e−Ks
∫ s

a

eKtdt

= K ‖h1 − h2‖e∞ max
s∈[a,b]

e−Ks
eKs − eKa

K

= K ‖h1 − h2‖e∞ max
s∈[a,b]

1− e−K(s−a)

K

≤
(
1− e−K(b−a)

)
‖h1 − h2‖e∞ .

Since 1 − e−K(b−a) < 1, we conclude that T is a contraction with respect to the expo-

nential supnorm ‖·‖e∞. The result then follows from Corollary 563, which also implies

that the sequence {fn}n ⊆ C ([a, b]) in the statement is such that ‖fn − f‖e∞ → 0. In

turn this implies ‖fn − f‖∞ → 0 since ‖·‖e∞ and ‖·‖∞ are equivalent norms. �

In this proof it clearly emerges the importance of the choice of the norm (and so of

the metric) that makes a selfmap on a Banach space a contraction. If in the proof we

consider the supnorm ‖·‖∞ instead of the exponential supnorm ‖·‖e∞ , we get

‖T (h1)− T (h2)‖∞ ≤ K (b− a) ‖h1 − h2‖∞ ,

instead of

‖T (h1)− T (h2)‖e∞ ≤
(
1− e−K(b−a)

)
‖h1 − h2‖e∞ .

Hence, T is a contraction with respect to the supnorm ‖·‖∞ if K (b− a) < 1, and so

here Corollary 563 ensures existence of a solution only on small enough domains [a, b].

In contrast, the use of the exponential supnorm ‖·‖e∞ eliminates any such restriction

and allowed us to prove the existence of a solution on any interval [a, b].

In sum, the choice of suitable norms (and so metrics) is a key issue in solving

operator equations through contractions.

12.4.3 Systems of Volterra Integral Equations

Systems of Volterra integral equations play an important role in applications and they

can be solved with a natural generalization of the arguments we just used for the scalar

case.

Let C ([a, b] ,Rn) be the vector space of all continuous functions f = (f1, ..., fn) :

[a, b] → Rn, often called curves. The vector space C ([a, b] ,Rn) becomes a Banach

space (why?) once endowed with the supnorm

‖f‖∞ = sup
i=1,...,n

‖fi‖∞ = sup
(i,t)∈{1,...,n}×[a,b]

|fi (t)| .
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Given a continuous function ψ = (ψ1, ..., ψn) : [a, b]× [a, b]×Rn → Rn, consider the

Volterra integral equation (12.5), namely for each i = 1, ..., n,

fi (s) =

∫ s

a

ψ (s, t, f1 (t) , ..., fn (t)) dt+ gi (s) , ∀s ∈ [a, b] ,

for a given g ∈ C ([a, b] ,Rn). Here the unknown function f ∈ C ([a, b] ,Rn) has to be

determined.

We can now state and prove the extension of Proposition 581 to systems of integral

equations. Though the proof follows the same lines of that of Proposition 581, for the

sake of completeness we report it.

Proposition 582 Suppose the continuous function φ : [a, b]× [a, b]×Rn → Rn is such

that, for all (s, t) ∈ [a, b]× [a, b],

‖φ (s, t, z1)− φ (s, t, z2)‖∞ ≤ K ‖z1 − z2‖∞ , ∀z1, z2 ∈ Rn.

Then, given any g ∈ C ([a, b]), the Volterra integral equation (12.5) has a unique solu-

tion f ∈ C ([a, b] ,Rn). In particular, the sequence
{
fk
}
k
⊆ C ([a, b] ,Rn) defined

inductively by choosing f 0 ∈ C ([a, b] ,Rn) and setting, for each i = 1, ..., n,

fk+1i (s) =

∫ s

a

ψ
(
s, t, fk1 (t) , ..., fkn (t)

)
dt+ gi (s) , ∀s ∈ [a, b] ,

is such that
∥∥fk − f

∥∥
∞ → 0.11

Proof Endow C ([a, b] ,Rn) with the exponential supnorm

‖f‖e∞ = sup
i=1,...,n

‖fi‖e∞ = sup
(i,t)∈{1,...,n}×[a,b]

e−Kt |fi (t)| .

Here as well the norm ‖·‖e∞ is complete and equivalent (in the sense of Definition 357)

to the supnorm ‖·‖∞ (why?). The vector space (C ([a, b]) , ‖·‖e∞) is Banach.

Consider the operator T : C ([a, b] ,Rn) → C ([a, b] ,Rn) given by:

Ti (f) (s) =

∫ s

a

ψi (s, t, f1 (t) , ..., fn (t)) dt+ gi (s) , ∀s ∈ [a, b] ,

for each i = 1, ..., n. A function f ∈ C ([a, b] ,Rn) is a solution of the operator equation

(12.5) if and only if it is a fixed point of T . Given any h1, h2 ∈ C ([a, b] ,Rn), we have:

h1 (t) =
(
h11 (t) , ..., h

1
n (t)

)
∈ Rn and h2 (t) =

(
h21 (t) , ..., h

2
n (t)

)
∈ Rn.

11We write fk in place of fn to ease notation since here n denotes the dimensionality of the system
and fni is the i-th component of the function fn = (fn1 , ..., f

n
n ) : [a, b]→ Rn.
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Hence,

‖T (h1)− T (h2)‖e∞

= sup
i=1,...,n

∥∥∥∥
(∫ s

a

ψi
(
s, t, h1 (t)

)
dt+ gi (s)

)
−
(∫ s

a

ψi
(
s, t, h2 (t)

)
dt+ gi (s)

)∥∥∥∥
e∞

= sup
i=1,...,n

∥∥∥∥
∫ s

a

ψi
(
s, t, h1 (t)

)
dt−

∫ s

a

ψi
(
s, t, h2 (t)

)
dt

∥∥∥∥
e∞

= sup
i=1,...,n

(
max
s∈[a,b]

e−Ks
∣∣∣∣
∫ s

a

ψi
(
s, t, h1 (t)

)
dt−

∫ s

a

ψi
(
s, t, h2 (t)

)
dt

∣∣∣∣
)

≤ sup
i=1,...,n

(
max
s∈[a,b]

e−Ks
∫ s

a

∣∣ψi
(
s, t, h1 (t)

)
dt− ψi

(
s, t, h2 (t)

)∣∣ dt
)

≤ K

(
max
s∈[a,b]

e−Ks
∫ s

a

∥∥h1 (t)− h2 (t)
∥∥
e∞
dt

)

= K max
s∈[a,b]

e−Ks
∫ s

a

eKte−Kt
∥∥h1 (t)− h2 (t)

∥∥
e∞
dt

≤ K
∥∥h1 (t)− h2 (t)

∥∥
e∞

max
s∈[a,b]

e−Ks
∫ s

a

eKtdt

= K
∥∥h1 (t)− h2 (t)

∥∥
e∞

max
s∈[a,b]

e−Ks
eKs − eKa

K

= K
∥∥h1 (t)− h2 (t)

∥∥
e∞

max
s∈[a,b]

1− e−K(s−a)

K

≤
(
1− e−K(b−a)

) ∥∥h1 (t)− h2 (t)
∥∥
e∞
.

Since 1 − e−K(b−a) < 1, we conclude that T is a contraction with respect to the expo-

nential supnorm ‖·‖e∞. The result then follows from Corollary 563, which also implies

that the sequence {fn}n ⊆ C ([a, b] ,Rn) in the statement is such that ‖fn − f‖e∞ → 0.

In turn this implies ‖fn − f‖∞ → 0 since ‖·‖e∞ and ‖·‖∞ are equivalent norms. �

12.4.4 A Volterra-Hammerstein Equation

We now give an illustration of the importance of Proposition 567 by analyzing a

Volterra-Hammerstein integral equation (12.10). Specifically, consider the simple Nemit-

ski operator N : C ([a, b]) → C ([a, b]) given by:

N (f) (t) = λf (t) , ∀t ∈ [a, b] , ∀f ∈ C ([a, b]) ,

where λ 	= 0. In this case equation (12.10) becomes

f (s) = λ

∫ s

a

K (s, t) f (t) dt+ g (s) , ∀s ∈ [a, b] . (12.20)

The unknown continuous function f ∈ C ([a, b]) has to be determined. It is not re-

strictive to consider the homogeneous case

f (s) = λ

∫ s

a

K (s, t) f (t) dt, ∀s ∈ [a, b] , (12.21)
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where we set g = 0. Let T : C ([a, b]) → C ([a, b]) be given by

T (f) (s) = λ

∫ s

a

K (s, t) f (t) dt, ∀s ∈ [a, b] .

The operator T is linear and allows to write (12.21) as:

f = T (f) .

That is, f is a solution of equation (12.21) if and only if it is a fixed point of T .

Since T is linear, f = 0 is a fixed point (and so a solution). To find nonzero fixed

points, endow C ([a, b]) with its supnorm ‖·‖∞; that is, consider the Banach space

(C ([a, b]) , ‖·‖∞).

Lemma 583 For n large enough the iterate T n is a contraction with respect to the

supnorm ‖·‖∞.

Proof The iterate T n is linear and so, by (7.6), is enough to prove that, for n large

enough, we have ‖T n‖ < 1. Denote by M the maximum value

M = max
(s,t)∈[a,b]×[a,b]

|K (s, t)| .

We have, for all s ∈ [a, b] and all f ∈ C ([a, b]),

|Tf (s)| = |λ|
∣∣∣∣
∫ s

a

K (s, t) f (t) dt

∣∣∣∣ ≤ |λ|M
∫ s

a

|f (t)| dt ≤ |λ|M ‖f‖∞
∫ s

a

dt

= |λ|M ‖f‖∞ (s− a) ≤ |λ|M ‖f‖∞ (b− a) .

Hence, ‖T (f)‖∞ ≤ |λ|M ‖f‖∞ (b− a) and so

‖T‖ = sup

{‖T (f)‖∞
‖f‖∞

: f 	= 0

}
≤ |λ|M (b− a) .

Consider the second iterate T 2. We have

∣∣T 2f (s)
∣∣ ≤ |λ|M

∫ s

a

|Tf (t)| dt ≤ λ2M2 ‖f‖∞
∫ s

a

(t− a) dt

=
λ2M2 ‖f‖∞

2
(s− a)2 ≤ λ2M2 ‖f‖∞

2
(b− a)2 .

Therefore, ‖T 2 (f)‖∞ ≤ 2−1λ2M2 ‖f‖∞ (b− a)2, and so

∥∥T 2
∥∥ = sup

{‖T 2 (f)‖∞
‖f‖∞

: f 	= 0

}
≤ |λ|2M2 (b− a)2

2
.
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Iterating this procedure, we get

‖T n‖ ≤ |λ|nMn (b− a)n

n!
.

