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Abstract

We analyze how communication and voting interact when there is uncer-

tainty about players’ preferences. We consider two players who vote on forming

a partnership with uncertain rewards. It may or may not be worthwhile to team

up. Both players want to make the right decision but differ in their attitudes

toward making an error. Players’ preferences are private information and each

player is partially informed about the state of the world. Before voting, players

can talk to each other.

We completely characterize the equilibria and show that communication is

beneficial. The main role of communication is to provide a double check: When

there is a conflict between a player’s preferences and her private information

about the state, she votes in accordance with her private information only if

it is confirmed by the message she receives from her opponent. In a scenario

where only one of the players is allowed to talk, the benefits of communication

are independent of the identity of the sender.

JEL classification numbers: C78, D72, D82

2



1 Introduction

Two people have to decide whether to form a partnership with uncertain rewards.

In one state of the world it is worthwhile to team up, in another it is not. The

players can make two mistakes: They can either form the partnership when it is not

worthwhile to do so, or they can decide not to team up despite there being gains from

the partnership. Both players want to make the right decision but they have different

concerns about the two errors. A player’s preferences are known to herself but not to

her opponent. Each player is partially informed about the gains of the partnership

because she receives a signal from nature that is correlated with the unknown state

of the world. The players decide about forming the partnership by voting and the

partnership is formed if both vote in its favor. Before voting, the two players can talk

to each other. This gives them an opportunity to exchange their private information

and make a more informed decision.

The essence of this scenario is the interaction of communication and voting in an

environment in which players have different and potentially conflicting preferences.

One might think, for example, of two executives who have just met and hence do not

have full knowledge of each other’s attitudes. The two executives are trying to decide

whether or not to form an alliance. They must both agree in order for the alliance

to be established. Given that the benefits from the alliance are uncertain and both

executives know something about the state of the world, they have a natural incentive

to talk to each other and pool the available information. Our goal is to analyze the

functions and benefits of communication in situations like this.

Communication is especially important whenever a small group of people makes

a joint decision. In general, voting by itself fully aggregates information in large

elections (Feddersen and Pesendorfer 1997, Feddersen and Pesendorfer 1998, Duggan

and Martinelli 2001, Gerardi 2000). This is not the case for small electorates. This

means that a small committee may reach a decision different from the one that would

be made if all information were publicly available (see also Austen-Smith and Banks

(1996) and Li, Rosen and Suen (2001)).

However, whenever a small group of people needs to reach a decision, communi-

cation takes place before votes are cast. It is easy to see that communication may

help the group make a better decision if all players have the same preferences. In

this case each player has an incentive to truthfully reveal her private information
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and the group thus adopts the decision that would have been preferred by everyone

were all information publicly available. In other words, information is fully aggre-

gated once communication is added to voting. This argument extends to the case

where preferences are sufficiently close (but not identical) and common knowledge

(Austen-Smith 1990, Coughlan 2000).

It is an open question what happens when preferences differ. When players differ

in their attitudes toward the two errors, each has an incentive to take advantage of

the opportunity to communicate in order to manipulate the decision in the direction

of her bias. On the other hand, players also have an incentive to reveal their private

information truthfully in order to reach a more informed decision. These opposing in-

centives lead to more complex equilibrium behavior than in the case when preferences

are similar and only the latter incentive matters.

This paper is the first to analyze the interaction of communication and voting

when players have different and perhaps conflicting preferences. In contrast to the

case of homogeneous preferences, our model allows us to gain a better understanding

of the importance of communication in a voting game.

In our analysis, we assume that preferences are private information. This is charac-

teristic of situations like partnership formation or jury deliberations in which players

do not have a long history of interactions and hence do not know each other’s atti-

tudes with certainty. Our assumption of uncertain preferences also facilitates part of

the analysis because it allows us to focus on symmetric equilibria.

We consider two related games, one in which only one player is allowed to talk

and another one in which both players are allowed to do so. We provide a complete

characterization of the equilibria in both games and show that, while not all private

information is revealed, some information transmission takes place.

In the scenario in which only one player talks, we start by considering the case

where the sender and the receiver have information of the same quality, i.e. the degree

of correlation between the state of the world and their signal is the same. We show

that the purpose of communication is to serve as a double check. When there is a

conflict between the receiver’s concern with the two errors and her private information

about the state of the world, she votes in accordance with her private information

only if it is confirmed by the message she receives from the sender. On the other hand,

a sender in the same situation resolves this conflict by delegating the final decision

to the receiver. She votes in favor of the alternative option and thus allows the final
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decision to depend solely on the receiver’s vote. Next we allow the two players to

have private information of different quality. In this case it is natural to investigate

which player should assume the role of the sender. Surprisingly, the identity of the

sender is irrelevant in the sense that it does not affect the quality of the final decision.

In our model, information can be aggregated either in the communication stage or

in the voting stage. Our irrelevance result suggests that communication and voting

are “perfect substitutes”: All the information that is not transmitted by the sender’s

message is aggregated by the players’ votes.

Allowing both players to talk complicates the analysis because players are now

simultaneously senders and receivers of communication. In order to make the analysis

tractable, we assume that their information is of the same quality. Our analysis high-

lights the same functions of communication as in the one-sender game. In particular,

communication provides players with a double-check when their private information

conflicts with their relative concerns. To evaluate the benefits of communication, we

compare players’ utilities in the one- and two-sender games with their utilities in a

pure voting game (Gerardi 2000). We find that welfare is increasing in the number

of speakers, but also that there are decreasing returns to scale in a certain sense.

This paper contributes to a growing literature that studies the effects of communi-

cation in various environments such as auctions (Campbell 1998), bargaining (Farrell

and Gibbons 1989, Matthews 1989), agenda setting (Ordeshook and Palfrey 1988),

the provision of public goods (Palfrey and Rosenthal 1991), and entry in natural-

monopoly industries (Farrell 1987). These papers show that communication dramati-

cally affects the set of outcomes and that its welfare effects depend on the underlying

game. Given the attention that voting has received in the recent literature, it is sur-

prising that communication has not been analyzed in this context, especially since

communication always takes place when a small committee has to reach a joint deci-

sion. Our analysis allows us to describe the important role that communication plays

in collective decision-making processes.

The remainder of the paper is organized as follows. Section 2 presents the one-

sender game. In Section 3 we analyze the two-sender game. Section 4 concludes and

suggests a number of possible extensions. All proofs are relegated to the appendices.
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2 One-Sender Game

2.1 Model Setup and Equilibrium Concept

Two players jointly decide whether to maintain the status quo or to change it by

adopting some alternative option. Let the joint decision to maintain the status quo

be denoted by d = 1 and the decision to change it by d = 0. The rewards from the

decision depend on the unknown state of the world ω, which takes on the values 0 or

1 with equal probability.1 A decision that matches the state of the world (d = ω) is

optimal for both players, and we call such a decision correct in what follows. There

are two types of errors: adopting the alternative option (d = 0) when the state is

ω = 1 and maintaining the status quo (d = 1) when the state is ω = 0.

Players differ in their relative concerns with the two errors. A player’s preferences

are formally captured by assigning her a type q ∈ (0, 1). Types are private informa-

tion, but it is common knowledge that each type is an i.i.d. draw from a distribution

F with domain (0, 1), where F is continuous, strictly increasing, and admits a density

f such that f(0+) > 0 and f(1−) > 0. A player’s utility u(d, ω, q) depends on the joint

decision d, the state of the world ω, and her type q. We normalize the utility from

making a correct decision to zero and set u(0, 0, q) = u(1, 1, q) = 0, u(0, 1, q) = −q,

and u(1, 0, q) = q − 1. Hence, higher types are more concerned with adopting the

alternative option when the correct decision is to maintain the status quo than lower

types.

Player i is partially informed about the state of the world because she receives a

signal si ∈ {0, 1} from nature which is correlated with the state of the world: Pr(si =

ω|ω) = pi ∈ (1/2, 1). If the degree of correlation between the state of the world and

their signal is the same, we say that the players have private information of the same

quality. Otherwise, the quality of their private information differs. Conditional on

the state of the world, the signals are independent across players.

The game proceeds in two stages. In the first stage, one of the players, the sender,

expresses her opinion in the form of a straw vote. This means that the sender sends a

message m ∈ {0, 1} to her opponent, the receiver. In what follows we index variables

pertaining to the sender and the receiver by s and r, respectively. In the second stage,

player i casts her vote vi ∈ {0, 1}. The vote vi = 1 is in favor of the status quo and

1Our results hold also when Pr(ω = 0) 6= Pr(ω = 1).
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the vote vi = 0 is in favor of the alternative option. Voting is simultaneous and the

decision rule prescribes that the alternative is adopted whenever both players vote for

it; otherwise the status quo is maintained. For clarity of exposition, we drop indices

in the treatment when no ambiguity arises.

The sender’s strategy consists of two choices. The message choice is described by

a function assigning to each pair (q, s) the probability that a sender of type q sends

message m = 1 after observing signal s. Her voting choice is described by a function

assigning to each triplet (q, s,m) the probability that a sender of type q votes v = 1

after she has observed signal s and sent message m. The receiver’s strategy is a

function assigning to each triplet (q, s, m) the probability that a receiver of type q

votes v = 1 when she observed signal s and received message m.

In order to characterize the equilibria of this game, we introduce so-called cutoff

strategies. We say that the sender’s message strategy has a cutoff structure if for any

s ∈ {0, 1}, there exists a number qs in the unit interval such that, after observing

signal s, she reports message m = 0 (m = 1) if her type q is smaller (larger) than

qs. The sender’s voting strategy has a cutoff structure if for any s ∈ {0, 1} and

m ∈ {0, 1}, there exists a number qsm in the unit interval such that, after observing

signal s and sending message m, she casts the vote v = 0 (v = 1) if her type q is

smaller (larger) than qsm. Likewise, the receiver’s cutoff rsm prescribes that, after

observing signal s and receiving message m, the receiver votes v = 0 if q < rsm and

v = 1 if q > rsm. In other words, ceteribus paribus high types send message m = 1

and vote v = 1 whereas low types send message m = 0 and vote v = 0.

