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DECISION THEORY: SUGGESTED SOLUTIONS TO HOMEWORK # 5

1. In the Anscombe and Aumann model of Chapter 7 of Kreps,
consider the following dominance axiom...

Answer: The fact that [7.1-3, 7.14]+7.16 imply 7.17 is easily
proved using the representation given in Theorem 7.17 in Kreps.
The axioms are equivalent to the representation in Eq. (7.18),
from which it is immediate to show that if hs � h′s (which is
equivalent to

∑
z u(z)hs(z) ≥

∑
z u(z)h

′
s(z)) for every s ∈ S,

then h � h′.

As for the converse implication, assume that [7.1-3, 7.14] and
7.17 hold, and suppose that for h ∈ H

[h−s, p] � [h−s, q],

(where I use the notation [h−s, r] ≡ (h1, . . . , hs−1, r, hs+1, . . . , , hn))
for some p, q ∈ P . Then, using (the contrapositive of) axiom
7.17, we immediately obtain p � q. Applying axiom 7.17 again,
we obtain that for every s′ (not necessarily non-null)

[h−s′ , p] � [h−s′ , q]. (1)

We are only left to show that is s′ is non-null then we cannot
have indifference in Eq. (1). We show this by contradiction. If
that were the case I claim that we would get that for any r ∈ P
we have

[h−s′ , p] ∼ [h−s′ , r]. (2)

But then s′ must be null: Using the representation in (7.5) in
Kreps, equation (2) implies that us′ must be constant. Corollary
(7.15) in Kreps can then invoked to argue that s′ is null. So we
obtain the desired contradiction.

I finally prove my claim that (2) must hold. If p � r � q, the
result follow immediately from (1) and two applications of ax-
iom 7.17. Suppose that r � p � q. Then axioms 7.1-3 imply (in
the same fashion as in Lemma (5.6)(b) in Kreps) that there is a
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unique α ∈ [0, 1] such that p ∼ αr ⊕ (1− α)q. Hence using 7.17
twice, 7.2 and (1) we obtain

[h−s′ , αp⊕ (1− α)p] = [h−s′ , p]

∼ [h−s′ , αr ⊕ (1− α)q]
∼ [[h−s′ , αr ⊕ (1− α)p]

and then (2) follows from axiom 7.2 (and 7.1). The case in which
q � r works symmetrically.

2. Solve problem 6 of Chapter 7 in Kreps.
Answer: Consider the preference relation �1 on P defined as
follows: p �1 q iff (p, p◦) � (q, p◦). It is immediate to observe
that H is a mixture space and that axioms (a) through (f) im-
ply that there exists a cardinal utility u such that p �1 q iff∑
u(x) p(x) ≥

∑
u(x) q(x).

It follows from (c) that for every p ∈ P , p◦ �1 p �1 p◦. Hence
if we let U(p) =

∑
u(x) p(x), we have U(p◦) ≥ U(p) ≥ U(p◦).

Moreover (g) implies that p◦ �1 p◦. In fact, otherwise p◦ ∼1 p◦,
which implies using (b) that (p◦, p◦) ∼ (p◦, p◦), so that using
(d) twice we get (p◦, p

◦) ∼ (p◦, p◦), and using (b) and (a) we
then get (p◦, p◦) ∼ (p◦, p◦), a violation of (g). Given this, we
can normalize u so to have U(p◦) = 1 and U(p◦) = 0, so that
U(p) ∈ [0, 1] for every p ∈ P .
Given a ∈ [0, 1], let s(a) be the binery lottery defined as follows:
s(a) = a p◦ ⊕ (1− a) p◦. Fix now (p, q). By definition of s(U(p)),
we get that

(p, p◦) ∼ (s(U(p)), p◦),

so that by (d) twice we get (p, q) ∼ (s(U(p)), q). Analogously,
(p◦, q) ∼ (p◦, s(U(q))) which with the above and (a) implies

(p, q) ∼ (s(U(p)), q) ∼ (s(U(p)), s(U(q))).

Consider the ordering �∗ on [0,1]2 defined by

(a, b) �∗ (a′, b′)⇐⇒ (s(a), s(b)) � (s(a′), s(b′)).