On the other hand,

[ |λ|nMn (b− a)n

n!

]1/n
=

|λ|M (b− a)
n
√
n!

→ 0

as n→ ∞. Hence, ‖T n‖ < 1 for n large enough, as desired. �

By Proposition 567, we thus have the following result.

Proposition 584 The Volterra-Hammerstein integral equation (12.20) has a unique

solution f ∈ C ([a, b]) for all g ∈ C ([a, b]). In particular, the sequence {fn}n ⊆ C ([a, b])

defined inductively by choosing f0 ∈ C ([a, b]) and setting

fn+1 (s) = λ

∫ s

a

K (s, t) fn (t) dt+ g (s) , ∀s ∈ [a, b] ,

is such that ‖fn − f‖∞ → 0.

12.5 Application II: Differential Equations

Let J be any closed, bounded or unbounded, interval of R. That is, either J = [a, b],

with a, b ∈ R, or J = (−∞,∞). Given a function f : J × R → R and a pair

(t0, x0) ∈ J × R, a solution of the initial value problem12

x′ (t) = f (t, x) (12.22)

x (t0) = x0

is a differentiable function x : J → R such that

x′ (t) = f (t, x (t)) , ∀t ∈ J ,
x (t0) = x0.

In this section we present two classic results, originally due to Giuseppe Peano and

Charles Picard, about the solution of this initial value problem. These results rely

on a simple but crucial “duality” between initial value problems and suitable Volterra

integral equations. This allows to reduce the solution of initial value problems to that

of the dual Volterra equations, thus making possible to solve the initial value problems

by using the results on Volterra equations established in the previous section.

12Initial value problems are also called Cauchy problems.
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To see in a nutshell the duality, suppose J = [a, b] and consider the initial value

problem

x′ (t) = f (t, x) (12.23)

x (a) = x0

and the Volterra equation

x (t) =

∫ t

a

f (z, x (z)) dz + x0, ∀t ∈ [a, b] , (12.24)

where we set ψ (s, t, z) = f (t, z) in (12.5). A function x : [a, b] → R is a solution of this

Volterra integral equation (12.24) if and only if is also a solution of the initial value

problem (12.23). In fact, if x : [a, b] → R is a solution of this integral equation, then

x′ (t) = f (t, x (t)) , ∀t ∈ [a, b]

by a basic Calculus result (see, e.g., Rudin (1976) p. 133). Conversely, if x : [a, b] → R

is a solution of the initial value problem (12.23), then by integrating we get (12.24).

12.5.1 Peano’s Theorem

We begin with Peano’s Theorem, originally due to Peano (1886) and (1890), a classic

existence result that establishes the existence of solutions of initial value problems

under very mild conditions. It is based on Proposition 580, which in turn was based

on the Leray-Schauder Fixed Point Theorem 579.

Theorem 585 (Peano) Suppose f : J × R → R is continuous and bounded. Then,

the initial value problem (12.22) has a solution x : J → R for all (t0, x0) ∈ J ×R.

Proof It is easy to see that a function x : [t0, b] → R the Volterra equation

x (t) =

∫ t

t0

f (z, x (z)) dz + x0, ∀t ∈ [t0, b] ,

if and only if is also a solution of the initial value problem

x′ (t) = f (t, x) , ∀t ∈ [t0, b] ,

x (t0) = x0

By Theorem 580, such a solution x : [t0, b] → R exists. A similar argument, based on

Exercise 13.0.79, shows that a solution x : [a, t0] → R exists (cf. the proof of Theorem

586). To find a solution x : [a, b] → R is enough to paste together these solutions as in

the proof of Theorem 586. �
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12.5.2 Picard’s Theorem

We turn now to Picard’s Theorem, originally due to Picard (1890), which shows that

under a Lipschitz condition the initial value problem has a unique and attractive solu-

tion. The proof shows that the solution of the initial value problem 12.22 can be

reduced to the solution of suitable Volterra integral equations, which in turn can be

solved via Proposition 581.

Theorem 586 (Picard) Suppose f : J × R → R is continuous and satisfies the

Lipschitz condition

|f (t, s1)− f (t, s2)| ≤ K |s1 − s2| , ∀s1, s2 ∈ R, ∀t ∈ J.

Then, the initial value problem (12.22) has a unique solution x : J → R for all (t0, x0) ∈
J × R.

Proof Suppose first that J = [a, b]. Let (t0, x0) ∈ [a, b]×R. First consider the Volterra
equation

x (t) =

∫ t

t0

f (z, x (z)) dz + x0, ∀t ∈ [t0, b] , (12.25)

where we set ψ (s, t, z) = f (t, z) in (12.5). It is easy to see that a function x : [t0, b] → R

is a solution of this integral equation if and only if is also a solution of the initial value

problem

x′ (t) = f (t, x) , ∀t ∈ [t0, b] , (12.26)

x (t0) = x0

Since, by Proposition 581, the Volterra equation (12.25) has a unique solution, we

conclude that there is a unique x∗ : [t0, b] → R that solves the initial value problem

(12.26).

Now consider the backward Volterra integral equation

x (t) =

∫ t0

t

f (z, x (z)) dz + x0, ∀t ∈ [a, t0] , (12.27)

Here as well it is easy to check that a function x : [a, t0] → R is a solution of this

integral equation if and only if is also a solution of the initial value problem

x′ (t) = f (t, x) , ∀t ∈ [a, t0] , (12.28)

x (t0) = x0

Hence, there is a unique x∗ : [a, t0] → R that solves the initial value problem (12.28)

since, by Exercise 13.0.78, the backward Volterra equation (12.27) has a unique solu-

tion.
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To complete the proof for the case J = [a, b], it is enough to paste together the

“partial” solutions x∗ and x∗ by defining x : [a, b] → R as follows:

x (t) =

{
x∗ (t) if t ∈ [t0, b]

x∗ (t) if t ∈ [a, t0]

The function x is the unique solution of the initial value problem (12.22).

It remains to consider the case J = (−∞,∞). Clearly,

⋃

n≥1

[
t0 −

1

n
, t0 +

1

n

]
= R.

On each interval [t0 − 1/n, t0 + 1/n] there is a unique solution xn : [t0 − 1/n, t0 + 1/n] →
R such that xn (t0) = x0 and x′n (t) = f (t, xn (t)) for all t ∈ [t0 − 1/n, t0 + 1/n]. Be-

cause of uniqueness, we have

xn (t) = xn+1 (t) , ∀t ∈
[
t0 −

1

n
, t0 +

1

n

]
.

Hence, we can define x : R → R by x (t) = xn (t) for each t ∈ [t0 − 1/n, t0 + 1/n].

Clearly, x (t0) = x0 and x′ (t) = f (t, x (t)) for all t ∈ R, and so x : R → R is a

solution of the initial value problem (12.22). It is also the unique solution since any

other solution has to agree with each xn on [t0 − 1/n, t0 + 1/n]. �

In this proof the solution x : J → R of the initial value problem has been reduced

to that of a suitable Volterra integral equation. As a result, the solution can be de-

termined via successive approximations. For, by Proposition 581 and Exercise 13.0.78,

the sequence {ϕn}n ⊆ C (J) defined inductively by choosing ϕ0 ∈ C (J) and setting

ϕn+1 (s) =

{ ∫ s
t0
f (t, ϕn (t)) dt+ x0 if s ∈ J ∩ [t0,∞) ,∫ t0

s
f (t, ϕn (t)) dt+ x0 if s ∈ J ∩ (∞, t0] .

is such that ‖ϕn − x‖∞ → 0. Hence, the sequence {ϕn}n uniformly converges to the

solution x : J → R of the initial value problem (12.22). The function ϕn are often

called successive Picard approximations.

Example 587 Consider the initial value problem

x′ (t) = x (t) , ∀t ≥ 0, (12.29)

x (0) = 1.
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Let ϕ0 : [0,∞) → R be the constant ϕ0 (t) = 1 for all t ≥ 0. Then, the successive

Picard approximations are:

ϕ1 (s) =

∫ s

0

ϕ0 (t) dt+ 1 = 1 + s, ∀s ≥ 0,

ϕ2 (s) =

∫ s

0

ϕ1 (t) dt+ 1 =

∫ s

0

(1 + t) dt+ 1 = 1 + s+
s2

2
, ∀s ≥ 0

· · ·
ϕn (s) =

∫ s

0

ϕn−1 (t) dt+ 1 = 1 + s+
s2

2
+ · · · + sn

n!
, ∀s ≥ 0

Hence,

x (t) = lim
n
ϕn (t) = lim

n

(
1 + t+

t2

2
+ · · · + tn

n!

)
= et, ∀t ≥ 0

and we conclude that et is the unique solution of the initial value problem (12.29). �

Example 588 The initial value problem

x′ (t) =
√

|x (t)|, ∀t ∈ R,
x (0) = 0,

has a continuum of solutions, besides x = 0. In fact, all functions

x (t) =





−1
2
(t+ b)2 t ≤ −b
0 −b ≤ t ≤ a

1
2
(t− a)2 t ≥ a

with a, b ≥ 0, are easily seen to be solutions.

The continuous function x �−→
√

|x| is not Lipschitz at x = 0. This proves that

the Lipschitz condition in Picard’s Theorem cannot be omitted.

Lavrentieff (1925) (see also Hartman, 1963) gave an example of a continuous func-

tion f (x, t) defined on the rectangle [0, 1] × [0, 1] such that, for any (x0, t0) ∈ (0, 1) ×
(0, 1), the initial value problem

x′ (t) = f (x, t) ,

x (t0) = x0

has more than one solution on every interval [t0, t0 + ε] and [t0 − ε, t0] for small enough

ε. �
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12.5.3 Systems of Differential Equations

The proof of Picard’s Theorem was based on the solution of a suitable Volterra integral

equation, as ensured by Proposition 581. In section 12.4 we also solved systems of

Volterra integral equations thanks to Proposition 582. By using this generalization of

Proposition 581 we can solve systems of differential equations.

Specifically, given a function f = (f1, ..., fn) : J × Rn → Rn and a pair (t0, x0) ∈
J × Rn, a solution of the initial value problem13

x′i (t) = fi (t, x1, ..., xn) , ∀i = 1, ..., n (12.30)

xi (t0) = x0i, ∀i = 1, ..., n

is a differentiable function x : J → Rn such that, for each i = 1, ..., n,

x′i (t) = f (t, x (t)) , ∀t ∈ J ,
xi (t0) = x0i.

