Decisions and Uncertainty: Suggested Solutions to Homework \# 2

1. Solve problem 5 of chapter 3 in Kreps...

Answer: Here are two counterexamples to the statement in the exercise:
Consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined as follows:

$$
f(x) \equiv\left\{\begin{array}{cc}
x & x<1 \\
1 & 1 \leq x \leq 2 \\
x-1 & x>2
\end{array}\right.
$$

We want to construct u and v such that $v=f \circ u$. For instance consider $X=[0,1] \cup(2,+\infty)$ and let $u(x)=x$ for all $x \in X$. Then $v(x)=f(u(x))=f(x)$ for all $x \in X$. It can be seen immediately that there is no (strictly) increasing g such that $v=g \circ u$. In fact such g must satisfy the following: $g(1)=1$ and $1<g(2+\epsilon)=1+\epsilon$ for every $\epsilon>0$, which promptly gives a contradiction (take the limit as ϵ goes to zero). Another possible counterexample, which does not use a disconnected X set, is the following. Let $X=\mathbf{R}$ and consider the two functions $v(x)=x$ and

$$
u(x) \equiv\left\{\begin{array}{cc}
x & x \leq 1 \\
x+1 & x>1
\end{array}\right.
$$

Then it is easy to see that $v=f \circ u$, and by the same reasoning as above, there is no strictly increasing g such that $v=g \circ u$. (Interesting question: Does this work if we exchange the labels of u and v ? Why was this clear from theorem 3.6?)
Finally, a counterexample to the theorem in Kreps. On $X=$ $(0,1)$, consider $u(x)=x$ and $v(x)=1 /(1-x)$. Clearly, u and v represent the same ordering. On Range $(u)=(0,1)$ the function $\varphi=1 /(1-x)$ clearly does the job (of being such that $v=\varphi \circ u$). However, it is impossible to extend φ to \mathbf{R} so that φ is nondecreasing outside $(0,1)$.
2. Let \succeq be a relation on $X \subseteq \mathbf{R}^{n}$. Suppose that \succeq is represented by a continuous utility function $u: X \rightarrow \mathbf{R}$. Show that then \succeq is a continuous weak order.

Answer: Suppose that \succeq is represented by a continuous u : $X \rightarrow \mathbf{R}$. It is immediate to check that \succeq must then be a weak order. To check that it must be continuous, remember that, since u is continuous, we have that if $\left\{x_{n}\right\}$ is a sequence of points such that $x_{n} \rightarrow x$ for some $x \in X$, then $u\left(x_{n}\right) \rightarrow u(x)$. Suppose that $x \succ y$, so that $u(x)>u(y)$. From the definition of limit, for any $\epsilon>0$ there is N such that for all $n \geq N,\left|u\left(x_{n}\right)-u(x)\right|<\epsilon$. One just needs to take ϵ less than the difference $|u(x)-u(y)|$ to do the job of showing that $x_{n} \succ y$ for $n \geq N$. The case of $y \succ x$ is treated symmetrically. This concludes the proof that \succeq is a continuous weak order.
3. Something that I forgot to do in class...

Answer: For any nonempty and compact B and $x \in B$, let $b(x, B)=\{y \in B: y \succeq x\}$; i.e., $b(x, B)$ is the set of the points in B which are weakly preferred to x.
We first show that if we consider any finite collection $x_{1}, x_{2}, \ldots, x_{n} \in$ B (for any n), we must have that $x_{i} \in \cap_{j=1}^{n} b\left(x_{j}, B\right)$ for some $i=1, \ldots, n$. This is proved by induction on n. The statement is obvious for $n=1$ (since \succeq is reflexive). Suppose it holds for every n - 1 -tuple of points of B, and consider $x_{1}, x_{2}, \ldots, x_{n}$. It follows from the induction hypothesis that there exists x_{i} such that $x_{i} \succeq x_{j}$ for every $j=1, \ldots, n-1$. If $x_{i} \succeq x_{n}$, then $x_{i} \in \cap_{j=1}^{n} b\left(x_{j}, B\right)$. If instead $x_{n} \succ x_{i}$, then by transitivity $x_{n} \succ x_{j}$ for all $j=1, \ldots, n$, proving that $x_{n} \in \cap_{j=1}^{n} b\left(x_{j}, B\right)$. Either way, $\cap_{j=1}^{n} b\left(x_{j}, B\right) \neq \emptyset$.
It now follows from the "finite-intersection property" characterization of compactness (which says that a set B is compact iff the following is true: given a family of closed subsets of B such that every finite subfamily has a nonempty intersection, the family itself has a nonempty intersection) that since B is compact and every set $b(\cdot, B)$ is closed (by the continuity axiom), the family of sets $\{b(x, B): x \in B\}$ has a nonempty intersection. That is, there is a $\hat{x} \in B$ such that $\hat{x} \in b(x, B)$ for every $x \in B$. Clearly, such $x \in C^{*}(B, \succeq)$, proving that the latter set is nonempty.