Our solution concept is Perfect Bayesian Equilibrium (PBE) with the additional

requirement that players do not use weakly dominated strategies. In Appendix A.1,

we show that every PBE is outcome-equivalent to a PBE in which players use cutoff

strategies.2 We henceforth restrict attention to PBE in cutoff strategies.

Not all cutoffs are necessarily identified by sequential rationality or weak domi-

nance. Suppose that the sender’s cutoff strategy is such that q01 < q0 and q11 < q1.

This means that after sending message m = 1 the sender vetos change. Hence, if the

receiver observes message m = 1, she knows that the sender will vote v = 1 and that

the outcome will be d = 1 irrespective of her vote. It follows that the receiver’s opti-

2Two strategy profiles are outcome-equivalent if they induce the same probability distribution
over final decisions. Note that unlike the case of voting without communication, ruling out weakly
dominated strategies does not guarantee that all equilibria admit a cutoff structure.
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mal strategy is not uniquely determined. Similarly, a sender of type q > max{qs0, qs1}
knows that she will vote v = 1 after observing signal s regardless of the message she

sends. Even though her message may affect the receiver’s vote, the final decision

is d = 1. Since the sender is indifferent between messages, her optimal strategy is

undetermined.

These examples suggest that an indeterminacy arises where an action does not

have an impact on the final decision. In the case an action affects the outcome, the

cutoffs are uniquely identified and related across signals by the family of functions

kp(q) =
q(1− p)2

q(1− p)2 + (1− q)p2
, (1)

defined on (0, 1) and indexed with the quality of the signal p. Specifically, q1 = kps(q0)

and for m ∈ {0, 1}, q1m = kps(q0m) and r1m = kpr(r0m) (see proof of Proposition 1).

For future reference note that kp(q) < q for every q and p and that kp is strictly

increasing in q.

Hence, in order to resolve the indeterminacy mentioned above, we restrict atten-

tion to PBE in which all cutoffs are linked across signals through the functions kps

and kpr . This requirement may be justified by noting that these PBE are the only

ones that survive a stability check: Consider a player and slightly perturb her oppo-

nent’s strategy, so as to yield a unique best reply. We require that such a sequence

of unique best replies converges to the original strategy as the perturbation vanishes.

We call a PBE that satisfies this requirement robust. In Appendix A.2 we show that

in a robust cutoff PBE all cutoffs are linked across signals through the functions kps

and kpr .

In order to conduct our analysis, we pose a technical assumption on the distribu-

tion of types. For any q ∈ [0, 1], the ratio

F (x)− F (q)

F (kp(x))− F (kp(q))
(2)

is strictly decreasing in x, x ∈ [0, 1], x 6= q. This assumption is satisfied by all Beta

distributions and should thus not be considered too restrictive.
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2.2 Equilibrium Characterization

This game admits different equilibria. In so-called babbling and non-responsive equi-

libria communication plays no role: In a babbling equilibrium the sender’s choice of

message is independent of the signal she observes, in a non-responsive equilibrium

the receiver’s vote is independent of the message she receives. Non-responsive and

babbling equilibria are outcome-equivalent (see Appendix A.1) and are also outcome-

equivalent to the equilibria of the pure voting game analyzed by Gerardi (2000).

When no communication takes place, the symmetric equilibrium is characterized by

two cutoffs, q̃1 and q̃0. Accordingly, the voting behavior can be classified into three

categories. Types with q < q̃1 always vote v = 0 in favor of the alternative option and

types with q > q̃0 always vote v = 1 in favor of the status quo. Finally, types with

q̃1 < q < q̃0 vote v = s according to their signal. In summary, extreme types who

are overly concerned with a particular error, vote according to their relative concerns

whereas moderate types vote according to their signal.

Our goal is to analyze the interaction of communication and voting, so it is ap-

propriate to consider responsive equilibria. In a responsive equilibrium, the receiver

conditions her vote on her type, her signal, and the sender’s message. The sender

conditions her voting strategy not only on her type and her signal, but also on the

message she sends. This is because she chooses a best reply to her opponent’s equi-

librium play which in turn changes according to the message she sends.

Next we characterize responsive equilibria in terms of configurations. By a con-

figuration we mean the order of the cutoffs for a given signal. Although there is a

large number of configurations, Proposition 1 shows that exactly one of them is con-

sistent with a responsive PBE. This allows us to compute the responsive robust cutoff

equilibria of the one-sender game by solving a system of equations (see the proof of

Proposition 1).

Proposition 1 Responsive robust cutoff equilibria exist and display the configuration

0 < qs < qs0 < qs1 < 1 for s ∈ {0, 1},

0 < rs1 < rs0 < 1 for s ∈ {0, 1}.

There does not exist a responsive robust cutoff equilibrium in any other configuration.

Fix a signal s. Proposition 1 shows that receivers with type q ∈ (0, rs1) vote
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for the alternative option independent of the message they receive and receivers in

(rs0, 1) always veto change. In contrast, receivers in (rs1, rs0) vote according to the

message they receive (v = m). It follows that the receiver is (ex-ante) more likely

to vote for the alternative option after receiving a message in favor of it than after

observing a message against it. The main reason is that the sender’s signal is partially

revealed in equilibrium. In fact, in a robust PBE we have q1 = kps(q0) < q0. This

implies that a sender with type q ∈ (q1, q0) truthfully reports her signal at the message

stage (m = s). Because some senders are truthful, receiving a particular message m

strengthens the receiver’s belief that the state of the world is indeed ω = m. This

in turn increases the probability that the receiver votes according to the message

(v = m) because she would like the final decision to match the state of the world.

Consequently, the sender can use her message to manipulate the receiver’s vote.

The sender, in turn, has to choose among three behaviors. First, she can veto

change (v = 1). Second, she can send a message in favor of the status quo but then

vote for the alternative option (m = 1 and v = 0). Third, the sender can both express

herself and vote in favor of change (m = 0 and v = 0). The first course of action

guarantees that the status quo persists (d = 1) independent of the sender’s message

and the receiver’s strategy. In both the second and the third course of action, the

sender in effect concedes the final decision to the receiver. On the other hand, given

the sender’s ability to manipulate the receiver’s vote, the second strategy makes the

outcome d = 1 more likely than the third one.

Proposition 1 shows that the sender’s behavior is very intuitive. High types with

q > qs1, who are very concerned with incorrectly adopting the alternative option, veto

it.3 Low types with q < qs are very concerned with mistakenly maintaining the status

quo. They therefore maximize the probability that the final decision is to change the

status quo by targeting their actions at achieving change (m = 0 and v = 0). Lastly,

types with q ∈ (qs, qs1) are not overly concerned with a particular mistake and adopt

an intermediate behavior by sending a message in favor of the status quo but then

voting against it (m = 1 and v = 0).

A sender with type q ∈ (qs0, qs1) exhibits a rather counterintuitive feature: She re-

ports a message in favor of the status quo (m = 1) in order to increase the probability

that the alternative option is adopted (d = 0). Since q ≥ qs0, if she had sent message

3While these types are indifferent between the two messages, a responsive PBE exists only if they
report send a message in favor of the status quo.
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m = 0, she would then vote v = 1 and the status quo would be maintained. On the

other hand, since q ≤ qs1, sending message m = 1 implies that she then votes v = 0

which, in turn, ensures that the alternative is adopted with positive probability.

Proposition 1 identifies the order of the cutoffs for a given signal. To gain addi-

tional insights into the role of communication, we now relate players’ cutoffs across

signals. The exact values of the cutoffs q00 and q10 are irrelevant. Recall that the

threshold qs0 governs the voting behavior of senders who report message m = 0. How-

ever, provided that qs0 > qs, the voting behavior of types who send message m = 0

does not depend on the specific value of qs0. In fact, all types who send a message in

favor of change subsequently vote for it.

We have already shown in Proposition 1 that qs < qs1 and rs1 < rs0 and that

cutoffs are related across signals by the functions kps and kpr in a robust responsive

cutoff equilibrium. Since kp(q) < q, we conclude that q1 (q01) is the smallest (largest)

cutoff for the sender. Similarly, r11 (r00) is the smallest (largest) cutoff for the receiver.

Therefore, it remains to determine the relationship between q11 and q0 as well as r10

and r01. Corollary 1 gives the order of these thresholds when the quality of the signal

is the same for both players. In Section 2.3, we explore the case of different qualities.

Corollary 1 If ps = pr, then q11 < 1/2 < q0 and r10 < 1/2 < r01.
4

Proposition 1 and Corollary 1 together imply the following orders of the relevant

cutoffs when the two players have information of the same quality:

0 < q1 < q11 < q0 < q01 < 1,

0 < r11 < r10 < r01 < r00 < 1.

Figure 1 illustrates this result. The upper part of Figure 1 summarizes the equilib-

rium behavior for different types of senders. For each interval of types, the left (right)

column reports the equilibrium strategy of the sender when she observes signal s = 0

(s = 1). The top row indicates the sender’s message, the bottom row her vote. In

the lower part of Figure 1, we describe the receiver’s equilibrium behavior. For each

interval of types, the left (right) column refers to signal s = 0 (s = 1). The top (bot-

tom) row reports her vote after receiving message m = 0 (m = 1). To facilitate the

4In general these cutoffs are separated by
(
1 + Pr(ω=1)

Pr(ω=0)

)−1

.
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discussion, we give names to the senders and receivers in the five intervals. From left

to right, we label them as left extremist, left sophisticated, central, right sophisticated,

and right extremist types. We label some types sophisticated because their behavior

is fairly complex, but that does not imply that the extremist and central types are

boundedly rational. The label extremist reflects the fact that these types adopt a

rather inflexible behavior.

0                q1   q10            q11                        q0             q00              q01                         1

0   0             0   1        0   1  1   1             1   1
0   0             0   0        0   1  0   1             1   1

0                r11                    r10                               r01                               r00                       1

0    0            0    0        0    1 0    1            1    1
0    0            0    1        0    1                   1    1            1    1

  Left Extremist              Left Sophisticated                        Central                     Right Sophisticated            Right Extremist

  Left Extremist              Left Sophisticated                        Central                     Right Sophisticated            Right Extremist

Figure 1: Path of play in the one-sender game. Same quality of information.