Proposition 589 Suppose f : J × Rn → Rn is continuous and satisfies the Lipschitz

condition

‖f (t, s1) − f (t, s2)‖∞ ≤ K ‖s1 − s2‖∞ , ∀s1, s2 ∈ Rn,∀t ∈ J.

Then, the initial value problem (12.30) has a unique solution x : J → Rn for all

(t0, x0) ∈ J × Rn.

Proof We sketch the proof, which is basically that of Theorem 586 with Proposition

582 in place of Proposition 581.

Suppose first that J = [a, b]. Let (t0, x0) ∈ [a, b] × Rn. Consider the system of

Volterra equations

xi (t) =

∫ t

t0

fi (z, x1 (z) , ..., xn (z)) dz + x0i, ∀t ∈ [t0, b] ,

with i = 1, ..., n. A function x : [t0, b] → Rn is a solution of this system of integral

equations if and only if, for each i = 1, ..., n,

x′i (t) = f (t, x (t)) , ∀t ∈ [t0, b] ,

xi (t0) = x0i.

We can now proceed as in the proof of the previous theorem, with Proposition 582 in

place of Proposition 581, to prove the theorem. �

Finally, it is easy to see that also the solutions of systems of differential equations

can be uniformly approximated by successive Picard approximations. We omit the

details for brevity.
13Initial value problems are also called Cauchy problems.
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Chapter 13

Exercises

Exercise 13.0.1 Two vector subspaces W1 and W2 of V are said to be disjoint if

W1∩W2 = {J0}, i.e., if their intersection is the trivial vector subspace
{
J0
}
. For example,

the horizontal and vertical axes are two disjoint subspaces in R2. A polynomial g is

even if g(−x) = g(x) for each x ∈ R, while g is odd if g(−x) = −g(x) for each x ∈ R.
Let W1 be the set of all even polynomials g ∈ P and W2 the set of all odd polynomials.

Show that:

(a) W1 and W2 are two vector subspaces of P;

(b) W1 and W2 are disjoint;

(c) W1 +W2 = P, where W1 +W2 = {w1 + w2 : w1 ∈ W1 and w2 ∈W2}.

Sol.: (a) To verify whether W1 is a vector subspace we must check that any linear

combination of two even polynomials is still an even polynomial. In fact, for α, β ∈ R
and f, g ∈ W1 we have

(αf + βg)(−x) = αf(−x) + βg(−x) = αf(x) + βg(x) = (αf + βg)(x)

for each x ∈ R, i.e., αf + βg ∈W1. Similarly, if α, β ∈ R and f, g ∈W2 we have

(αf + βg)(−x) = αf(−x) + βg(−x) = −αf(x)− βg(x) = −(αf + βg)(x)

for each x ∈ R, i.e., αf + βg ∈W2.

(b) We need to check that the null polynomial is the only polynomial that is both

even and odd. Let g ∈W1 ∩W2. For each x ∈ R we have g (−x) = g (x) since g ∈ W1

and g (−x) = −g (x) since g ∈ W2. Hence, g (x) = −g (x) for each x ∈ R, which

implies g (x) = 0 for each x ∈ R.

365
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(c) The equality W1 +W2 = P means that every polynomial can be written as a

sum of an even polynomial and an odd polynomial. For, if g ∈ P we can write

g(x) = A(x) +B(x) con

{
A (x) = 1

2
(g (x) + g (−x)) ,

B (x) = 1
2
(g (x)− g (−x)) .

Let us check that A ∈W1 and B ∈W2:
{
A (−x) = 1

2
(g (−x) + g (x)) = A (x) ,

B (−x) = 1
2
(g (−x)− g (x)) .

(It is easy to see that A is given by the sum of all terms of even degree in g, and B is

given by the sum of the odd degree terms). �

Exercise 13.0.2 Let W = {x ∈ R3 : x1 + x2 + x3 = 0}. Verify if W is a vector

subspace of R3.

Sol.: Siano α, β ∈ R, x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. Dobbiamo verificare che

αx+ βy ∈W . Abbiamo

αx+ βy = (αx1 + βy1, αx2 + βy2, αx3 + βy3),

e la somma delle tre componenti di αx+ βy è

(αx1 + βy1) + (αx2 + βy2) + (αx3 + βy3)

= α( x1 + x2 + x3︸ ︷︷ ︸
=0, siccome x∈W

) + β( y1 + y2 + y3︸ ︷︷ ︸
=0, siccome y∈W

) = 0.

Quindi W è un sottospazio vettoriale di R3. �

Exercise 13.0.3 Sia

W = {x ∈ R3 : x21 + x22 + x23 ≤ 1}.

Verificare se W è un sottospazio vettoriale di R3.

Sol.:W non è un sottospazio vettoriale di R3 dal momento che (1, 0, 0) ∈W e (0, 1, 0) ∈
W ma la loro somma (1, 1, 0) non è in W : il quadrato della sua distanza dall’origine

vale 2 (> 1). �

Exercise 13.0.4 Sia W il sottoinsieme di P composto dai polinomi che hanno come

coefficienti numeri interi. Verificare se W è un sottospazio vettoriale di P.

Sol.: W non è un sottospazio vettoriale di P , dal momento che, ad esempio, il

polinomio x è in W ma il suo prodotto con il numero reale 1
2
(non intero!) non sta in

W . �
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Exercise 13.0.5 Mostrare che i vettori (1, 0, 0), (0, 1, 0), (0, 0, 1), e (1, 1, 1) sono lin-

earmente dipendenti, ma ogni loro sottoinsieme di tre elementi è linearmente indi-

pendente.

Sol.: La dipendenza lineare dei quattro vettori segue osservando che (1, 1, 1) è uguale

alla somma degli altri tre vettori. Alternativamente si può studiare l’equazione

α(1, 0, 0) + β(0, 1, 0) + γ(0, 0, 1) + δ(1, 1, 1) = (0, 0, 0),

equivalente al sistema 



α+ δ = 0,

β + δ = 0,

γ + δ = 0.

il quale, considerato δ come paramentro, ha la soluzione α = −δ, β = −δ, γ = −δ.
Questo dimostra che i quattro vettori dati sono linearmente dipendenti.

Per quanto riguarda la seconda affermazione nel testo dell’esercizio, dovremmo ra-

gionare in maniera analoga a quanto precede considerando però soltanto insiemi di

tre vettori. Lo facciamo considerando i vettori (1, 0, 0), (0, 1, 0), (1, 1, 1), lasciando al

lettore gli altri tre casi. L’equazione e il relativo sistema sono ora dati rispettivamente

da

α(1, 0, 0) + β(0, 1, 0) + γ(1, 1, 1) = (0, 0, 0),





α+ γ = 0,

β + γ = 0,

γ = 0,

da cui risulta l’unica soluzione banale α = β = γ = 0. Questo dimostra l’indipendenza

lineare dei tre vettori. �

Exercise 13.0.6 Mostrare che i vettori f1(x) = 1, f2(x) = x, f3(x) = x2, f4(x) =

1 + x + x2 sono linearmente dipendenti, ma ogni loro sottoinsieme di tre elementi è

linearmente indipendente.

Sol.: La dipendenza lineare di f1, f2, f3, f4 segue dal fatto che f4 = f1 + f2 + f3.

Alternativamente si può studiare l’equazione

α+ βx+ γx2 + δ(1 + x+ x2) = 0 per ogni x ∈ R,

che implica 



α+ δ = 0,

β + δ = 0,

γ + δ = 0,
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che è il primo sistema incontrato nella risoluzione dell’Esercizio 5. Pertanto tutte le

conclusioni di tale esercizio possono ripetersi senza alcun cambiamento. Anche per il

caso di tre vettori, è immediato ricondursi all’Esercizio 5. �

Exercise 13.0.7 Sia M l’insieme di tutti gli x ∈ R4 tali che




2x1 + x2 − 2x3 + 2x4 = 0,

x1 − x2 − 2x3 − 4x4 = 0,

x1 − 2x2 − 2x3 − 10x4 = 0.

Verificare che M è un sottospazio vettoriale di R4 e dare una descrizione esplicita di

M .

Sol.: Ciascuna delle tre equazioni che compongono il sistema definisce un sottospazio

vettoriale di R4 (verifica identica a quella dell’esercizio 2), pertanto M sarà un sotto-

spazio di R4 essendo l’intersezione dei tre sottospazi suddetti. Per darne una descrizione

esplicita risolviamo il sistema. Ricavando x1 dalla terza equazione e sostituendo nelle

altre due otteniamo 



5x2 + 2x3 + 22x4 = 0,

x2 + 6x4 = 0,

x1 = 2x2 + 2x3 + 10x4,

ricavando x2 dalla seconda equazione e sostituendo nelle altre due otteniamo




2x3 − 8x4 = 0,

x2 = −6x4,

x1 = 2x3 − 2x4,

ricavando x3 dalla prima e sostituendo nell’ultima, si ha




x3 = 4x4,

x2 = −6x4,

x1 = 6x4.

Le soluzioni del sistema (ovvero i vettori di M) sono tutte e sole le quaterne del tipo

(6x4,−6x4, 4x4, x4) al variare del parametro reale x4. Pertanto

M = {x4(6,−6, 4, 1), x4 ∈ R}

risulta il sottospazio vettoriale di R4 generato dal vettore (6,−6, 4, 1). �

Exercise 13.0.8 Mostrare che ogni sottoinsieme di un insieme S di vettori linear-

mente indipendenti è a sua volta linearmente indipendente.
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Sol.: Per assurdo, supponiamo che esista un sottoinsieme S ′ ⊆ S linearmente di-

pendente. Questo significa che esistono alcuni vettori di S ′, diciamo v1, . . . , vr, e dei

numeri reali α1, . . . , αr non tutti nulli tali che

α1v1+ · · ·+αrvr=J0.

Ma, poiché S ′ ⊆ S, questa stessa uguaglianza vale in S, cioè considerando i vettori

v1, . . . , vr come vettori di S, cosa che contraddice l’indipendenza lineare di S. Questo

conclude la dimostrazione. �

Exercise 13.0.9 (a)Per quali valori di α i vettori (1, 1, 1) e (1, α, α2) sono linearmente

indipendenti?

(b) Per quali valori di α i vettori (0, 1, α), (α, 0, 1), (α, 1, 1 + α) sono una base di

R3?

