DECISION THEORY: SUGGESTED SOLUTIONS TO HOMEWORK # 2

1. Solve problem 5 of chapter 3 in Kreps...

Answer: Here are two counterexamples to the statement in the exercise:

Consider the function $f : \mathbf{R} \to \mathbf{R}$ defined as follows:

$$f(x) \equiv \begin{cases} x & x < 1\\ 1 & 1 \le x \le 2\\ x - 1 & x > 2 \end{cases}$$

We want to construct u and v such that $v = f \circ u$. For instance consider $X = [0,1] \cup (2,+\infty)$ and let u(x) = x for all $x \in X$. Then v(x) = f(u(x)) = f(x) for all $x \in X$. It can be seen immediately that there is no (strictly) *increasing* g such that $v = g \circ u$. In fact such g must satisfy the following: g(1) = 1 and $1 < g(2 + \epsilon) = 1 + \epsilon$ for every $\epsilon > 0$, which promptly gives a contradiction (take the limit as ϵ goes to zero). Another possible counterexample, which does not use a disconnected X set, is the following. Let $X = \mathbf{R}$ and consider the two functions v(x) = x and

$$u(x) \equiv \begin{cases} x & x \le 1\\ x+1 & x > 1 \end{cases}$$

Then it is easy to see that $v = f \circ u$, and by the same reasoning as above, there is no strictly increasing g such that $v = g \circ u$. (Interesting question: Does this work if we exchange the labels of u and v? Why was this clear from theorem 3.6?)

Finally, a counterexample to the theorem in Kreps. On X = (0, 1), consider u(x) = x and v(x) = 1/(1 - x). Clearly, u and v represent the same ordering. On Range(u) = (0, 1) the function $\varphi = 1/(1 - x)$ clearly does the job (of being such that $v = \varphi \circ u$). However, it is impossible to extend φ to **R** so that φ is *non-decreasing* outside (0, 1).

2. Let \succeq be a relation on $X \subseteq \mathbb{R}^n$. Suppose that \succeq is represented by a continuous utility function $u : X \to \mathbb{R}$. Show that then \succeq is a continuous weak order.

Answer: Suppose that \succeq is represented by a continuous $u : X \to \mathbf{R}$. It is immediate to check that \succeq must then be a weak order. To check that it must be continuous, remember that, since u is continuous, we have that if $\{x_n\}$ is a sequence of points such that $x_n \to x$ for some $x \in X$, then $u(x_n) \to u(x)$. Suppose that $x \succ y$, so that u(x) > u(y). From the definition of limit, for any $\epsilon > 0$ there is N such that for all $n \ge N$, $|u(x_n) - u(x)| < \epsilon$. One just needs to take ϵ less than the difference |u(x) - u(y)| to do the job of showing that $x_n \succ y$ for $n \ge N$. The case of $y \succ x$ is treated symmetrically. This concludes the proof that \succeq is a continuous weak order.

3. Something that I forgot to do in class...

Answer: For any nonempty and compact *B* and $x \in B$, let $b(x, B) = \{y \in B : y \succeq x\}$; i.e., b(x, B) is the set of the points in *B* which are weakly preferred to *x*.

We first show that if we consider any finite collection $x_1, x_2, \ldots, x_n \in B$ (for any *n*), we must have that $x^i \in \bigcap_{j=1}^n b(x_j, B)$ for some $i = 1, \ldots, n$. This is proved by induction on *n*. The statement is obvious for n = 1 (since \succeq is reflexive). Suppose it holds for every n - 1-tuple of points of *B*, and consider x_1, x_2, \ldots, x_n . It follows from the induction hypothesis that there exists x_i such that $x_i \succeq x_j$ for every $j = 1, \ldots, n - 1$. If $x_i \succeq x_n$, then $x_i \in \bigcap_{j=1}^n b(x_j, B)$. If instead $x_n \succ x_i$, then by transitivity $x_n \succ x_j$ for all $j = 1, \ldots, n$, proving that $x_n \in \bigcap_{j=1}^n b(x_j, B)$. Either way, $\bigcap_{i=1}^n b(x_i, B) \neq \emptyset$.

It now follows from the "finite-intersection property" characterization of compactness (which says that a set *B* is compact iff the following is true: given a family of closed subsets of *B* such that every finite subfamily has a nonempty intersection, the family itself has a nonempty intersection) that since *B* is compact and every set $b(\cdot, B)$ is closed (by the continuity axiom), the family of sets $\{b(x, B) : x \in B\}$ has a nonempty intersection. That is, there is a $\hat{x} \in B$ such that $\hat{x} \in b(x, B)$ for every $x \in B$. Clearly, such $x \in C^*(B, \succeq)$, proving that the latter set is nonempty.