Consider the receiver first. Left extremist receivers are so concerned with the

possibility of foregoing a valuable alternative that they vote against the status quo

(v = 0) regardless of their signal and the sender’s message. Right extremist receivers,

conversely, always enforce the status quo (v = 1). Similar to extremists, central

receivers never listen to the sender’s message. However, unlike extremists, they vote

according to their signal (v = s). Central types are not overly concerned with either

type of error, so they have an incentive to use the available information. However,

they know that the sender may misreport her signal, and thus prefer to vote according

to their own signal.

Sophisticated receivers are the only types who may listen to the sender’s mes-

sage. Left sophisticated receivers, for example, are more concerned with mistakenly

foregoing a good opportunity for change than with the opposite mistake (but less so

than left extremists). These receivers therefore require more evidence in order to vote
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for the status quo than against it. Observing signal s = 0 is sufficient evidence for

them that the final decision should be to adopt the alternative option. Therefore,

left sophisticated receivers disregard the sender’s message and vote in favor of change

in this situation. Observing signal s = 1 is not conclusive, so in this case left so-

phisticated receivers require that their signal is confirmed by their sender’s message

in order to vote for the status quo. Hence, left sophisticated senders vote v = 1 if

and only if their private information is in favor of change (s = 1) and that indication

is confirmed by a message that is favorable to change (m = 1). Conversely, right

sophisticated receivers vote in favor of change (v = 0) if and only if their private

information and the sender’s message support this decision (s = 0 and m = 0). In

short, a sophisticated receiver uses the sender’s message as a double check. Whenever

her private information about the state of the world conflicts with her preferences, a

sophisticated receiver will use the sender’s message to check the validity of her own

signal and will vote according to it only if it matches the sender’s message. As far

as a player’s type may be interpreted as capturing her attitudes with respect to the

final decision, we could say that when players have similar quality of information the

main role of communication is to resolve a conflict between a player’s knowledge and

her ex-ante view of the world.

Consider the sender next. A left extremist is especially concerned with maintain-

ing the status quo (d = 1) when the correct decision is to adopt the alternative option

(ω = 0). She thus votes for the alternative option (v = 0) and also sends message

m = 0 in order to manipulate the receiver to do the same. Right extremists are overly

concerned with adopting the alternative option (d = 0) when the status quo should

be maintained (ω = 1) and therefore veto change. Central senders condition their

voting and message behavior on their signal (m = v = s). Similar to central receivers,

central senders are not overly concerned with a particular mistake and thus use their

private information.

A signal in favor of change (s = 0) persuades left sophisticated senders that the

status quo should be abandoned. In this case, they express themselves in favor of the

alternative option both at the message and at the voting stage (m = 0 and v = 0).

However, after observing signal s = 1, left sophisticated senders adopt an intermediate

behavior. If they were to veto change, that would determine the final outcome, so

they vote v = 0 just as left extremists do. However, they are not as concerned as the

left extremists about mistakenly maintaining the status quo, so they report message

13



m = 1 and delegate the final decision to the receiver. Right sophisticated senders

display analogous behavior. They adopt the intermediate strategy of sending message

m = 1 and delegating the final decision (v = 0) after observing signal s = 0. After

observing signal s = 1, they are persuaded that the status quo should be maintained

and determine the final outcome by vetoing change (v = 1).

Our result that a sophisticated sender delegates the final decision to the receiver

parallels the literature on delegation. Li and Suen (2001) consider a simpler model

with an uninformed principal and an informed agent. They show that extremist

principals dictate the final decision whereas more moderate principals delegate it to

the agent.

2.3 Quality of Information

The previous section focused on the case where the quality of information is the same

for both players. If the signal qualities are different (ps 6= pr), then it is no longer

true that all cutoffs pertaining to s = 1 are smaller than the cutoffs for s = 0. This

may give rise to a variety of behaviors.

From Proposition 1 we know that, independent of the signal qualities, the smallest

(largest) cutoff of the sender is q1 (q01) and that the cutoffs q10 and q00 do not affect

the equilibrium behavior on path. Analogously, r11 (r00) is the smallest (largest)

cutoff of the receiver. It follows that the quality of information can affect only the

relationship between q11 and q0 as well as r10 and r01. Hence, only the behavior

of central senders and central receivers can depend on the quality of information.5

Specifically, if q11 > q0, central senders send m = 1 and vote v = 0 independent of

their signal. If r10 > r01, central receivers disregard their signal and vote v = m

according to the sender’s message. Figure 2 illustrates the different combinations

of equilibrium behavior for a uniform distribution of types. These combinations are

indicated by circles, pluses, and squares.

If the quality of information is almost the same for both players, ps ≈ pr, the

order of the cutoffs is q11 < q0 and r10 < r01 (pluses in Figure 2). The resulting

behavior is the same as discussed in Section 2.2. In particular, central senders and

receivers behave according to their own signal. Consider for example a central sender.

She has an incentive to use all available information which consists of her own signal

5We continue to label types from left to right.
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Figure 2: Equilibrium behavior as a function of the quality of information.

and the information contained in the receiver’s vote. While observing signal s = 1

increases the conditional probability of state ω = 1, the information contained in

the receiver’s vote either increases it (vr = 1) or decreases it (vr = 0). In order

to evaluate the information content of the receiver’s vote, the sender has to take

into account that not all types of receivers vote truthfully. Therefore, the sender

“discounts” the information content of the receiver’s vote accordingly. If the quality

of the signal is similar for both players, then the sender’s updated probability that

the state is ω = 1 is greater than 1/2 after she has observed signal s = 1 even if her

own signal conflicts with her opponent’s vote.

If the quality of the sender’s information is much lower than the quality of the

receiver’s information, ps ¿ pr, then q11 > q0 and r10 < r01 (circles in Figure 2). In

this case, a poorly-informed central sender disregards her own signal and delegates

the decision to the well-informed receiver. To continue the above example, the sender

knows that the discounted information content of her opponent’s is higher than the

information content of her own signal. This is enough evidence to convince her that
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the final decision should coincide with her opponent’s vote.

If the quality of the sender’s information is much higher than the quality of the

receiver’s information, ps À pr, on the other hand, we obtain q11 < q0 and r10 >

r01 (squares). When the sender is much better informed than the receiver, central

receivers disregard their own signal and listen to the sender’s message instead.

We next consider extreme signal qualities. One might think that if the sender

has a perfect signal, then she should reveal her signal truthfully and all types of

receivers should vote according to the sender’s message. While this in fact constitutes

a responsive PBE in the limiting case of ps = 1, there are other equilibria. Our

numerical analysis highlights one of them. As the probability that the sender receives

the correct signal approaches unity, all senders are central and choose m = v = s

whereas the receivers in the interval (0, 1/2) are left extremists and the ones in (1/2, 1)

are central (and thus vote v = m for every s). Hence, the correct decision is reached in

two different ways. A left extremist receiver always votes v = 0 and thereby delegates

the final decision to the sender. On the other hand, a central receiver listens to the

sender’s message and votes v = m.

If the receiver has a very good signal, pr ≈ 1, all receivers are central and choose

v = s whereas the senders in the interval (0, 1/2) are left extremists and the ones in

(1/2, 1) are central (and thus send message m = 1 and vote v = 0 for every signal s).

The sender intends to use the information available to the receiver and delegates the

decision to the receiver by voting v = 0. As the receiver disregards her message, the

sender is basically indifferent between the two messages. However, a responsive PBE

requires that left extremists choose m = 0 and central types m = 1.

2.4 Welfare Analysis

So far the distinction between the sender and the receiver has been exogenous. How-

ever, as the two players may have private information of different quality, a natural

question arises concerning the identity of the sender. Who should send the message

at the first stage? To answer this question we consider the ex-ante utilities of the

players and the probabilities of the two possible wrong decisions (adopting d = 1

when ω = 0 and choosing d = 0 when ω = 1). In Proposition 2 we show that the

identity of the sender is irrelevant. In particular, each player has the same ex-ante

utility independent of whether she is the sender or the receiver. Similarly, the prob-
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abilities of the two errors when the better informed player sends a message coincide

with the probabilities of the two errors when the sender is the player with the lower

quality signal.6

Let Γ (p, p′) denote the game in which the sender gets the correct signal with

probability p and the receiver observes the right signal with probability p′. We need

to compare sets of equilibrium utilities because we have not established uniqueness of

the equilibrium. Denote by Us (p, p′) the set of the sender’s ex-ante responsive cutoff

equilibrium utilities in the game Γ (p, p′). Similarly, let Ur (p, p′) denote the set of the

receiver’s ex-ante utilities.

Proposition 2 For any pair (p, p′) ∈ (
1
2
, 1

)2
, Us (p, p′) = Ur (p′, p).

Proposition 2 shows that, from an ex-ante point of view, the two players are

indifferent between being the sender or the receiver. This result could be also obtained

by demonstrating that the set of equilibria of the game Γ (p, p′) is outcome-equivalent

to the set of equilibria of the game Γ (p′, p). Proposition 2 would then follow as a

straightforward corollary.

Underlying Proposition 2 is the fact that every responsive PBE (q, r) of the game

Γ (p, p′) is related to a responsive PBE (q′, r′) of the game Γ (p′, p) by

q′s = rs1, q′s1 = rs0, r′s1 = qs, r′s0 = qs1 for s = 0, 1.

The first equality, for example, follows from the fact that the receiver in the game

Γ(p, p′), after observing signal s and receiving message m = 1, conditions her voting

decision on an event that has the same probability as the event on which the sender in

the game Γ(p′, p) conditions her message decision after observing signal s. Using this

symmetry result to compute Us (p, p′) and Ur (p′, p) yields the relationship presented

in Proposition 2.

Information can be aggregated either in the communication or in the voting stage.

Proposition 2 suggests that communication and voting are “perfect substitutes” in

the sense that all the information that is not transmitted by the sender’s message

is aggregated by the players’ votes. This leads to the question of whether or not

communication is beneficial at all. We defer an answer to this question to Section

6Our irrelevance result can be contrasted to Dekel and Piccione (2000) who consider a sequential
voting game without communication. When players have identical preferences, they show that it is
optimal to have the better-informed players vote earlier.
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3.4, where we compare a voting game without communication to the one- and two-

sender games.