Sol.: (a) Occorre determinare gli α ∈ R per i quali l’equazione

x(1, 1, 1) + y(1, α, α2) = (0, 0, 0),

o equivalentemente il sistema 



x+ y = 0,

x+ αy = 0,

x+ α2y = 0,

ha come unica soluzione quella banale: x = 0, y = 0. Ricavando y dalla prima equazione

e sostituendo nelle altre otteniamo




y = −x,
(1− α)x = 0,

(1− α2)x = 0.

Pertanto, per α 	= 1 abbiamo la sola soluzione x = 0, y = 0, mentre per α = 1 si hanno

come soluzioni tutte le coppie del tipo (x,−x), ossia y = −x. Quindi i due vettori

(1, 1, 1) e (1, α, α2) sono linearmente indipendenti per α 	= 1, mentre sono linearmente

dipendenti per α = 1 (in realtà, per α = 1 essi sono proprio uguali).

(b) I tre vettori assegnati non sono una base di R3 per alcun valore di α, dal

momento che non sono linearmente indipendenti: risulta

(α, 1, 1 + α) = (0, 1, α) + (α, 0, 1).

Alternativamente è possibile controllare la dipendenza lineare dei tre vettori risolvendo

l’equazione

x(0, 1, α) + y(α, 0, 1) + z(α, 1, 1 + α) = (0, 0, 0),
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vale a dire il sistema 



αy + αz = 0,

x+ z = 0,

αx+ y + (1 + α) z = 0.

Esso è equivalente al sistema 



α (y − x) = 0,

z = −x,
y − x = 0,

che ammette le infinite soluzioni y = x, z = −x qualunque sia il numero reale α. �

Exercise 13.0.10 SianoW1eW2due sottospazi vettoriali di V con dim(W1) = dim(W2).

Mostrare che se W1è incluso in W2, allora W1 = W2.

Sol.: Sia n = dim(W1) = dim(W2) e S = {e1, . . . , en} una base di W1. Allora S

costituisce un sistema di n vettori linearmente indipendenti dello spazio vettoriale W2

(perché W1 ⊆ W2) il quale ha dimensione n. Pertanto S sarà una base anche per W2

e

W1 = span(S) = W2.

�

Exercise 13.0.11 Siano x, y e z tre vettori tali che x + y + z = J0. Mostrare che

span(x, y) = span(y, z).

Sol.: Poiché z = −x− y, risulta z ∈ span(x, y), potendosi esprimere z come una com-

binazione lineare di x e y. Di qui segue che span(x, y) = span(x, y, z). Analogamente,

da x = −y− z risulta x ∈ span(y, z), e quindi span(y, z) = span(x, y, z). Allora la tesi

è immediata:

span(x, y) = span(x, y, z) = span(y, z).

�

Exercise 13.0.12 Define a linear functional L : R3 → R such that L(x) = L(y) = 0,

where x = (1, 1, 1) and y = (1, 1,−1).

Sol.: Si può prendere come L il funzionale identicamente nullo. Se si vuole determ-

inarne uno non identicamente nullo, basta osservare che ogni funzionale L ∈ (R3)′ è

della forma L(x) = ax1 + bx2 + cx3 per qualche a, b, c ∈ R (ossia L(x) = x · x∗ con

x∗ = (a, b, c)). Imponendo la condizione L(x) = L(y) = 0, otteniamo
{
a+ b+ c = 0

a+ b− c = 0
=⇒

{
a+ b = −c
−2c = 0
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da cui b = −a, c = 0. Pertanto i funzionali che soddisfano le condizioni richieste sono

quelli del tipo L(x) = ax1− ax2, con a un qualunque numero reale. Si può ad esempio

prendere L(x) = x1 − x2(che corrisponde ad a = 1). �

Exercise 13.0.13 Provare che i vettori x = (1, 1, 1), y = (1, 1,−1) e z = (1,−1,−1)

formano una base di R3. Se {L1, L2, L3} è la corrispondente base duale di (R3)′, trovare
L1(x̃), L2(x̃) e L3(x̃), dove x̃ = (0, 1, 0).

Sol.: I tre vettori dati sono una base di R3 perché sono linearmente indipendenti. Per

verificarlo ci si riconduce a risolvere il sistema




α+ β + γ = 0

α+ β − γ = 0

α− β − γ = 0

=⇒





2α = 0

2β = 0

γ = α− β

=⇒





α = 0

β = 0

γ = 0

che ammette appunto la sola soluzione banale.

La base duale di {x, y, z}, indicata con {L1, L2, L3}, è definita da




L1 (x) = 1, L1 (y) = L1 (z) = 0,

L2 (y) = 1, L2 (x) = L2 (z) = 0,

L3 (z) = 1, L3 (x) = L3 (y) = 0.

Sfruttando queste condizioni e la linearità di L1, L2, L3 è facile calcolare i valori che

questi tre funzionali assumono in x̃ = (0, 1, 0): esprimiamo x̃ come combinazione lineare

della base x, y, z:

(0, 1, 0) = α(1, 1, 1) + β(1, 1,−1) + γ(1,−1,−1),

ovvero 



α+ β + γ = 0

α+ β − γ = 1

α− β − γ = 0

=⇒





2α = 0

2β = 1

γ = α− β

=⇒





α = 0

β = 1
2

γ = −1
2

Pertanto x̃ = 1
2
y − 1

2
z, e quindi, siccome L1, L2, L3 sono lineari, abbiamo





L1 (x̃) = L1
(
1
2
y − 1

2
z
)
= 1

2
L1 (y) − 1

2
L1 (z) = 0− 0 = 0,

L2 (x̃) = L2
(
1
2
y − 1

2
z
)
= 1

2
L2 (y)− 1

2
L2 (z) = 1

2
− 0 = 1

2
,

L3 (x̃) = L3
(
1
2
y − 1

2
z
)
= 1

2
L3 (y)− 1

2
L3 (z) = 0− 1

2
= −1

2
.

�

Exercise 13.0.14 Sia L : V → R un funzionale lineare definito su uno spazio vet-

toriale V . Mostrare che

W = {v ∈ V : L(v) = 0}
è un sottospazio vettoriale di V . Qual è la sua dimensione?
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Sol.: W è un sottospazio vettoriale perché, presi arbitrariamente α, β ∈ R e w1, w2 ∈
W , risulta αw1 + βw2 ∈W dato che

L(αw1 + βw2) = αL(w1) + βL(w2) = 0 + 0 = 0.

Quanto alla sua dimensione, possono presentarsi due casi.

(a) Se Lè il funzionale identicamente nullo (L = J0V ′), allora W = V e quindi

dimW = dimV.

(b) Se L non è identicamente nullo (ovvero L 	= J0V ′), verifichiamo che dimW =

dimV − 1. Infatti, in tal caso esiste un vettore z tale che L(z) 	= 0. Indichiamo con Z

lo spazio vettoriale generato da z, ossia

Z = span(z) = {αz;α ∈ R}.

Lo spazio Z ha dimensione 1. Ora notiamo che W ∩ Z = {J0}. Infatti, se imponiamo

che un vettore di Z, e quindi del tipo αz, appartenga anche a W , cioé L(αz) = 0,

otteniamo αL(z) = 0 (perché Lè lineare) e quindi α = 0 (perché L(z) 	= 0)). Pertanto,

se dimostriamo che W + Z = V abbiamo concluso, perché allora avremmo che W e

Z sono complementari e quindi dimW = dimV − dimZ = dimV − 1. Basta quindi

dimostrare che W + Z = V , in altri termini, che ogni v ∈ V si può scrivere come

v = αz+w per opportuni α ∈ R e w ∈W . Ricordiamo che w ∈W significa L(w) = 0,

ovvero L(v − αz) = 0 e quindi L(v) − αL(z) = 0; risolvendo rispetto ad α otteniamo

α = L(v)/L(z) (ricordare che L(z) 	= 0). Quindi, comunque preso v ∈ V , scegliamo α

in questo modo e poi w = v − αz. Allora abbiamo che w ∈W e v = αz + w. �

Exercise 13.0.15 Nell’Esercizio 14, sia V = R3 e sia L (x) = x1 + x2 + x3 per ogni

x ∈ R3. Trovare una base del sottospazio W = {x ∈ R3 : L (x) = 0} .

Sol.: Risolvendo rispetto a x1 l’equazione

x1 + x2 + x3 = 0,

che definisce W , si vede come W sia formato da tutti i vettori x = (x1, x2, x3) tali che

x1 = −x2 − x3. Quindi,

W = {(−x2 − x3, x2, x3) : x2, x3 ∈ R}
= {x2 (−1, 1, 0) + x3 (−1, 0, 1) : x2, x3 ∈ R} .

Pertanto, i due vettori (−1, 1, 0) e (−1, 0, 1) generano lo spazio W . Siccome sono

linearmente indipendenti (verificarlo!), essi costituiscono una base per W .1 �

1Si noti che abbiamo trovato, in particolare, che dim (W ) = 2, in accordo con quanto dimostrato
nell’Esercizio 14.
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Exercise 13.0.16 I vettori x = (1, 1) e y = (0, 1) formano una base di R2. Trovare il

funzionale lineare L : R2 → R tale che L(x) = 3 e L(y) = −2.

Sol.: Come nell’esercizio 12, bisogna determinare una coppia (a, b) di numeri reali

tale che il funzionale definito da L(x) = ax1 + bx2 soddisfi alle condizioni L(x) = 3 e

L(y) = −2: {
L (x) = a+ b = 3,

L (y) = b = −2
=⇒

{
a = 5

b = −2

Il funzionale lineare cercato è dunque dato da L(x) = 5x1 − 2x2. �

Exercise 13.0.17 Show that the functional L : R3 → R given by L(x) = 2x1−3x2+4x3

is linear.

Sol.: Può scriversi L(x) = x · x∗, con x∗ = (2,−3, 4) e quindi la linearità di L segue

dalla linearità del prodotto scalare rispetto al primo argomento. Alternativamente, si

può fare una verifica diretta: per ogni α, β ∈ R e x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3
risulta

L(αx+ βy) = L((αx1 + βy1, αx2 + βy2, αx3 + βy3))

= 2(αx1 + βy1)− 3(αx2 + βy2) + 4(αx3 + βy3)

= α(2x1 − 3x2 + 4x3) + β(2y1 − 3y2 + 4y3)

= αL(x) + βL(y).

�

Exercise 13.0.18 Verificare se il funzionale L : R2 → R definito da L(x) = x1 · x2 è
lineare.

Sol.: L non è lineare dal momento che, ad esempio, prendendo x = (1, 1)risulta

L(2x) = L((2, 2)) = 2 · 2 = 4,

mentre se L fosse lineare dovrebbe risultare

L(2x) = 2L(x) = 2L((1, 1)) = 2(1 · 1) = 2.