It is by now clear that

(p, q) � (p′, q′)⇐⇒ (U(p), U(q)) �∗ (U(p′), U(q′)).
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We have to show that � is a weak order on [0, 1]2. This requires
showing that for every a ∈ [0, 1] there is a p ∈ P such that
a = U(p). But this is obvious: Take p = a p◦ ⊕ (1 − a) p◦. The
fact that �∗ is a weak order now follows from the fact that � is
a weak order as well.

Suppose now that also (h) holds. We have that p �1 q implies
that (p, q) ∼ (q, q). Given (p, q), (p′, q′), suppose w.l.o.g. that
p �1 q and p′ �1 q

′. Then (p, q) � (p′, q′) iff (q, q) � (q′, q′). We
now show that U(q) ≥ U(q′) iff (q, q) � (q′, q′). First assume that
(q, q) � (q′, q′). From (c) it follows that (p◦, p◦) � (p◦, q), so that
(h) implies (p◦, q) ∼ (q, q). Similarly, (p◦, q′) ∼ (q′, q′), so that
using (a) we get (q, q) � (q′, q′) implies q �1 q

′, which in turn
implies U(q) ≥ U(q′). Conversely, assume that U(q) ≥ U(q′),
so that q �1 q

′. Applying (d) twice we get (q, q) � (q, q′) and
(q′, q) � (q′, q′) so that by (b) and (a) we get (q, q) � (q′, q′).

Summing up, we can conclude as requested that

(p, q) � (p′, q′)⇐⇒ min[U(p), U(q)] ≥ min[U(p′), U(q′)].

The preference relation � clearly satisfies axiom 7.1 and 7.14.
Axiom 7.3 is verified by looking at its mathematical represen-
tation above. Axioms 7.2 and 7.16 fail. To see 7.2, take p, q ∈ P
such that U(p) > U(q): we have (p, p) � (p, q) but if we mix
with (q, p) we get

(
1

2
p+

1

2
q, p) ∼ (

1

2
p+

1

2
q,

1

2
p+

1

2
q).

As for 7.16 choose p, q, r, r′ ∈ P such that U(p) > U(r) > U(q) ≥
U(r′). Then (p, r) � (q, r) and (r′, p) ∼ (r′, q), in violation of the
axiom with h = (r′, r) (notice that state 2 is clearly non-null).

3. Solve problem 5 in Chapter 8 in Kreps.

Answer: This is a routine proof. The only point that requires
some conceptual work is point (d). To do that, you first show
that A ∼∗ B and C ∼∗ D, with B and D disjoint, then B ∪D �∗
A∪C (you have to use point (b) to show this). It is now easy to
use this result twice to get to the conclusion.
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4. (WARNING: ONLY FOR THE MASOCHIST!!!) Solve problem
8 in Chapter 8 of Kreps.

Answer: The only interesting things to prove here are that there
are no probabilities whatsoever which represent �∗ in the two
cases, and that the relation in example 1 is tight, while the one
in example 2 is fine. The first claim can be proved using the
standard argument that there is no utility representing the lex-
icographic ordering on R2. In fact in both cases we can repre-
sent a set a as a pair of numbers (in example 1 the pair is given
by (`(a1), `(a2)), in example 2 the pair is (`(a1) + `(a2), `(a1))),
and then the relation �∗ is just the lexicographic ordering. I
now show that �∗ in example 1 is tight. Suppose that a �∗ b.
Then either `(a1) > `(b1) or `(a1) = `(b1) and `(a2) > `(b2).
Suppose that `(a1) > `(b1). Then let c = c1 where c1 ∩ b1 = ∅
(clearly b1 6= [0, 1] for otherwise `(a1) > 1, a contradiction) and
0 < `(c1) < `(a1) − `(b1). Then a �∗ b ∪ c �∗ b, as required. In
the case in which `(a1) = `(b1), choose c = c2 where c2 ∩ b2 = ∅
and 0 < `(c2) < `(a2) − `(b2) and again a �∗ b ∪ c �∗ b. The
proof of the fineness of �∗ in example 2 is straightforward.
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