3 Two-Sender Game

3.1 Model Setup and Equilibrium Concept

We now consider the case where both players participate in the straw vote. To keep

the analysis tractable, we assume that the quality of information is the same for both

players, i.e. p1 = p2 = p. Player i sends a message mi ∈ {0, 1}. The outcome of the

straw vote is common knowledge before the actual vote takes place. Hence, player i’s

voting strategy is a function assigning to each quadruplet (q, s, m,M) the probability

that player i of type q votes v = 1 after she has observed signal s, sent message m,

and received message M . Our solution concept is symmetric PBE. As in Section 2,

we rule out weakly dominated strategies.

It is easy to show that for every PBE there exists an outcome-equivalent PBE in

which the voting strategy admits a cutoff representation. Even though we are not

able to establish a similar result for the message strategy, we follow the spirit of the

one-sender case and focus on symmetric cutoff PBE. Such profiles are identified by

the cutoffs qs and qsmM with s ∈ {0, 1}, m ∈ {0, 1}, and M ∈ {0, 1}. This means

that a player of type q sends message m = 1 (m = 0) after observing signal s if q > qs

(q < qs), and that a player of type q votes v = 1 (v = 0) after observing signal s,

sending message m, and receiving message M if q > qsmM (q < qsmM).

As in the one-sender model, some cutoffs are not uniquely identified by sequential

rationality or weak dominance. We therefore restrict attention to robust equilibria in

which all cutoffs are related across signals through the function kp defined in equation

(1) (see Appendix A.2 for details).

3.2 Equilibrium Characterization

The two-sender game admits babbling and non-responsive equilibria. It is easy to

show that symmetric non-responsive and symmetric babbling equilibria are outcome-

equivalent.7 With a slight abuse of terminology, we henceforth call any equilibrium

7The proof is available upon request.
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that is outcome-equivalent to a babbling equilibrium non-responsive. This includes

some responsive equilibria that are also outcome-equivalent to babbling equilibria (see

the proof of Proposition 3). This is because the final decision is the same although

the voting strategy may be different.

We consider responsive equilibria in order to shed light on the interaction of com-

munication and voting. In a responsive equilibrium, there are types of players who

condition their vote on their opponent’s message. In Proposition 3 we present a

complete characterization of the responsive equilibria of the two-sender game.

Proposition 3 There exist three classes of responsive robust cutoff equilibria:

Class 0: qs < qs01 < qs11 < qs00 = qs10 for s ∈ {0, 1};

Class 1: qs01 < qs < qs00 < qs10 and qs11 ≤ qs for s ∈ {0, 1};

Class 2: qs11 ≤ qs01 = qs < qs00 = qs10 for s ∈ {0, 1}.

There does not exist a responsive robust cutoff equilibrium in any other configuration.

For any class, the smallest cutoff in s = 0 is larger than the largest cutoff in s = 1

and the two sets of cutoffs are separated by 1/2. Moreover, the equilibria of class 0

are outcome-equivalent to the equilibria of class 1.

Proposition 3 shows that there are three classes of equilibria and that two of them

are outcome-equivalent. We defer a detailed discussion of the equilibrium behavior of

classes 0 and 1 and next show that equilibria in class 2 are in turn outcome-equivalent

to the equilibria of the one-sender model. Since we do not establish uniqueness, we

need to compare sets of equilibria. To facilitate this comparison, we restrict attention

to equilibria of the one-sender game in which rs0 = qs1 and rs1 = qs. Denote by E(p)

the set of outcomes induced by such robust responsive cutoff equilibria of the one-

sender game. Similarly, let E2 (p) denote the set of outcomes induced by equilibria

of class 2.

Proposition 4 For any p ∈ (
1
2
, 1

)
, E(p) = E2 (p).

In other words, for every equilibrium of class 2, the one-sender game admits an

outcome-equivalent equilibrium. Conversely, each equilibrium of the one-sender game

has an outcome-equivalent counterpart in class 2. This is unexpected because the
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equilibria of class 2 are symmetric and thus conceptually different from the equilibria

of the one-sender game. In fact, while in the latter only one player communicates

any information about the state of the world, in the equilibria of class 2, both players

reveal some information. Note that it is not the case that in the equilibria of class

2 one sender babbles. Obviously, an asymmetric equilibrium of the two-sender game

can be constructed as follows. Given a responsive equilibrium of the one-sender game,

one player babbles at the message stage and chooses the same voting strategy as the

receiver. The other player behaves as if she were the sender.

The on-path behavior in the equilibrium of class 2 is similar to the behavior in a

robust responsive cutoff equilibrium of the one-sender game. In particular, all types in

(0, q1) behave as left extremist senders, all types q ∈ (q100, q0) mimic central senders,

and all types in the interval (q000, 1) act as right extremist senders. Types in the

interval (q1, q100) send message m = 0 and vote v = 0 upon observing s = 0. When

the realized signal is s = 1, they send message m = 1 and then condition their vote on

the opponent’s message, voting v = 0 if and only if they receive message M = 0. Their

voting behavior coincides with the voting behavior of the left sophisticated receivers

in the one-sender game. At the same time, their message strategy is the same as the

message strategy of the left sophisticated senders. One could say that these types

combine the role of both sender and receiver. Analogously, the types in the interval

(q0, q000) play the role of right sophisticated senders and receivers.

We now turn to the equilibria of class 0 and class 1. Figure 3 illustrates the

equilibrium behavior. The top part of Figure 3 summarizes the different paths of

play in equilibria of class 0, the bottom part refers to equilibria of class 1. For each

interval, the first column reports the path of play of the type when she has received

the signal s = 0 from nature, and the second column, the path after the signal s = 1.

The first row identifies the message sent. The second row refers to the vote. When

a type conditions her vote on her opponent’s message, we first present the vote after

receiving message M = 0 and second the vote after M = 1.

Since class 0 and class 1 are outcome-equivalent, we start by discussing the be-

havior implied by equilibria of class 1 and then comment on the differences between

class 1 and class 0. To facilitate the discussion, we label the types from left to right as

left extremist, left non-revealing sophisticated, left truthful sophisticated, central, right

truthful sophisticated, right non-revealing sophisticated, and right extremist types. We

now distinguish between sophisticated types who truthfully report their signal and
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Figure 3: Path of play of class 0 and class 1 equilibria in the two-sender game.

those who do not condition their message on their signal.

As in the one-sender game, players partially reveal their private information.

Specifically, left truthful sophisticated, central, and right truthful sophisticated types

report the signal that they observe whereas the remaining types send a message that is

independent of their signal. Turning to the voting behavior, a player is more likely to

veto change after receiving a message in favor of the status quo. Formally, qsm0 > qsm1

for all s ∈ {0, 1} and m ∈ {0, 1}. This allows a player to manipulate her opponent.

To gain insight into a player’s behavior in a PBE, let us fix her opponent’s strategy

and her signal. The player can decide the final outcome by voting v = 1. Alterna-

tively, she can first send a message m ∈ {0, 1} and then vote for change irrespective of

her opponent’s message (v = 0) or vote in line with her opponent’s message (v = M).8

Suppose first that the player observes signal s = 1. Left extremists are very

concerned with mistakenly maintaining the status quo. Therefore they send message

m = 0 in order to increase the probability that their opponent votes in favor of

the alternative option and vote v = 0 themselves. Left non-revealing sophisticated

types continue to manipulate their opponent into voting for change by falsely sending

message m = 0 but then listen to their opponent’s message and vote v = M . Left

8Since there is a positive probability that her opponent reveals her signal truthfully, it is never
optimal for the player to vote against her opponent’s message.
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non-revealing sophisticated types take into account that their opponent may vote

for change because they have sent a message in favor of it. Since they are less

concerned with mistakenly maintaining the status quo than left extremists, they

follow their opponent’s message at the voting stage in order to avoid that the status

quo is maintained simply because of their own message. After receiving signal s = 1,

left truthful sophisticated types are not overly concerned with a particular error and

hence have no incentive to manipulate their opponent. In fact, these types report their

signal truthfully and listen to their opponents message (v = M). Finally, central, right

truthful sophisticated, right non-revealing sophisticated, and right extremist types are

very concerned with erroneously adopting the alternative option and therefore veto

change (and send message m = 1). To summarize, low types target their actions

towards the alternative option whereas high types tend to favor the status quo.

Suppose next that the player observes signal s = 0. In a responsive PBE of class

1, we observe four different behavioral patterns. Specifically, left extremist, left non-

revealing sophisticated, left truthful sophisticated, and central types disregard their

opponent’s message and express themselves in favor of change at the message and

the voting stage (m = 0 and v = 0). Right truthful sophisticated types send message

m = 0 and right non-revealing sophisticated types m = 1. However, both their votes

reflect their opponent’s message (v = M). Finally, right extremist types ensure that

the status quo is maintained (and send message m = 1).

Figure 3 shows that in a responsive PBE of class 1, only truthful and non-revealing

sophisticated types (left and right) make use of their opponent’s message. In partic-

ular, these types use their opponent’s message as a double check when their private

signal conflicts with their concerns, similar to sophisticated receivers in the one-sender

game. They vote according to their own signal only if it is confirmed by their oppo-

nent’s message.

The behavior in equilibria of class 0 is the same as in equilibria of class 1 with

two exceptions. In an equilibrium of class 0, left non-revealing sophisticated types

reveal their signal and vote for change independent of their signal on their opponent’s

message. In addition, right truthful sophisticated types always send message m = 1

and then vote v = s according to their own signal.
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3.3 Quality of Information

We conduct a numerical analysis with a uniform distribution of types over a grid of

values for the quality of information p. In each class, the numerical analysis led to a

unique equilibrium.