�

Exercise 13.0.19 Sia V uno spazio vettoriale. Mostrare che due vettori x e y di V

sono linearmente dipendenti se e solo se si verifica uno dei seguenti fatti: x = J0 oppure

esiste un α ∈ R tale che y = αx.
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Sol.: “Se”. Se x = J0 risulta 1 · x+0 · y = J0 per cui x e y sono linearmente dipendenti.

Allo stesso modo, da y = αx segue α · x− 1 · y = J0, ovvero la dipendenza lineare di x

e y.

“Solo se”. Se x e y sono linearmente dipendenti allora sarà αx + βy = J0 con

(α, β) 	= (0, 0). Se è β 	= 0 sarà y = −α
β
x. Altrimenti, se β = 0, dovrà essere α 	= 0 e

allora (poiché αx+ βy = J0) segue x = J0. �

Exercise 13.0.20 Si determini per quali valori dell’intero n ≥ 0 l’insieme Mn = {g ∈
P : g ≡ 0 oppure deg(g) = n} è un sottospazio vettoriale di P.

Sol.: Per n = 0 abbiamo M0 che è un sottospazio vettoriale di P , essendo l’insieme

dei polinomi costanti, ossia span(1).

Per n > 0 Mn non è un sottospazio vettoriale di P dal momento che i due polinomi

xn + xn−1 e −xn sono in Mn ma la loro somma, ossia xn−1, non è in Mn. �

Exercise 13.0.21 Dire quali dei seguenti sottoinsiemi di P sono dei sottospazi vettori-

ali. Per ciascuno di quelli che non risultano dei sottospazi si determini il più piccolo

sottospazio di P che li contiene.

(a) A = {g ∈ P : g(0) = 0};

(b) B = {g ∈ P : g(0) = 2};

(c) C = {g ∈ P : g(0) = g(1)};

(d) D = {g ∈ P : g è divisibile per x2};

(e) E = {g ∈ P : g(x) = αx+ βx2; α, β ∈ R};

(f) F = {g ∈ P : g ≡ 0 oppure deg(g) ≥ 2}.

Sol.: (a) A è un sottospazio dato che se due polinomi si annullano in x = 0 ogni loro

combinazione lineare si annullerà anch’essa in x = 0.

(b) B non è un sottospazio perché, ad esempio, non contiene il polinomio identica-

mente nullo. Il più piccolo sottospazio che contiene B è span(B). È facile vedere

che span(B) = P . Infatti, preso arbitrariamente g ∈ P , se g(0) = 0 scrivendo

g(x) = (g(x) + 2) − (2) si vede che g può esprimersi come differenza di due polinomi

in B, mentre se g(0) 	= 0 si può scrivere

g(x) =
g(0)

2

(
2

g(0)
g(x)

)

e quindi g è dato dal prodotto di un numero reale per un polinomio in B. In ogni caso

g risulta una combinazione lineare di polinomi in B, e come tale sta in span(B).
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(c) C è un sottospazio. Infatti se f, g ∈ C e α, β ∈ R risulta αf + βg ∈ C dal

momento che

(αf + βg)(0) = αf(0) + βg(0) = αf(1) + βg(1) = (αf + βg)(1).

(d) D è un sottospazio: esso è costituito dai polinomi che mancano del termine noto

e del termine di primo grado, ed è evidente che una qualunque combinazione lineare di

due polinomi in D è ancora in D.

(e) E è il sottospazio vettoriale generato dai polinomi x e x2, ossia E = span(x, x2).

(f) F non è un sottospazio dal momento che i polinomi x2 + x e −x2sono in F ,

ma (x2 + x) + (−x2) = x /∈ F . Ovviamente, come in (b), il più piccolo sottospazio

che contiene F è span(F ). Verifichiamo che span(F ) = P . span(F ) è un sottospazio

vettoriale che contiene tutti i polinomi di F , in particolare i polinomi x2 + x e −x2, e
con loro la loro somma x. Allo stesso modo, contenendo i polinomi x2+x+1 e −x2−x,
dovrà contenere anche il polinomio costante 1. Così, oltre ai polinomi xn con n ≥ 2,

contiene anche i polinomi 1 e x, per cui contiene qualunque polinomio. �

Exercise 13.0.22 Si consideri il sottospazio vettoriale di R3 dato da

M = span((1, 1, 0), (1, 2, 3)).

Determinare un’equazione lineare omogenea (ossia del tipo ax + by + cz = 0) che sia

soddisfatta da tutti e soli i vettori di M .

Sol.: I vettori di M sono tutti e solo gli (x, y, z) che si possono scrivere nella forma

(x, y, z) = α (1, 1, 0) + β (1, 2, 3)

per qualche α, β ∈ R, ossia 



x = α+ β,

y = α+ 2β,

z = 3β.

Sottraendo la prima equazione dalla seconda, si trova β = y − x. Sostituendo questa

espressione di β nella terza equazione, troviamo z = 3y − 3x, ossia 3x− 3y + z = 0.

Viceversa, se (x, y, z) soddisfa l’equazione 3x − 3y + z = 0, si verifica subito che

risulta

(x, y, z) = (2x− y)(1, 1, 0) + (y − x)(1, 2, 3)

e quindi (x, y, z) ∈M .2 �

2Usando la notazione precedente, si è preso β = y − x e α = x− β = 2x− y.
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Exercise 13.0.23 Si consideri lo spazio P2. Mostrare che gli insiemi

B1 =
{
1, x, x2

}
e B2 =

{
1

2
x (x− 1) , 1− x2,

1

2
x (x+ 1)

}

sono due basi di P2. In particolare, come si può esprimere il polinomio

7− 3x+ 2x2

nei termini di queste due basi B1 e B2?

Sol.: Poichè dimP2 = 3, per la prima parte dell’esercizio è sufficiente dimostrare che

i tre polinomi di B1 sono linearmente indipendenti e poi lo stesso per B2; lasciamo

la verifica al lettore. Per quanto riguarda l’altro quesito, osserviamo che il polinomio

7− 3x+ 2x2 è già espresso in termini della base B1 e quindi ha componenti (7,−3, 2)

rispetto a B1. Per esprimerlo nei termini della base B2, incominciamo a scrivere i

polinomi 1, x, x2 come combinazioni lineari dei polinomi della base B2, che indichiamo,

nell’ordine, con A,B,C, ovvero poniamo A = 1
2
x(x − 1), B = 1 − x2, C = 1

2
x(x + 1).

Partento dal polinomio 1 andiamo quindi a cercare dei coefficienti α, β, γ tali che

1 = αA+ βB + γC,

ossia

1 = α

(
1

2
x(x− 1)

)
+ β

(
1− x2

)
+ γ

(
1

2
x(x+ 1)

)
.

Svolgendo i conti a secondo membro e raccogliendo i termini dello stesso grado, ot-

teniamo

1 = (α/2 + γ/2− β)x2 + (−α/2 + γ/2)x+ β.

Uguagliando i coefficienti dei termini dello stesso grado a primo e secondo membro,

otteniamo il sistema 



α
2
+ γ

2
− β = 0,

−α
2
+ γ

2
= 0,

β = 1,

che risolto produce α = 1, β = 1, γ = 1. Pertanto possiamo scrivere 1 = A + B + C.

Ragionando in maniera analoga per i polinomi x e x2 otteniamo (verificarlo!)




1 = A+B + C,

x = C −A,

x2 = A+ C

(In realtà, per questo esercizio, dove le espressioni dei polinomi sono semplici, si sarebbe

potuto vedere subito “a occhio” che valgono queste tre espressioni per 1, x, x2, senza

quindi andare a risolvere i tre sistemi).
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Sostituendo queste espressioni per 1, x, x2 nel polinomio 7− 3x+ 2x2 troviamo

7− 3x+ 2x2 = 7(A+B + C)− 3(C −A) + 2(A+ C) = 12A+ 7B + 6C.

Pertanto le componenti del polinomio 7− 3x+ 2x2 nella base B2 sono (12, 7, 6). �

Exercise 13.0.24 Dimostrare il “Solo se” del Teorema 104.

Exercise 13.0.25 Mostrare che ker (T ) che Im (T ) sono sottospazi vettoriali.

Exercise 13.0.26 Si consideri un’applicazione lineare T : Rn → Rm, con matrice

associata A. Si definisce rango di A, indicato con ρ (A), il numero di vettori colonna

di A linearmente indipendenti. Mostrare che ρ (A) = ρ (T ).

Exercise 13.0.27 Si mostri questa versione più completa della Proposizione 130: Dato

un punto x ∈ Rn, per ogni y, y′ ∈ Rn si ha

[x, x+ y] ⊆ [x, x+ y′]

se e solo se esiste α ≥ 1 tale che y′ = αy, mentre si ha

[x, x+ y′] ⊆ [x, x+ y]

se e solo se esiste 0 < α ≤ 1 tale che y′ = αy.

Exercise 13.0.28 Consideriamo le applicazioni viste negli Esempi 160 e 161. Sia

quindi g : R → R3 definita da g (x) = (x, sin x, cos x) per ogni vettore x ∈ R, mentre
f : R3 → R2 è definita come f (x1, x2, x3) = (2x21 + x2 + x3, x1 − x42) per ogni vettore

x ∈ R3. Siccome sia f e g sono Frechet differenziabili in ogni punto del loro dominio,

per il Teorema 163 la composizione f ◦ g : R→ R2 è anch’essa Frechet differenziabile

in ogni punto del suo dominio R. Usando la regola della catena, si calcoli la matrice

Jacobiana di f ◦ g : R→ R2.

Sol.: Per la regola della catena (4.28), la matrice Jacobiana di f ◦ g : R→ R2 è data

da:

D (f ◦ g) (x) = Df (g (x))Dg (x) .

Dall’Esempio 161 sappiamo che:

Dg (x) =




1

cosx

− sin x


 ,
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mentre dall’Esempio 160 si ha:

Df (x) =

[
4x1 1 1

1 −4x32 0

]
,

e quindi

Df (g (x)) =

[
4x 1 1

1 −4 sin3 x 0

]
.

Pertanto,

Df (g (x))Dg (x) =

[
4x 1 1

1 −4 sin3 x 0

]


1

cosx

− sin x




=

[
4x+ cosx− sin x

1− 4 sin3 x cosx

]
.

Il differenziale di Frechet in x di f ◦ g è dunque dato dall’applicazione lineare df (x) :

R→ R2 definita come

d (f ◦ g) (x) (h) =

[
4x+ cosx− sinx

1− 4 sin3 x cosx

]
h.

