
U. DI TORINO – P. GHIRARDATO A.A. 2023–2024

DECISIONS AND UNCERTAINTY: SUGGESTED SOLUTIONS TO
HOMEWORK # 1

1. In class I claimed that a cardinal utility is necessary for some
decision criteria to make sense...
Answer: This is a routine exercise. For instance, take the exam-
ple I gave in class to illustrate the Maximin risk rule:[

0 100
1 1

]
,

where the choice that the criterion prescribes is that correspond-
ing to the first row of payoffs. Suppose that we took another
utility function that represents the same ordering of the final
payoffs, to get the following matrix:[

0 15
10 10

]
.

If we now calculate the risk matrix, we find[
−10 0
0 −5

]
,

so that the “maximin” choice is now the one corresponding to
the bottom row. Hence the transformation of the utilities has
changed the presciption of the criterion. Similar examples can
be constructed for the αmin+(1− α)max criterion of Hurwicz,
and for the “equal probabilities” criterion.

2. Solve problem 1 of Chapter 1 in Kreps.
Answers: We first have to prove that axioms 1.1-1.5 and 1.9 are
inconsistent on P , the set of all simple lotteries on [0, 100]. As
Kreps suggests, we assume that, as is actually the case, theorem
1.6 is true (it’s a corollary of the von Neumann-Morgenstern
theorem we’ll see later). Of course this could also be proved
directly, but that is much more painful. So we know that ax-
ioms 1.1-1.5 are equivalent to the existence of a strictly increas-
ing function u : [0, 100] → R such that every lottery p ∈ P is
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evaluated via the expected utility functional

Ep(u) =
∑

r∈[0,100]

u(r)p(r).

Given the utility function u obtained by the theorem, let (with-
out loss of generality) u(0) = 0 and u(100) = 1. We know that u
is stricyly increasing. that does not mean however that it is con-
tinuous, only that it can have at most countably many disconti-
nuity points. Let r ∈ (0, 100) be a continuity point of u. Then for
every ϵ > 0 we can find a point r′ < r such that |u(r)−u(r′)| < ϵ.
Consider now the two simple lotteries p and p′ defined as fol-
lows: p(r′) = 1/2, p(100) = 1/2 and p′(r) = 1. Then, for ϵ small
enough,

Ep(u) = (1/2)u(r′) + (1/2)u(100)

= (1 + u(r′))/2

> u(r).

So, whatever u is, it is always possible to construct two sim-
ple lotteries belonging to P such that axiom 1.9 fails. Since the
axiom was stated implicitly with an existential quantifier (“for
every p and p′”), we have thus shown that the axioms are incon-
sistent. Notice that the argument works because there can only
be countably many discontinuity points of u. Also observe that
consistency can only be proved with respect to a given domain
of the preference relation (P in this case): it is always possible
to construct a domain (smaller than P ) on which all axioma can
be satisfied, so that they are consistent.

Proving that axioms 1.1 through 1.5 are consistent is immediate.
The preference relation induced by taking the expected utility
of every lottery with respect to some strictly increasing u (for
instance the identity) is immediately seen to satisfy all axioms.

3. Solve exercise 2 of Chapter 2 in Kreps.

Answer: The proof is right only if the relation has the addi-
tional property that for every x ∈ X there is y ∈ X such that
xRy. But this will not necessarily be the case, so that the step of
the proof which says “take some y ∈ X such that xRy” might
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fail. For instance consider X = [0, 1] and the relation defined by
R = [1/4, 3/4]× [1/4, 3/4].1 It is easy to check that R is symmet-
ric (easy to see graphically: R is symmetric around the diagonal
of the square) and transitive (this is also easy to see graphically:
how?), but it is not reflexive, because ¬xRx for x < 1/4 and
x > 3/4.

4. Prove the following statement from class: Suppose that ∼ is an
equivalence relation...

Answer: I prove first that if ∼ is an equivalence, then X/ ∼ is
a partition. For any x ∈ X , let [x] = {y ∈ X : y ∼ x}. By
reflexivity, it follows that x ∈ [x], which immediately implies
that ∪A∈X/∼A = X . Suppose now that A,B ∈ X/ ∼, x ∈ A ∩ B.
I show that A = B. There are z, z′ ∈ X such that A = {y ∼ z}
and B = {y ∼ z′}. For any y ∈ A, y ∼ z, and since x ∼ z and
x ∼ z′, by transitivity y ∼ z′ so that y ∈ B. Similarly, if y ∈ B,
then y ∼ z, so that y ∈ A.

As to the “converse”. Suppose that ∼ is not symmetric. Then
there are x, y ∈ X such that x ∼ y and y ̸∼ x. This is immedi-
ately seen to violate the assumptions, for x ∈ [y] and x ∈ [x],
but [y] ̸= [x]. Suppose that there are x, y, z ∈ X such that x ∼ y,
y ∼ z and x ̸∼ z. Then x ∈ [y] and x ̸∈ [z], so that, since X/ ∼ is
a partition, [y]∩[z] = ∅. This is a contradiction, since y ∈ [y]∩[z].
A counterexample to the plain converse is the following: X =
{x, y}, ∼= {(x, y), (y, x)}, so that {z ∼ x} = {y} and {z ∼ x} =
{x}, a partition even if ∼ is not reflexive).

1 Little puzzle: how can we write R as a property that x has in relation to y. That is, find
how to express R in words (and formulas) so as to obtain that x is in the relation R to y if
and only if (x, y) ∈ R.
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