For brevity we restrict the discussion to equilibria of class 1. In Figure 4 we

present the shares of behavioral patterns for each level of quality of information. The

size of left and right extremist types decreases in p (it is close to 1 when p approaches

1/2 and it is about 0 for p near 1). The truthful sophisticated types grow steadily to

pervade the entire interval (0, 1) for p close to 1. The central types disappear for p

close to 1/2 and p close to 1. The mass of left and right non-revealing sophisticated

is relatively small.
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Figure 4: Shares of behavioral patterns in the class 1 equilibrium as a function of the
quality of information.

When the quality of information is very poor, almost all players condition their

behavior only on their relative concern with respect to the two possible mistakes

and disregard both their own signal and their opponent’s message. This is an intu-

itive results, because when private signals are not informative, the whole purpose of

communication and voting to aggregate private information is defied.

If the quality of information is very good, almost all players send their message
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sincerely. Because of that, a player’s message contains valuable information. On

the other hand, since the player’s own signal is very informative, a conflict between

preferences and signal may arise even for extreme types. Therefore, almost all types

are willing to condition their voting behavior on their opponent’s opinion. In other

words, they prefer to take advantage of the opponent’s private information as a double

check.

Finally, when the quality of the information is intermediate, there is partial revela-

tion of information. Due to the presence of extremist types, a player has to “discount”

the information content of her opponent’s message. This explains the presence of cen-

tral types who are not overly concerned with a particular mistake and thus disregard

their opponent’s message and vote according to their own signal.

3.4 Welfare Analysis

Intuitively, giving players the opportunity to talk cannot increase players’ welfare

when the signal is either completely uninformative or perfectly informative. However,

communication reveals some additional information in the case when the quality of

the signal is intermediate. This suggests that communication can increase players’

welfare in this case.

We compare players’ ex-ante equilibrium utility in the pure voting game, the one-

sender game, and the two-sender game when the distribution of types is uniform. The

result is illustrated in Figure 5, where the notation un refers to the ex-ante utility

associated with the Pareto-dominant equilibrium of the n-sender game. The class 1

(and thus the class 0) equilibrium Pareto-dominates the equilibrium of class 2 which in

turn is outcome-equivalent to the responsive PBE of the one-sender game. Moreover,

all three classes of equilibria Pareto-dominate the equilibrium of the pure voting game.

Our result that the ex-ante utility of all players is increasing in the number of speakers

is in contrast to the literature on cheap talk originated by Crawford and Sobel (1982)

where the principal’s utility, but not necessarily an agent’s utility, is increasing in the

number of agents (Battaglini 2002, Krishna and Morgan 2001).

The difference in utility between the Pareto-dominant equilibrium in the two-

sender game (class 1 and 0) and the equilibrium in the one-sender game is smaller than

the difference between the equilibrium in the one-sender game and the equilibrium in

the pure voting game. Since the increment of utility contributed by the first speaker
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Figure 5: Utility comparison between the pure-voting game and the one- and two-
sender games.

is larger than the increment of utility contributed by the second speaker, we could

say that there is a case of decreasing returns to scale.

4 Conclusion

This paper analyzes the interaction of communication and voting in the context of a

small committee (two players). When players share similar preferences, communica-

tion takes a very simple form since all players have an incentive to reveal their private

information (Austen-Smith 1990, Coughlan 2000). However, in many situations play-

ers do not have a long history of interactions and hence do not have full knowledge of

each others attitudes. Therefore, we consider the case where preferences are different

and uncertain.

We provide a complete characterization of the equilibria both for the case where

only one player is allowed to talk and for the case where both are allowed to do

so. We show that, while not all private information is revealed, some information

transmission takes place. Our main contribution is that we demonstrate how this

information transmission benefits the players and helps them reach a better decision.
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We show that when the two players have private information of the same quality

about the state of the world, the purpose of communication is to serve as a double

check. A player uses her opponent’s message to resolve a conflict between her pref-

erences and her private information. In the one-sender game the sender resolves this

conflict by delegating the final decision to the receiver.

When the two players have private information of different quality and only of

them is allowed to talk, we show that the identity of the sender does not affect

the quality of the final decision. This suggests that communication and voting are

“perfect substitutes” in the sense that all the information that is not transmitted by

the sender’s message is aggregated by the players’ votes.

To evaluate the impact of communication on players’ welfare, we compare the

voting game without communication to the one- and two-sender games. We show

that communication is beneficial and subject to decreasing returns to scale.

Our results imply one round of communication is not sufficient for all the available

information to be transmitted. In general, allowing for more than one round of

communication expands the set of possible outcomes (see for example Forges (1990)

and Aumann and Hart (1999)). It would be interesting to explore the question

whether allowing more complex forms of communication helps players to reach a

more informed decision.

Adding communication to a voting game considerably complicates the analysis.

We have therefore restricted attention to a setup with two players, two states of the

world, and two signals. Future research should consider more general environments.

For example, having more than two players would allow us to analyze and compare

different voting rules. In sum, this paper is a first step toward understanding the role

of communication in a collective decision-making process.
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Appendix A: Cutoff Equivalence and Robustness

A.1 Cutoff Equivalence

In order to show that any PBE in undominated strategies is outcome-equivalent to
some cutoff PBE, we first need to formally define players’ strategies. The sender’s
behavioral strategy consists of two choices. The message choice is described by a
measurable function µ : (0, 1)× {0, 1} → [0, 1] where µ (q, s) denotes the probability
that the sender sends message m = 1 when her type is q and she observes signal s.
The voting choice is defined by a measurable function σ : (0, 1) × {0, 1}2 → [0, 1]
where σ (q, s, m) denotes the probability that the sender votes v = 1 when her type
is q, she has observed signal s, and she has sent message m. The receiver’s strategy
is described by a measurable function ρ : (0, 1) × {0, 1}2 → [0, 1] where ρ (q, s, m)
denotes the probability that the receiver votes v = 1 when her type is q, she has
observed signal s, and she has received message m.

Associated with each strategy profile is a distribution function which assigns to
each quadruplet (qs, qr, ss, sr) the probability that the decision d = 1 is made by a
sender of type qs and a receiver of type qr, when they observe signals ss and sr, respec-
tively. Two strategy profiles are outcome-equivalent if their associated distribution
functions are equal almost everywhere.

Proposition 5 Every PBE in undominated strategies is outcome-equivalent to a
PBE in which the sender’s message and voting strategies admit a cutoff structure
described by (qs, qsm), and the receiver’s strategy admits a cutoff structure described
by rsm.

Proof. In the proof we distinguish between responsive and non-responsive PBE.
An equilibrium is non-responsive if ρ (q, s, 0) = ρ (q, s, 1) for s ∈ {0, 1} and for any
q. A babbling equilibrium satisfies µ (q, 0) = µ (q, 1) for any q. Babbling equilibria
are non-responsive, but not necessarily vice versa.9 Moreover, any babbling PBE is
outcome-equivalent to a cutoff PBE where q0 = q1 = 0. So we need to show that
non-responsive and babbling equilibria are outcome-equivalent.

Lemma 1 Non-responsive and babbling equilibria are outcome-equivalent.

This result follows from the fact that if the receiver’s voting behavior is independent
of the message, then also the sender’s voting choice (and thus the final decision) is
independent of the message. The formal derivation is available upon request.

Turning to responsive PBE, we proceed in three steps. First we spell out the
equations that characterize the equilibrium, then we show that the set of types who

9Note that in this game there are non-responsive equilibria which are not babbling. For in-
stance, µ (q, 0) = µ (q, 1) ∈ (0, 1) for almost every q, σ (q, s, 0) = σ (q, s, 1) and ρ (q, s, 0) = ρ (q, s, 1)
(where σ (q, s, m) and ρ (q, s, m) are the equilibrium strategies of the game without communication)
constitutes a PBE.
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play a given strategy constitutes an interval. Finally, we show that the equilibrium
strategies admit a cutoff representation.

Step 1: The equations characterizing responsive undominated PBE profiles ((µ, σ), ρ).
The sender’s voting strategy. Given s and m, sequential rationality requires that

σ (q, s, m) admits the following cutoff structure:

σ (q, s, m) =

{
1 if q > Pr(ω = 0|s,m, vr = 0)
0 if q < Pr(ω = 0|s,m, vr = 0)

(3)

Since we are restricting attention to equilibria in undominated strategies, Pr(s,m, vr =
0) > 0. Thus Pr(ω = 0|s,m, vr = 0) is well defined. We define qsm = Pr(ω =
0|s,m, vr = 0), where

qsm =
Pr(s|ω = 0) Pr(vr = 0|ω = 0,m)

Pr(s|ω = 0) Pr(vr = 0|ω = 0,m) + Pr(s|ω = 1) Pr(vr = 0|ω = 1,m)
(4)

The receiver’s voting strategy. Given s and m, sequential rationality requires that
ρ (q, s, m) = 1, if

q[Pr(s|ω = 0) Pr(vs = 0,m|ω = 0) + Pr(s|ω = 1) Pr(vs = 0,m|ω = 1)] > (5)

Pr(s|ω = 0) Pr(vs = 0,m|ω = 0)

and that ρ (q, s,m) = 0, if the inequality is reversed.
Whenever Pr(s|ω = 0) Pr(vs = 0,m|ω = 0)+Pr(s|ω = 1) Pr(vs = 0,m|ω = 1) > 0,

the strategy ρ (q, s, m) admits the following cutoff structure:

ρ (q, s, m) =

{
1 if q > Pr(ω = 0|s, m, vs = 0)
0 if q < Pr(ω = 0|s, m, vs = 0)

(6)

We define rsm = Pr(ω = 0|s,m, vs = 0).
Whenever Pr(vs = 0,m|ω = 0) = 0 (and thus Pr(vs = 0, m|ω = 1) = 0), it

follows that d = 1 regardless of ρ (q, s, m). Since the receiver is indifferent between
voting v = 0 and v = 1, we can construct a cutoff strategy for the receiver’s voting
choice that leaves the sender’s incentives unchanged. Formally, we derive Pr(ω =
0|s,m, vr = 0, ρ) from the strategy ρ (q, s, m). By the intermediate value theorem,
there exists a rsm ∈ (0, 1) such that the cutoff strategy ρ′ (q, s, m) defined by rsm

yields Pr(ω = 0|s, m, vr = 0, ρ) = Pr(ω = 0|s,m, vr = 0, ρ′). This guarantees that the
sender’s voting and message strategies are unchanged.