Ad esempio, in x = π si ha:

d (f ◦ g) (x) = (4π − 1)h+ h = 4πh.

Anche in questo caso il lettore può verificare l’esattezza di quanto abbiamo fatto usando

la regola della catena, scrivendo esplicitamente la forma di f ◦ g e calcolandone la

matrice Jacobiana. �

Exercise 13.0.29 Calcolare la derivata della funzione f : R→ R3 definita da f (x) =

(x, sin x, cos x) per ogni vettore x ∈ R.

Sol.: Nell’Esempio 161 avevamo visto come

Df (x) =




1

cosx

− sin x


 .

Quindi, la derivata f ′ : R3 →M (3, 1) di f è la funzione che associa ad ogni x ∈ R3 la
matrice Jacobiana Df (x), ossia

x �−→ Df (x) =




1

cosx

− sin x


 .
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La derivata di f in x = π è data da

f ′ (x) = Df (x) =




1

−1

0


 .

�

Exercise 13.0.30 Sia X uno spazio metrico rispetto alla metrica discreta (6.4). Quali

sono gli insiemi aperti e chiusi in questo spazio metrico? Quali sono i compatti?

Exercise 13.0.31 Mostrare che in ogni spazio metrico i singoletti sono insiemi chiusi.

Exercise 13.0.32 Dato un insieme A di uno spazio metrico, mostrare che
◦
A è un

aperto e che, per ogni aperto G ⊆ A, si ha G ⊆
◦
A.

Sol. Sia G un aperto tale che G ⊆ A. Sia x ∈ G. Poichè x è punto interno di G, esiste

un intorno Bε (x) tale che Bε (x) ⊆ G, e quindi tale Bε (x) ⊆ A. Ne segue che x ∈
◦
A,

e quindi G ⊆
◦
A.

Rimane da mostrare che
◦
A è aperto. Sia x ∈

◦
A. Per definizione di punto interno,

esiste Bε (x) di x tale che Bε (x) ⊆ A. Per la Proposizione 220, Bε (x) è aperto e quindi,

per quanto appena dimostrato, Bε (x) ⊆
◦
A. Il punto x è perciò interno di

◦
A, che è

dunque un aperto.

Exercise 13.0.33 Dati x, y ∈ Rn e un numero naturale p ≥ 1, si definisca

dp (x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

.

Si mostri che dp è una metrica su Rn, che generalizza le metriche d1 e d2. Si mostri

inoltre che per ogni metrica dp vale la Proposizione 246.

Exercise 13.0.34 (Teorema del Confronto per successioni) Siano {xn}n≥1, {yn}n≥1
e {zn}n≥1 tre successioni di reali tali che xn ≥ yn ≥ zn per ogni n. Mostrare che, se

xn → x e zn → x, allora yn → x.

Exercise 13.0.35 Sia {xn}n≥1 una successione di reali. Si mostri che {|xn|}n≥1 è

convergente se {xn}n≥1 è convergente.3 Vale anche il viceversa?

Exercise 13.0.36 (i) Siano {xn}n e {yn}n due successioni in uno spazio metrico (X, d)

tali che xn → x e yn → y. Si mostri che d (xn, yn) → d (x, y).

3Si ricordi la disuguagliaza ||x| − |y|| ≤ |x− y| per ogni x, y ∈ R.
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(ii) Siano {xn}n e {yn}n due successioni di Cauchy in uno spazio metrico (X, d). Si

mostri che la successione {d (xn, yn)}n è convergente.

Exercise 13.0.37 Sia A un sottoinsieme di uno spazio metrico (X, d) e si definisca

la funzione f : X → R definita come f (x) = infy∈A d (x, y). Si verifichi se f è una

funzione continua.

Exercise 13.0.38 Sia (B ([0, 1]) , d∞) lo spazio delle funzioni f : [0, 1] → R che sono

limitate, ossia esiste K > 0 tale che |f (x)| ≤ K per ogni x ∈ [0, 1]. Per il Teorema di

Weierstrass, si ha C ([0, 1]) ⊆ B ([0, 1]).

(i) Sia {fn}n ⊆ C ([0, 1]) una successione di funzioni continue tali che fn
d∞→ f ∈

B ([0, 1]). Si mostri che f ∈ C ([0, 1]).

(ii) Si mostri che C ([0, 1]) è un sottoinsieme chiuso di B ([0, 1]).

Exercise 13.0.39 Si mostri che (C ([0, 1]) , d∞) è uno spazio metrico completo.

Exercise 13.0.40 Si mostri che l’insieme A1× · · · ×Am è un chiuso di Rm se ogni Ai
è un chiuso di R.

Exercise 13.0.41 Dimostrare le Proposizioni ?? e 304.

Exercise 13.0.42 Verificare la disuglianza (7.2).

Exercise 13.0.43 Dimostrare il Lemma 7.1.

Exercise 13.0.44 Dimostrare il seguente risultato sulla composizione di funzioni: Si-

ano (X, dX), (Y, dY ) e (Z, dZ) tre spazi metrici, e siano f : A ⊆ X → Y e g : B ⊆ Y →
Z funzioni tali che f (A) ⊆ B. Se f è continua in x ∈ A e g è continua in f (x), allora

la funzione composta g ◦ f : A ⊆ X → Z è continua in x.4

Exercise 13.0.45 Assuming A = X, give a proof of Theorem 303 only based on

Lemma 298 and Theorem 299.

4Si ricordi che la funzione composta g ◦ f : A ⊆ X → Z si definisce come

(g ◦ f) (x) = g (f (x)) , ∀x ∈ A.
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Sol. Let K be a compact set in X. We want to prove that f (K) is compact. Let

{Gi}i∈I be an open cover of f (K). As f (K) ⊆ ⋃i∈I Gi, by Lemma 298 we have:

K ⊆ f−1 (f (K)) ⊆ f−1

(
⋃

i∈I
Gi

)
=
⋃

i∈I
f−1 (Gi) .

By Theorem 299, each f−1 (Gi) is open, and therefore {f−1 (Gi)}i∈I is a an open cover

of K. Since K is compact, there exists a finite subcover {f−1 (Gi)}ni=1of K. Therefore,

again by Lemma 298, we have

f (K) ⊆ f

(
n⋃

i=1

f−1 (Gi)

)
= f

(
f−1

(
n⋃

i=1

Gi

))
⊆

n⋃

i=1

Gi.

This implies that {Gi}ni=1 is a finite subcover of f (K), which is therefore compact. �

Exercise 13.0.46 Dimostrare la seguente generalizzazione della Proposizione 311:

una funzione f : X → R è superiormente semicontinua su un sottoinsieme chiuso

F di X solo se gli insiemi (f ≥ t) ∩ F sono chiusi per ogni t ∈ R. Il vicecersa vale se

F = X.

Sol. Sia f superiormente semicontinua su F . Fissato t ∈ R, vogliamo mostrare che

(f ≥ t)∩F è chiuso. Sia {xn}n ⊆ (f ≥ t)∩F con xn → x ∈ X. Alla luce del Corollario

255, occorre mostrare che x ∈ (f ≥ t) ∩ F .
Per ogni n si ha xn ∈ F e f (xn) ≥ t. Siccome F è chiuso, si ha x ∈ F per il

Corollario 255. Siccome f è superiormente semicontinua su F , per la Proposizione 309

si ha lim supn f (xn) ≤ f (x), il che implica t ≤ f (x), ossia x ∈ (f ≥ t). In conclusione,

x ∈ (f ≥ t) ∩ F , come desiderato.

Viceversa, supponiamo F = X e che gli insiemi (f ≥ t) siano chiusi per ogni t ∈ R.
Fissato x ∈ F , sia {xn}n tale che xn → x. Vogliamo mostrare che lim supn f (xn) ≤
f (x). Per contraddizione, assumiamo che lim supn f (xn) > f (x). Sia α ∈ R tale che

lim supn f (xn) > α > f (x). Esiste una sottosuccessione {xnk}k tale che f (xnk) ≥ α

per ogni k. D’altra parte xn → x implica xnk → x, e quindi per il Corollario 255 si

ha x ∈ {f ≥ α} poichè {f ≥ α} è chiuso. Ma ciò implica f (x) ≥ α > f (x), e questa

contraddizione ci permette di concludere che lim supn f (xn) ≤ f (x). �

Exercise 13.0.47 Fissata una funzione g ∈ C ([a, b]), si consideri il funzionale lineare

F : C ([a, b]) → R dato da

F (f) =

∫ b

a

f (t) g (t) dt, ∀f ∈ C ([a, b]) .

Si mostri che ‖F‖ =
∫ b
a
|g (t)| dt.
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Exercise 13.0.48 Si consideri lo spazio C1 ([0, 1]) delle funzioni f : [0, 1] → R differ-

enziabili con continuità. Si verifichi se

‖f‖ = sup
t∈[0,1]

|f (t)| + |f ′ (t)|

è una norma e se il funzionale lineare F : C1 ([0, 1]) → R dato da

F (f) =

∫ 1

0

|f ′ (t)| dt, ∀f ∈ C1 ([0, 1]) .

è continuo su (C1 ([0, 1]) , ‖·‖)

Exercise 13.0.49 Siano (V1, ‖·‖1) e (V2, ‖·‖2) due spazi vettoriali normati. Si mostri

che V1 × V2 diventa anch’esso uno spazio vettoriale normato una volta dotato di una

delle seguenti norme:

(i) ‖(v 1, v2)‖ = ‖v1‖+ ‖v2‖ ,

(ii) ‖(v 1, v2)‖ = max {‖v1‖ , ‖v2‖} ,

(iii) ‖(v 1, v2)‖ =
√

‖v1‖21 + ‖v2‖22
Sia B : V1 × V2 −→ R bilineare, ossia

B (v1, αv
′
2 + βv′′2) = αB (v1, v

′
2) + βB (v1, v

′′
2)

B (αv′1 + βv′′1 , v2) = αB (v′1, v2) + βB (v′′1 , v2)

per ogni α, β ∈ R. Si mostri che B è continua se e solo se esiste c > 0 tale che:

|B (v1, v2)| ≤ c ‖v1‖ ‖v2‖

Exercise 13.0.50 Dimostrare il seguente risultato: sia C un insieme convesso di uno

spazio vettoriale, e sia x ∈ C; allora, x ∈ extC se e solo se le condizioni x + y ∈ C e

x− y ∈ C implicano y = 0.

Exercise 13.0.51 Mostrare che nell’Esempio 399 si ha extco (A) 	= ∅ e extco (A) ⊆ A.

Exercise 13.0.52 Dimostrare la Proposizione 427.

Exercise 13.0.53 I coni sono insiemi convessi C tali per cui αv ∈ C per ogni α ≥ 0

se v ∈ C. In altre parole, i coni sono insiemi convessi che sono chiusi riseptto alla

moltiplicazione scalare non-negativa. Si mostri che i coni contengono sempre l’elemento

neutro, e che, data una collezione finita {vi}i∈I di vettori, l’insieme
{
∑

i∈I
αiv

i : αi ≥ 0 per ogni i ∈ I
}

è un cono contenente tutti i vettori dati.
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Exercise 13.0.54 Let C be a convex set of Rn that contains n linearly independent

vectors. Show that its interior is nonempty.

Exercise 13.0.55 Dato un funzionale f : V → R, si definisca il funzionale f : V → R

come f (v) = −f (−v) per ogni v ∈ V . Si mostri che f è sublineare se f è superlineare.

Exercise 13.0.56 Sia (V, ‖·‖) uno spazio vettoriale normato. Dato v0 ∈ V , si mostri

che l’insieme U1 (v0) = {v ∈ V : ‖v − v0‖ = 1} è chiuso. Si mostri anche che U1 (v0) è

compatto se V è finito dimensionale,

Sol. Sia {vn}n una successione contenuta in U1 (v0) e tale che vn → v. Per il Corollario

255, occorre mostrare che v ∈ U1 (v0).
Da vn → v segue che ‖vn − v0‖ → ‖v − v0‖. Infatti, ‖(vn − v0)− (v − v0)‖ =

‖vn − v‖ → 0. D’altra parte, ‖vn − v0‖ = 1 per ogni n, ed insieme a ‖vn − v0‖ →
‖v − v0‖ questo implica ‖v − v0‖ = 1, ossia v ∈ Uε (v0).

Si supponga che V sia finito dimensionale. Per il Teorema 364, la palla unitaria

chiusa B1 (v0) = {v ∈ V : ‖v − v0‖ ≤ 1} è compatta. Dunque, U1 (v0) è un sottoin-

sieme chiuso di un compatto, ed è quindi a sua volta un insieme compatto grazie alla

Proposizione 274.

Exercise 13.0.57 Given a function f : A ⊆ Rn → R, set f+ (x) = max {f (x) , 0} for

all x ∈ A. If f ∈ C1 (A), then (f+)2 ∈ C1 (A), with

∂ (f+)2 (x)

∂xi
= 2f+ (x)

∂f (x)

∂xi
, ∀i = 1, ..., n (13.1)

Sol. Consider first the scalar function ϕ (t) = t+ = max {t, 0}. We show that [ϕ (t)]2

is of class C1 (A) and

D [ϕ (t)]2 = 2t+.

This is just a matter of computation. If t0 < 0, [ϕ (t)]2 is locally equal to 0. Hence,

D [ϕ (t0)]
2 = 0 = 2

(
t+0
)
. If t0 > 0, [ϕ (t)]2 agrees locally with the function t2. It

follows that D [ϕ (t0)]
2 = 2t = 2

(
t+0
)
. It remains to check the derivative at t = 0. The

incremental ratio is

[ϕ (h)]2 − [ϕ (0)]2

h
=

h2

h
for h > 0

[ϕ (h)]2 − [ϕ (0)]2

h
=

0

h
for h < 0.

Hence D [ϕ (0)]2 = 0 = 2 (0+). We conclude that [ϕ (t)]2 is everywhere differentiable

and with derivative 2t+. As t→ 2t+ is continuous, [ϕ (t)]2 is of class C1.

Now the function [f+ (x)]2 = [ϕ (f (x))]2 is C1 with derivatives (13.1) by the chain

rule. �
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Exercise 13.0.58 Dato a ∈ R, si consideri una funzione continua f : [a,+∞) → R

con f ′ (x) > 0 per ogni x > a. Si mostri che f è strettamente crescente su [a,+∞) e

che la sua inversa f−1 è strettamente crescente su f ([a,+∞)).

Sol. Per risultati di base si ha che f è strettamente crescente su (a,∞). Per completare

la prova, mostriamo che f (x) > f (a) per ogni x > a. Se ciò non fosse il caso, esiste

x > a tale che f (x) ≤ f (a). Preso un qualsiasi ε > 0 con x− ε > a, si ha

f (a) ≥ f (x) > f (x− ε) > f (x) , ∀x ∈ (a, x− ε) ,

e quindi la continuità di f porta alla contraddizione:

f (a) = lim
x→a+

f (x) ≤ f (x− ε) < f (a) .

Concludiamo che f (x) > f (a), come desiderato.

Poichè f è continua e strettamente crescente, si ha f ([a,+∞)) = [f (a) ,+∞). Da

risultati di base si ha: (
f−1
)′

(y) =
1

f ′ (f−1 (y))
> 0

per ogni y ∈ (f (a) ,+∞). Quindi (f−1)′ (y) > 0 per ogni y ∈ (f (a) ,+∞), e per quanto

mostrato nella prima parte possiamo concludere che f−1 è strettamente crescente su

[f (a) ,+∞). �

Exercise 13.0.59 Show that for any neighborhhod Bε (v) in a normed vector space we

have

Bε (v) = {v + w : ‖w‖ < ε} .

Sol. Let v + w be such that ‖w‖ < ε. Then, ‖v − (v + w)‖ = ‖w‖ < ε, and so

v + w ∈ Bε (v). Hence, {v + w : ‖w‖ < ε} ⊆ Bε (v). Conversely, suppose z ∈ Bε (v).

Set w = z − v. Then, ‖w‖ < ε and v + w = z. Hence, Bε (v) ⊆ {v + w : ‖w‖ < ε}. �

Exercise 13.0.60 Let φ : R→ R be concave. Show that φ is unbounded above if

limx→+∞ φ
′ (x) > 0.

Sol. By hypothesis, there is a sequence {xn}n, with xn ↑ +∞, such that limn→+∞ φ
′ (xn) >

0. Given n, for all y ∈ R we have φ (y) ≤ φ (xn)+φ
′ (xn) (y − xn). In particular, y = 0

implies φ′ (xn) xn ≤ φ (xn). Then, setting α = limn→+∞ φ
′ (xn), we have αxn ≤ φ (xn)

for all n, which implies limn→+∞ φ (xn) = +∞. �

Exercise 13.0.61 Let f : (a, b) → R be a concave function defined on the, possibly

unbounded, interval (a, b). Show that

f ′+ (x) = f ′ (x; 1) and f ′− (x) = −f ′ (x;−1) .
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Exercise 13.0.62 Prove what stated in Example 458.

Exercise 13.0.63 Prove (ii) of Theorem 460.

Exercise 13.0.64 Let {fi}i∈I a family of concave functions fi : C → R defined on a

convex set C. Extend Proposition 427 by showing that the function f : C → R given

by f (x) = infi∈I fi (x) for all x ∈ C is concave. Moreover, show that f is strictly

concave provided each fi is strictly concave and I is finite (what happens when I is

not finite?).

Exercise 13.0.65 Prove Lemma 451.

Exercise 13.0.66 For a concave function φ : [a,∞) → R, with a ≥ 0, the following

conditions are equivalent:

(i) φ is nondecreasing;

(ii) lim supt→∞ φ (t) > −∞;

(iii) lim inft→∞
φ(t)
t

≥ 0.

In particular, the limits in (ii) and (iii) exist.

Sol. (i) implies both (ii) and (iii). Suppose φ that is nondecreasing. Since φ is proper,

there is t0 ≥ 0 such that φ (t0) ∈ R. Hence, lim supt→∞ φ (t) ≥ φ (t0) > −∞. Moreover,

lim inft→∞ φ (t) /t = lim inft→∞ (φ (t)− φ (t0)) /t ≥ 0.

(ii) implies (i). Suppose lim supt→∞ φ (t) > −∞ and suppose, per contra, that there

is 0 ≤ t1 < t2 such that φ (t1) > φ (t2). Given any t > t2, set α = (t2 − t1) / (t− t1), so

that t2 = αt+ (1− α) t1. By concavity,

φ (t) ≤ t

t2 − t1
(φ (t2)− φ (t1)) + t2φ (t1)− t1φ (t2) ,

and so lim supt→∞ φ (t) = −∞, a contradiction.

(iii) implies (i). Set int dom (φ) = (a, b). We have b = ∞. For, if b < ∞, then by

concavity φ (t) = −∞ for all t > b, which contradicts (iii). We thus have dom (φ) =

[a,∞). Let t0 > a. We have φ (t) ≤ φ (t0) + φ′+ (t0) (t− t0) for all t > a, and so

0 ≤ lim inf
t→∞

φ (t)

t
≤ lim inf

t→∞

(
φ (t0)

t
+ φ′+ (t0)−

t0
t

)
= φ′+ (t0) .

In turn, this implies that φ is nondecreasing on (a,∞), and so on [a,∞) by concavity.

Since, dom (φ) = [a,∞), we have φ (t) = −∞ for all t ∈ [0, a) and this shows that φ is

nondecreasing on [0,∞).



386 CHAPTER 13. EXERCISES

Since (ii) implies that φ is nondecreasing, limt→∞ φ (t) exists. As to the limit in

(iii), let t0 ∈ dom (φ) and set ψ (t) = φ (t)−φ (t0). Then ψ is concave and subadditive,

so that ψ (t) /t is decreasing. Hence, limt→∞ ψ (t) /t exists and, being limt→∞ ψ (t) /t =

limt→∞ φ (t) /t, we conclude that limt→∞ φ (t) /t exists. �

Exercise 13.0.67 For a concave function φ : R → R, the following conditions are

equivalent:

(i) φ is constant;

(ii) inft∈R φ > −∞;

(iii) lim supt→±∞ φ (t) > −∞;

(iv) lim inft→±∞
φ(t)
t

= 0.

In particular, the limits in (iii) and (iv) exist.

Proof. (i) trivially implies (ii) and (ii) trivially implies (iii). To prove the other

implications, wlog assume φ (0) = 0, and define ψ′, ψ′′ : [0,∞) → [−∞,∞) by ψ′ (t) =

φ (t) and ψ′′ (t) = φ (−t) for all t ≥ 0. Both ψ′ and ψ′′ are proper concave functions on

[0,∞). If we apply Exercise 13.0.66 to ψ′ and ψ′′ we easily see that the limits in (iii)

and (iv) exist.