The sender’s message strategy. Consider a sender of type q at the message stage
after she observes signal s. Let Eu(m|s, q) denote her expected utility when sending
message m. In equilibrium, the sender chooses m = 1 (m = 0) when the following
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function ϕ(s, q) is positive (negative):

ϕ (s, q) := Eu (1|s, q)− Eu (0|s, q) (7)

= −q Pr (d = 0, ω = 1|s, q,m = 1)− (1− q) Pr (d = 1, ω = 0|s, q, m = 1)

+q Pr (d = 0, ω = 1|s, q, m = 0) + (1− q) Pr (d = 1, ω = 0|s, q,m = 0)

= −q Pr (ω = 1|s) [Pr (d = 0|ω = 1, s, q, m = 1)− Pr (d = 0|ω = 1, s, q, m = 0)]

− (1− q) Pr (ω = 0|s) [Pr (d = 1|ω = 0, s, q,m = 1)− Pr (d = 1|ω = 0, s, q, m = 0)]

= −q Pr (ω = 1|s) [χ (q < qs1) Pr (vr = 0|ω = 1,m = 1)

−χ (q < qs0) Pr (vr = 0|ω = 1,m = 0)]

− (1− q) Pr (ω = 0|s) [χ (q < qs0) Pr (vr = 0|ω = 0,m = 0)

−χ (q < qs1) Pr (vr = 0|ω = 0,m = 1)]

where χ (.) denotes the indicator function.

Step 2: Without loss of generality, we can restrict attention to equilibria in which,
for a given signal s, the set of types who use the same strategy is an interval.

For notational ease, we denote the strategies (µ, σ) by ξ and drop s. Consider
a PBE (ξ, ρ), where there is a triple q′ < q < q′′, such that ξ(q′) = ξ(q′′), but
ξ(q′) 6= ξ(q). Perfection and equation (3) imply that it is impossible that σ(q) 6= σ(q′)
Hence, it must be that µ(q) 6= µ(q′). Without loss of generality, we may assume that
µ(q) and µ(q′) are two different pure strategies. (If µ(q) or µ(q′) is mixed, then there
exists a PBE (ξ′, ρ) in which the types q′ and q use different pure message strategies,
types q′ and q′′ use the same strategy, and the other types of sender maintain ξ.)

Since ξ is an equilibrium strategy, it follows that type q′ prefers to play ξ(q′) rather
than ξ(q). This implies that:

−q′ Pr(d = 0, ω = 1|ξ(q′))− (1− q′) Pr(d = 1, ω = 0|ξ(q′)) ≥
−q′ Pr(d = 0, ω = 1|ξ(q)) + (1− q′) Pr(d = 1, ω = 0|ξ(q))

and

−q′′ Pr(d = 0, ω = 1|ξ(q′))− (1− q′′) Pr(d = 1, ω = 0|ξ(q′)) ≥
−q′′ Pr(d = 0, ω = 1|ξ(q)) + (1− q′′) Pr(d = 1, ω = 0|ξ(q)).

By linearity of the above expression, the strategy ξ(q) is optimal for type q if and
only if

Pr(d = 0, ω = 1|ξ(q′)) = Pr(d = 0, ω = 1|ξ(q))
Pr(d = 1, ω = 0|ξ(q′)) = Pr(d = 1, ω = 0|ξ(q)) (8)

which implies that the senders q, q′ and q′′ must be indifferent between ξ(q) and ξ(q′).
Since by equation (3) σ(q) ∈ {0, 1} a.e, it suffices to consider four different cases.
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Case 1: Suppose that µ(q′) 6= µ(q) and that on-path σ(q) = 0 and σ(q′) = 1.
Then Pr(d = 0, ω = 1|ξ(q′)) = 0 but Pr(d = 0, ω = 1|ξ(q)) > 0 since after any message
the receiver may vote v = 0 with positive probability. This is a contradiction.

Case 2: Suppose that µ(q′) 6= µ(q) and that on-path σ(q) = 1 and σ(q′) = 0.
Then Pr(d = 0, ω = 1|ξ(q′)) > 0 but Pr(d = 0, ω = 1|ξ(q)) = 0, which is again a
contradiction.

Case 3: Suppose now that on-path σ(q) = 0 and σ(q′) = 0. Using equation (8),
we have

Pr (d = 1, ω = 0|ξ (q′)) = Pr (ω = 0|s) Pr (vr = 1|ω = 0, µ (q′)) (9)

= Pr (ω = 0|s) [pr Pr (vr = 1|µ (q′) , sr = 0) + (1− pr) Pr (vr = 1|µ (q′) , sr = 1)]

= Pr (ω = 0|s) [pr Pr (vr = 1|µ (q) , sr = 0) + (1− pr) Pr (vr = 1|µ (q) , sr = 1)]

= Pr (d = 1, ω = 0|ξ (q))

Note that if the set of sender’s types who send message µ(q′) and vote v = 0 on
path has measure zero, then we can find a PBE (ξ′, ρ) in which types q̂ < q who
were using strategy ξ(q′) switch to strategy ξ′(q̂) = ξ(q) and all other types of sender
maintain strategy ξ. Similarly, if the set of sender’s types who send message µ(q)
and vote v = 0 on path has measure zero, then there exists a PBE in which all
types q̂ ∈ (q′, q′′) who were using strategy ξ(q) adopt strategy ξ(q′). Finally, consider
the case in which both sets defined above have positive measure. Then equation (5)
implies that r0µ(q) > r0µ(q′) if and only if r1µ(q) > r1µ(q′). It follows that equation (9)
can hold only if the equilibrium is not responsive.

Case 4: Suppose that on-path σ(q) = 1 and σ(q′) = 1. Then there exists a PBE
in which types q̂ ∈ (q′, q′′) who were using strategy ξ(q) adopt strategy ξ(q′), similarly
to case 3.

This concludes the proof of the second step. We have shown that for any equilib-
rium, we can find an outcome-equivalent equilibrium where the set of types who take
the same strategy is an interval. Moreover, the argument may be extended to show
that if such an interval is of positive measure, the associated message strategy must
be a pure strategy. If not, for any pair of type (q, q′) in the interval, both q and q′

must be indifferent between sending message m = 0 or m = 1. Also, given the same
message, type q votes as type q′. Together with condition (7), this implies that the
equilibrium must be non-responsive.

Step 3: For any PBE in undominated strategies, there is an outcome-equivalent
equilibrium in which the sender’s message strategy can be characterized by a cutoff.

Let Qmv denote the interval of sender’s types who send message m and vote v
(on-path). Suppose there exists a PBE with Q00 = (a, b) and Q01 = (c, d), where
0 6 a 6 b < c 6 d 6 1. Depending on the relationship of Q10 and Q11, we consider
three different cases.

Case 1: Q10 = (b, e) and Q11 = (e, c) for some e ∈ [b, c).
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Types q ∈ Q01 are indifferent between sending message m = 0 and m = 1 because
on-path they will vote v = 1 and achieve d = 1 in both cases. Therefore, there is
an outcome-equivalent equilibrium where all types in Q01 adopt the same strategy as
the types in Q11 and the receiver’s strategy is unchanged.

Case 2: Q10 = (b, c) and Q11 = (d, 1).
There is an outcome-equivalent equilibrium where all types in Q11 adopt the same

strategy as the types in Q01, so this case is outcome-equivalent to Q10 = (b, c) and
Q01 = (c, 1). It remains to show that there is an outcome-equivalent equilibrium
where all the types in Q01 play m = 1 and v = 1. That is guaranteed when qs1 ≤ c.
Proceeding by contradiction, suppose c < qs1. Note that ϕ(s, q) defined in equation
(7) must be equal to zero at q = c. Solving ϕ(s, c) = 0 yields an expression for c that
coincides with the RHS of equation (4) with m = 1. This implies that c = qs1, and a
contradiction is obtained.

Case 3: Q10 = (0, a) and Q11 = (b, c).
There is an outcome-equivalent equilibrium where all types in Q01 adopt the same

strategy as the types in Q11, so this case is outcome-equivalent to Q10 = (0, a) and
Q11 = (b, 1). To complete the argument, note that the reduced configuration derived
in Case 3 is the meaning reversion of the reduced configuration derived in Case 2.

A.2 Robustness

Here we formalize the robustness requirement mentioned in the main body. For infi-
nite games, Trembling Hand Perfection has been studied by Simon and Stinchcombe
(1995), who distinguish between a strong and a weak extension of the standard con-
cept introduced by Selten (1975) for finite games. Our requirement has the flavor of
such extensions (applied to the agent normal form of our game) and imposes a fur-
ther restriction. We require a robust cutoff equilibrium to be the limit of a sequence
of cutoff strategy profiles, where all cutoffs are uniquely identified by sequential ra-
tionality, along some vanishing sequence of perturbations. The motivation for our
refinement is that by inspecting the equations that characterize the equilibrium, we
note that there are some cutoffs that may be undetermined. We then perturb the
equilibrium strategies slightly and look for a perturbation where all the cutoffs are
uniquely determined.

We characterize an agent in terms of her signal and, if applicable, also in terms
of the message sent or received. Formally, the sender has six agents z ∈ Zs =
{0, 1} ∪ {0, 1}2 and the receiver has four agents z ∈ Zr = {0, 1}2. For every agent,
we introduce a distributional strategy that assigns a random choice to every type
q. For any zi ∈ Zi, i ∈ {s, r}, let the measurable function ψzi

: (0, 1) → ∆ ({0, 1})
describe the distributional equilibrium strategy of agent zi. Let BRzi

q (ψ̂−zi
) be the set

of best-replies of type q of agent zi against opponents’ distributional strategy profile
ψ̂−zi

. Let BRzi(ψ̂−zi
) be the set of distributional strategies induced by BRzi

q (ψ̂−zi
)

with q ∈ (0, 1).
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Definition 1 An equilibrium ψ is robust if there exist a sequence of positive num-
bers ηn → 0 and a sequence {(εn

zi
)Zs∪Zr}n≥0 of measurable functions in ∆̇ ({0, 1})(0,1)

(where ∆̇ is the interior of ∆) such that

1. for all zi ∈ Zs ∪ Zr, there exists a sequence {(ψn
zi
)Zs∪Zr}n≥0 where each ψn

zi
is a

selection from the set BRzi((1− ηn)ψn
−zi

+ ηnεn
−zi

), ψn
zi

admits cutoff represen-
tation, and it converges weakly to ψzi

;

2. for any n and zi ∈ Zs ∪ Zr, the set BRzi((1 − ηn)ψn
−zi

+ ηnεn
−zi

) contains a
unique strategy (up to sets of measure zero).