(iii) implies (iv). By Exercise 13.0.66,

lim
t→∞

φ (t) = lim
t→∞

ψ′ (t) > −∞ =⇒ lim
t→∞

φ (t)

t
= lim
t→∞

ψ′ (t)

t
≥ 0

Moreover, limt→−∞ φ (t) > −∞ if and only if limt→∞ φ (−t) > −∞. Hence, Exercise

13.0.66 implies:

lim
t→∞

φ (−t) = lim
t→∞

ψ′′ (t) > −∞ =⇒ lim
t→∞

φ (t)

t
≤ lim

t→∞
−φ (−t)

t
= − lim

t→∞
ψ′′ (t)

t
≤ 0.

We conclude that limt→∞ φ (t) /t = 0. A similar argument shows that limt→−∞ φ (t) /t =

0.

(iv) implies (i). Suppose limt→±∞ φ (t) /t = 0. This implies limt→∞ ψ
′ (t) /t =

limt→∞ ψ
′′ (t) /t = 0. By Exercise 13.0.66, both ψ′ and ψ′′ are nondecreasing. Since

ψ′ (0) = ψ′′ (0) = 0 and −ψ′′ ≥ ψ′, we conclude that −ψ′′ = ψ′, i.e., φ is constant. �
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Exercise 13.0.68 Sia h : R→ R una funzione con h′ (t) < 0 per ogni t > 0 e con

h′′ (t) > 0 per ogni t > 0. Si assuma inoltre che h′ (0) = 0. Si risolva il problema di

ottimo:

max
x∈Rn

n∑

i=1

h (xi) (13.2)

sub
n∑

i=1

xi = 1, x1 ≥ 0, ..., xn ≥ 0

Sol. Alla luce dell’Esercizio 13.0.58, h è una funzione strettamente decrescente su R+,

mentre h′ è strettamente crescente. Quindi, h è strettamente convessa su R+. Inoltre,

sempre alla luce dell’Esercizio 13.0.58, si ha che l’inversa (h′)−1 è ben definita poichè

h è iniettiva.

Il problema (13.2) è uguale a quello risolto nell’Esempio 528. Le prime due fasi del

metodo di eliminazione sono identiche a quelle viste nell’Esempio 527. In particolare,

si ha D0 = ∅.
Il Lagrangiano L : R2n+1 → R è dato da

L (x1, x2, µ) =
n∑

i=1

h (xi) + λ

(
1−

n∑

i=1

xi

)
+

n∑

i=1

µixi, ∀ (x, λ, µ) ∈ R2n+1,

e per trovare l’insieme S dei suoi punti di Kuhn-Tucker occorre risolvere il sistema




∂L
∂xi

= h′ (xi)− λ+ µi = 0, ∀i = 1, ..., n

λ∂L
∂λ

= λ (1−∑n
i=1 xi) = 0

∂L
∂λ

= 1 −∑n
i=1 xi = 0

µi
∂L
∂µi

= µixi = 0, ∀i = 1, ..., n
∂L
∂µi

= xi ≥ 0, ∀i = 1, ..., n

µi ≥ 0, ∀i = 1, ..., n

Se moltiplichiamo per xi le prime n equazioni, si ottiene

h′ (xi)xi − λxi + µixi = 0, ∀i = 1, ..., n

Sommando queste nuove equazioni, si ha

n∑

i=1

h′ (xi)xi − λ
n∑

i=1

xi +
n∑

i=1

µixi = 0,

e quindi λ =
∑n

i=1 h
′ (xi) xi. Poichè h′ (xi) ≤ 0 quando xi ≥ 0, la condizione xi ≥ 0 ci

permette di concludere che λ ≤ 0.

Se xi = 0, si ha h′ (xi) = 0 e dalla condizione ∂L/∂xi = 0 segue che λ = µi. Siccome

µi ≥ 0 e λ ≤ 0, ne segue che µi = 0. A sua volta, questo implica λ = 0 e quindi usando
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di nuovo la condizione ∂L/∂xi = 0 si conclude that xi = λ = 0 per ogni i = 1, ..., n.

Ma questo contraddice la condizione λ (1−∑n
i=1 xi) = 0, e possiamo perciò concludere

che xi 	= 0, ossia xi > 0.

Poichè questo vale per ogni i = 1, ..., n, ne segue che xi > 0 per ogni i = 1, ..., n.

Dalla condizione µixi = 0 segue che µi = 0 per ogni i = 1, ..., n, e le prime n equazione

diventano:

h′ (xi)− λ = 0, ∀i = 1, ..., n

ossia, visto che l’inversa (h′)−1 è ben definita,

xi = (h′)
−1
(
λ

2

)
, ∀i = 1, ..., n.

Le xi sono quindi tutte uguali tra loro, e da
∑n

i=1 xi = 1 segue che

xi =
1

n
, ∀i = 1, ..., n.

In conclusione,

S =

{(
1

n
, ...,

1

n

)}
.

Poichè D0 = ∅, si ha S ∪ (D0 ∩ C) = {(1/n, ..., 1/n)}, e il metodo di eliminazione ci

permette di concludere che il punto (1/n, ..., 1/n) è la soluzione anche del problema di

ottimo 10.28. �

Exercise 13.0.69 Si dimostri il seguente risultato: Sia f : A1 × A2 ⊆ Rn × Rm → R

una funzione Gateaux differenziabile su A1 × A2, dove A1 e A2 sono insiemi aperti,

e siano K1 e K2 due sottoinsiemi chiusi e convessi di A1 e A2, rispettivamente. Se

(x̂, ŷ) ∈ K1 ×K2 è punto di sella di f su K1 ×K2, ossia se

f (x̂, y) ≥ f (x̂, ŷ) ≥ f (x, ŷ) , ∀x ∈ K1, ∀y ∈ K2,

allora

∇xf (x̂, ŷ) · (x− x̂) ≤ 0, ∀x ∈ K1, (13.3)

∇yf (x̂, ŷ) · (y − ŷ) ≥ 0, ∀y ∈ K2. (13.4)

Il viceversa vale se f è una funzione di sella su K1 ×K2.

Sol.: Si osservi che ∇xf
y (x) = ∇xf (x, y) per ogni sezione f y e ∇yf

x (y) = ∇yf (x, y)

per ogni sezione fx. Poichè x̂ è punto di massimo globale per la sezione f ŷ, il Teorema

537 implica

∇xf (x̂, ŷ) · (x− x̂) = ∇xf
y (x) · (x− x̂) ≤ 0, ∀x ∈ A1.
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Analogamente, essendo ŷ punto di minimo globale per la sezione f x̂, per la (??) si ha:

∇yf (x̂, ŷ) · (y − ŷ) = ∇yf
x (y) · (y − ŷ) ≥ 0, ∀y ∈ K2.

Infine, se le sezioni f ŷ e f x̂ sono concave e convesse, rispettivamente, allora per il

Teorema 537 le condizioni (13.3) e (13.4) sono anche sufficienti affinchè (x̂, ŷ) sia punto

di sella. �

Exercise 13.0.70 Si mostri che nell’Esercizio 13.0.69 la condizione (13.3) assume la

forma ∇xf (x̂, ŷ) = 0 se x̂ è punto interno di K1, mentre la (13.4) assume la forma

∇yf (x̂, ŷ) = 0 se ŷ è punto interno di K2.

Exercise 13.0.71 Si mostri che gli insiemi:

C1 = {f ∈ C ([0, 1]) : |f (x)| ≤ 1for all x ∈ [0, 1]}

e

C2 = {f ∈ C ([0, 1]) : f (x) ≤ 0for all x ∈ [0, 1]}

sono insiemi convessi dello spazio vettoriale C ([0, 1]).

Exercise 13.0.72 Siano A e B sottoinsiemi di uno spazio vettoriale V . Si mostri che:

(i) co (co (A)) = co (A);

(ii) co (A) ⊆ co (B) se A ⊆ B;

(iii) co (A) ∪ co (B) ⊆ co (A ∪ B) .

Infine, si dia un esempio in cui co (A) ∪ co (B) 	= co (A ∪B).

Exercise 13.0.73 Let f : R→ R be a differentiable function. Show that f is a con-

traction provided

sup
x∈R

|f ′ (x)| < 1.

Exercise 13.0.74 Let f ∈ C1 ([a, b]). Show that f is a contraction provided |f ′ (x)| <
1 for all x ∈ [a, b]. Notice that the compactness of the domain is key. For instance, the

function

f (x) = x+
1

1 + x

is not a contraction on R+ though it satisfies f ′ (x) < 1 over R+.

Exercise 13.0.75 Let T1, T2 : B (X) → B (X) be two contractions.
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(i) Show that it is not restrictive to assume that both operators have the same

contraction modulus β.

(ii) Show that the operator T = max {T1, T2} is a β-contraction.

(iii) What can be said on the minimum Q = min {T1, T2}?

Exercise 13.0.76 Let T : B (X) → B (X) be defined as Tf = h+βf , where 0 ≤ β < 1

and h is a fixed element of B (X). Prove that T is a Blackwell operator. What is the

fixed point?

Exercise 13.0.77 Let T : B (R) → B (R) be defined as Tf (x) = h (x) + βf (x+ c),

where h ∈ B (R) and c > 0. Prove that it is a contraction. Find the fixed point.

Sol Consider

f = h (x) + βh (x+ c) + β2h (x+ 2c) + β3h (x+ 3c) + .......

. �

Exercise 13.0.78 Prove the following version of Proposition 581: Suppose the con-

tinuous function φ : [a, b] × [a, b]× R→ R is such that, for all (s, t) ∈ [a, b]× [a, b],

|φ (s, t, z1)− φ (s, t, z2)| ≤ K |z1 − z2| , ∀z1, z2 ∈ R.

Then, given any g ∈ C ([a, b]), the Volterra backward integral equation (12.5)

f (s) =

∫ b

s

ψ (s, t, f (t)) dt+ g (s) , ∀s ∈ [a, b] ,

has a unique solution f ∈ C ([a, b]). In particular, the sequence {fn}n ⊆ C ([a, b])

defined inductively by choosing f0 ∈ C ([a, b]) and setting

fn+1 (s) =

∫ s

a

ψ (s, t, fn (t)) dt+ g (s) , ∀s ∈ [a, b] ,

is such that ‖fn − f‖∞ → 0.

Exercise 13.0.79 Prove the following version of Proposition 580: Suppose the func-

tion ψ : [a, b]×[a, b]×R→ R is bounded and continuous. Then, given any g ∈ C ([a, b]),

the Volterra backward integral equation

f (s) =

∫ b

s

ψ (s, t, f (t)) dt+ g (s) , ∀s ∈ [a, b] ,

has a solution f ∈ C ([a, b]).
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