We now show that in any robust cutoff PBE, all cutoffs are related across signals
by the functions kps and kpr as explained in Section 2.1.

Lemma 2 In any robust cutoff PBE, q1 = kps(q0) and for any m ∈ {0, 1}, q1m =
kps(q0m) and r1m = kpr(r0m).

Proof. Our robustness requirement implies that along the sequence
(
ψn

zi

)
Zs∪Zr

all
cutoffs are uniquely determined by the equilibrium conditions. For example, the
sender’s voting cutoff after observing signal s and sending message m can be repre-
sented as

qn
sm =

1

1 + Pr(ω=1|s)
Pr(ω=0|s)

(
Bn

m

An
m

)

for some strictly positive An
m and Bn

m. Therefore, qn
1m = kps(q

n
0m) for any n. Since the

function kp is continuous, limn→∞ qn
1m = kps(limn→∞ qn

0m). A similar argument can be
used to establish the relationship between the remaining cutoffs.

The concepts and results of this section extend mutatis mutandis to the two-sender
game.

Appendix B: Proofs

In the proofs we shall often refer to the odds ratio (1 − pi)/pi, which we denote by
Ri. We will make use of the family of functions

kR(q) =
R2q

R2q + 1− q

defined on q ∈ (0, 1) and indexed with R ∈ (0, 1). Note that for every q and R,
kR(q) < q and kR is strictly increasing in q. kR is straightforwardly derived from kp

since R = (1− p)/p.
Proof of Proposition 1. We start by deriving the equations that characterize

all robust responsive cutoff equilibria. We then check which order of the cutoffs is
consistent with equilibrium. Specifically, we proceed in two steps. The first one rules
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out all configurations that are inconsistent with equilibrium. The second step shows
that a robust cutoff PBE indeed exists for the configuration presented in Proposition
1.

Sender’s voting strategy. After restricting attention to robust cutoff equilibria,
equations (4), which characterize the sender’s equilibrium voting strategy, simplify
to: 




q00 = 1

1+Rs
[RrF (r00)+F (r10)]
[F (r00)+RrF (r10)]

q10 = 1

1+ 1
Rs

[RrF (r00)+F (r10)]
[F (r00)+RrF (r10)]

q01 = 1

1+Rs
[RrF (r01)+F (r11)]
[F (r01)+RrF (r11)]

q11 = 1

1+ 1
Rs

[RrF (r01)+F (r11)]
[F (r01)+RrF (r11)]

(10)

Receiver’s voting strategy. Given m, rsm is uniquely defined by equation (6) when-
ever Pr(vs = 0,m) > 0. In this case we obtain after simplification:





r00 = 1

1+Rr
[Rs min{F (q0),F (q00)}+min{F (q1),F (q10)}]
[min{F (q0),F (q00)}+Rs min{F (q1),F (q10)}]

r10 = 1

1+ 1
Rr

[Rs min{F (q0),F (q00)}+min{F (q1),F (q10)}]
[min{F (q0),F (q00)}+Rs min{F (q1),F (q10)}]

(11)





r01 = 1

1+Rr
[Rs(F (q01)−F (q0))+(F (q11)−F (q1))]
[(F (q01)−F (q0))+Rs(F (q11)−F (q1))]

r11 = 1

1+ 1
Rr

[Rs(F (q01)−F (q0))+(F (q11)−F (q1))]
[(F (q01)−F (q0))+Rs(F (q11)−F (q1))]

(12)

In a robust cutoff PBE, Pr(vs = 0,m = 0) > 0. Hence, rs0 is uniquely defined. If
Pr(vs = 0,m = 1) = 0, then the characterizing equations for rs1 are undetermined.
However, Lemma 2 in Appendix A implies that r01 = kRr(r11) in a robust cutoff PBE.

Step 1: The only configuration consistent with equilibrium is qs < qs0 < qs1 for
s ∈ {0, 1}.

Since cutoffs are related across signals by the strictly increasing functions kRs and
kRr , it suffices to consider the ordering of the cutoffs for a given signal.

In any responsive cutoff equilibrium, we have rs0 > rs1. (If rs0 = rs1, the equi-
librium is nonresponsive. Moreover, in any responsive equilibrium, we have qs > 0.
But if rs0 < rs1, then one can show by inspecting equation (7) that there are senders
of type q, with q sufficiently close to 0, who have an incentive to deviate from the
equilibrium strategy and send message m = 1.) By equation (10) and our technical
assumption, rs0 > rs1 if and only if qs0 < qs1. It remains to check configurations that
involve qs0 < qs1.

Case 1: Suppose that qs0 < qs1 ≤ qs. Then ϕ(s, q) ≤ 0 for q ∈ (qs0, qs1) since
these types prefer to send message m = 0. However, ϕ is strictly decreasing in this
interval and has a zero at qs1 (see equation (10)). This implies a contradiction.

Case 2: Suppose we have an equilibrium where qs0 < qs < qs1. Under this config-
uration, the function ϕ(s, q) in equation (7) is strictly decreasing for q ∈ (qs0, qs1) and
ϕ(s, qs) = 0. However, inspecting equation (10), we have ϕ(s, qs1) = 0 which implies
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a contradiction.
Case 3: Suppose that qs = qs0 < qs1. We want to show that there are senders of

type q ∈ (0, qs0) who have an incentive to deviate from their equilibrium strategy and
send m = 1. Consider the function ϕ from equation (7). This function is piecewise
linear. We extend the segment defined on (0, qs0) to the unit interval to obtain the
following function:

ϕ̂ (s, q) = −q Pr (ω = 1|s) [Pr (vr = 0|ω = 1,m = 1)− Pr (vr = 0|ω = 1,m = 0)]

− (1− q) Pr (ω = 0|s) [Pr (vr = 0|ω = 0,m = 0)− Pr (vr = 0|ω = 0,m = 1)]

Note that ϕ̂ (s, q) is strictly increasing with ϕ̂ (s, 0) < 0 and ϕ̂ (s, 1) > 0. Hence, it
attains a unique zero in (0, 1). It thus suffices to show that ϕ̂(s, q) has its zero in
(0, qs0).

Let q̂s be the zero of ϕ̂(s, q), where

q̂s =
1

1 + Pr(ω=1|s)[Pr(vr=0|ω=1,m=0)−Pr(vr=0|ω=1,m=1)]
Pr(ω=0|s)[Pr(vr=0|ω=0,m=0)−Pr(vr=0|ω=0,m=1)]

From equation (4) we know that

qs0 =
1

1 + Pr(ω=1|s) Pr(vr=0|ω=1,m=0)
Pr(ω=0|s) Pr(vr=0|ω=0,m=0)

A simple calculation shows that q̂s ≥ qs0 implies

Pr(vr = 0|ω = 1,m = 0)

Pr(vr = 0|ω = 0,m = 0)
≤ Pr(vr = 0|ω = 1,m = 1)

Pr(vr = 0|ω = 0,m = 1)

But qs1 > qs0 rules out the above inequality.
We conclude that a robust responsive cutoff PBE can exist only if qs < qs0 <

qs1. The next step is to show that there indeed exists an equilibrium with this
configuration.

Step 2: There exists a robust responsive cutoff PBE.
The following system characterizes the equilibrium with qs < qs0 < qs1:





q0 = 1

1+Rs
[Rr(F (r00)−F (r01))+(F (kRr

(r00))−F (kRr
(r01)))]

[(F (r00)−F (r01))+Rr(F (kRr
(r00))−F (kRr

(r01)))]

q00 = 1

1+Rs
[RrF (r00)+F (kRr

(r00))]

[F (r00)+RrF (kRr
(r00))]

q01 = 1

1+Rs
[RrF (r01)+F (kRr

(r01))]

[F (r01)+RrF (kRr
(r01))]

r00 = 1

1+Rr
[RsF (q0)+F (kRs

(q0))]

[F (q0)+RsF (kRs
(q0))]

r01 = 1

1+Rr
[Rs(F (q01)−F (q0))+(F (kRs

(q01))−F (kRs
(q0)))]

[(F (q01)−F (q0))+Rs(F (kRs
(q01))−F (kRs

(q0)))]

(13)
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It is enough to spell out the equations for s = 0 because the cutoffs for s = 1 can be
recovered from the cutoffs for s = 0 using the functions kRr and kRs .

Since q00 does not appear in the equations for the other cutoffs, it suffices to show
that the system above admits a solution with r00 > r01 and q01 > q0. To see this, note
that if r00 > r01, then ϕ(s, q) is strictly increasing for q ∈ (0, qs0) and it has a zero at
qs. Moreover, ϕ(s, q) is strictly decreasing for q ∈ (qs0, qs1) and has a zero at qs1. For
q > qs1, ϕ(s, q) = 0. This implies that the cutoff message strategy described by qs is
a best reply. Finally, applying our technical assumption to the above system implies
that if qs1 > qs, then qs0 ∈ (qs, qs1).

For the moment consider the case in which Rs = Rr = R. We express the working
hypothesis that there is a solution such that rs0 = qs1 and rs1 = qs. Therefore, we
just need to find a solution that satisfies q01 > q0 for the system:





q01 = h1(q01,q0) := 1

1+R
[RF (q0)+F (kR(q0))]

[F (q0)+RF (kR(q0))]

q0 = h2(q01, q0) := 1

1+R
[R(F (q01)−F (q0))+(F (kR(q01))−F (kR(q0)))]

[(F (q01)−F (q0))+R(F (kR(q01))−F (kR(q0)))]

Consider the function h = (h1, h2) defined on X = {(x, y) ∈ (0, 1)2 : x > y}. For
any (x, y) ∈ X, our technical assumption implies that h1(x, y) > h2(x, y). Moreover,
h1(x, y) ∈ (0, 1) and h2(x, y) ∈ (0, 1), so the function h maps X into X.

Denote by X̄ the closure of X. We now construct a continuous extension h̃ : X̄ →
X̄ of h. First note that h̃1(x, y) = h1(x, y) is a continuous function on X̄\{(x, 0) :
x ∈ [0, 1]}. Using De L’Hopital rule, we define h̃1(x, 0) = limy→0 h1(x, y) for any x.
(Recall that h1(x, y) is independent of x. Hence, limy→0 h1(x, y) is independent of x.)
Secondly, h̃2(x, y) = h2(x, y) is a continuous function on X̄\{(y, y) : y ∈ [0, 1]}. We
again use De L’Hopital rule to define

h̃2(y, y) = lim
x→y

h2(x, y) =
1

1 + R [Rf(y)+f(k(y))k′(y)]
[f(y)+Rf(k(y))k′(y)]

for any y.
h̃ is continuous. Our technical assumption implies that h̃2(y, y) < h̃1(y, y) for any

y. Moreover, h̃1(x, 0) ∈ (0, 1), h̃2(x, 0) ∈ (0, 1), and h̃2(1, y) ∈ (0, 1). This implies
that h̃ : X̄ → X ⊂ X̄. Hence, by Brouwer’s Fixed-Point Theorem, there must exist
a pair (x, y) ∈ X such that h(x, y) = h̃(x, y) = (x, y).

When Rs 6= Rr, it is no longer the case that rs0 = qs1 and rs1 = qs. Nevertheless,
the above argument can be generalized by considering a function h = (h1, h2, h3, h4)
on X = {(x, y, w, v) ∈ (0, 1)4 : x > y,w > v}, where hj denotes the RHS of the jth
equation in system (13).

Since all the cutoffs are uniquely determined in equilibrium and all the character-
izing equations are continuous, the equilibrium must be robust.

Proof of Corollary 1. We show that Rs = Rr = R implies q11 < 1/2 < q0 and

35



r10 < 1/2 < r01. To show this it suffices to demonstrate that the smallest cutoff for
s = 0 is larger than the largest cutoff for s = 1.

Each cutoff associated with signal s = 0 has a representation

1

1 + RPr(ω=1)[RA+B]
Pr(ω=0)[A+RB]

where A,B ∈ (0, 1). Such an expression is strictly larger than 1

1+
Pr(ω=1)
Pr(ω=0)

, the lower

bound obtained by setting A = 0 and B = 1. Each cutoff associated with signal s = 1
has a representation

1

1 + 1
R

Pr(ω=1)[RA+B]
Pr(ω=0)[A+RB]

Such an expression is strictly smaller than 1

1+
Pr(ω=1)
Pr(ω=0)

, the upper bound obtained by

setting A = 1 and B = 0.

Proof of Proposition 2. Let qs, qsm, and rsm be an arbitrary profile of
equilibrium cutoffs of the game Γ (p, p′). By inspecting the equations in system (13)
it is easy to check that Γ (p′, p) admits a responsive equilibrium with cutoffs q′s, q′sm,
and r′sm satisfying:

q′s = rs1, q′s1 = rs0, r′s1 = qs, r′s0 = qs1 for s = 0, 1. (14)

Denote by us (p, p′) the sender’s ex-ante utility associated with the profile (qs,
qsm, rsm) and by ur (p, p′) the receiver’s ex-ante utility. Similarly, denote by us (p′, p)
and ur (p′, p) the sender’s and receiver’s ex-ante utility associated with the profile (q′s,
q′sm, r′sm). Straightforward calculations yield:

us (p, p′) =
1

2
{
∫ q0

0

[p((1− p′)(1− F (r10)) + p′(1− F (r00)))(q − 1)

+(1− p)(p′F (r10) + (1− p′)F (r00))(−q)]f (q) dq

+

∫ q01

q0

[p((1− p′)(1− F (r11)) + p′(1− F (r01)))(q − 1)

+(1− p)(p′F (r11) + (1− p′)F (r01))(−q)]f (q) dq +

∫ 1

q01

p(q − 1)f (q) dq

+

∫ q1

0

[(1− p)((1− p′)(1− F (r10)) + p′(1− F (r00)))(q − 1)

+p(p′F (r10) + (1− p′)F (r00))(−q)]f (q) dq

+

∫ q11

q1

[(1− p)((1− p′)(1− F (r11)) + p′(1− F (r01)))(q − 1)
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+p(p′F (r11) + (1− p′)F (r01))(−q)]f (q) dq +

∫ 1

q11

(1− p)(q − 1)f (q) dq}

ur (p′, p) =
1

2
{
∫ r′01

0

[p((1− p′)(1− F (q′11)) + p′(1− F (q′01)))(q − 1)

+(1− p)(p′F (q′11) + (1− p′)F (q′01))(−q)]f (q) dq

+

∫ r′00

r′01

[p((1− p′)(1− F (q′1)) + p′(1− F (q′0)))(q − 1)

+(1− p)(p′F (q′1) + (1− p′)F (q′0))(−q)]f (q) dq +

∫ 1

r′00

p(q − 1)f (q) dq

+

∫ r′11

0

[(1− p)((1− p′)(1− F (q′11)) + p′(1− F (q′01)))(q − 1) + p(p′F (q′11)

+(1− p′)F (q′01))(−q)]f (q) dq

+

∫ r′10

r′11

[(1− p)((1− p′)(1− F (q′1)) + p′(1− F (q′0)))(q − 1)

+p(p′F (q′1) + (1− p′)F (q′0))(−q)]f (q) dq +

∫ 1

r′10

(1− p)(q − 1)f (q) dq}

The equality us (p, p′) = ur (p′, p) follows by substituting equations (14) in the above
expressions. By the same token, the equality ur (p, p′) = us (p′, p) is established.

Proof of Proposition 3. As indicated in Appendix A, in any robust PBE the
order of the cutoffs is the same for s = 0 and s = 1 since cutoffs are related across
signals by the strictly increasing function kR. This allows us to focus on the cutoffs
for one of the two signals. The proof proceeds in a number of steps. We first rule out
all configurations which are inconsistent with an equilibrium and then show that the
remaining three configurations admit an equilibrium.

In the remainder of the proof we shall make use of the following equations. Let
V denote the opponent’s vote. Consider the message cutoff first. It is optimal for a
player of type q to send m = 1 if φ(s, q) = Eu(1|s, q)− Eu(0|s, q) ≥ 0, where

φ (s, q) = −q Pr (ω = 1|s) [χ (q < qs10) Pr (V = 0,M = 0|ω = 1,m = 1) (15)

−χ (q < qs00) Pr (V = 0,M = 0|ω = 1, m = 0)

+χ (q < qs11) Pr (V = 0, M = 1|ω = 1,m = 1)

−χ (q < qs01) Pr (V = 0,M = 1|ω = 1, m = 0)]

− (1− q) Pr (ω = 0|s) [χ (q < qs00) Pr (V = 0,M = 0|ω = 0,m = 0)

−χ (q < qs10) Pr (V = 0,M = 0|ω = 0, m = 1)

+χ (q < qs01) Pr (V = 0, M = 1|ω = 0,m = 0)
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−χ (q < qs11) Pr (V = 0,M = 1|ω = 0, m = 1)]

Consider the voting cutoffs next. In a cutoff PBE, there is a strictly positive proba-
bility that a player is pivotal after receiving message M = 0. Therefore, the voting
cutoffs for s ∈ {0, 1} and m ∈ {0, 1} are uniquely identified and equal to

qsm0 =
1

1 + Pr(ω=1|s)
Pr(ω=0|s)

[R min{F (q0),F (q00m)}+min{F (kR(q0)),F (kR(q00m))}]
[min{F (q0),F (q00m)}+R min{F (kR(q0)),F (kR(q00m))}]

:= g1(min{qs, qs0m})

(16)
On the other hand, a player may not be pivotal after observing message M = 1.
However, if there is a positive probability that the player is pivotal, then the voting
cutoffs for s ∈ {0, 1} and m ∈ {0, 1} are uniquely identified and equal to

qsm1 =
1

1 + Pr(ω=1|s)
Pr(ω=0|s)

[R(F (q01m)−F (q0))+(F (kR(q01m))−F (kR(q0)))]
[(F (q01m)−F (q0))+R(F (kR(q01m))−F (kR(q0)))]

:= g2(qs1m, qs) (17)

Our technical assumption guarantees that g1 is strictly decreasing in its argument
and that g2 is strictly decreasing in both its arguments. (Note that g2 is defined only
for qs1m 6= qs.)

Step 1: In any responsive robust equilibrium, qs < qs10.
Inspecting equation (15), we note that a necessary condition for equilibrium is

that for at least one signal s ∈ {0, 1} we have

min{F (qs), F (qs00)}+ max{F (qs10)− F (qs), 0}
≥ min{F (qs), F (qs01)}+ max{F (qs11)− F (qs), 0} (18)

Otherwise a player with type q sufficiently close to 0 would strictly prefer to send the
message m = 1.

Suppose by contradiction that qs10 ≤ qs. Equation (18) becomes

min{F (qs), F (qs00)} ≥ min{F (qs), F (qs01)}+ max{F (qs11)− F (qs), 0} (19)

We distinguish two cases.
Case 1: qs01 ≥ qs. Equation (19) implies that qs00 ≥ qs and qs11 ≤ qs. Equation

(16) then yields qs10 = qs = qs00. Wrapping up we obtain qs11 ≤ qs10 = qs = qs00 ≤ qs01.
While this configuration allows for equilibria, these equilibria are outcome-equivalent
to equilibria of the game without communication. Specifically, whenever q > qs,
the player will choose m = 1 and v = 1 irrespective of her opponent’s message and
whenever q < qs, the player will always choose m = 0 and vote v = 0.

Case 2: qs01 < qs. Equation (16) implies that qs00 < qs. Otherwise we would have
qs00 = g1(qs) and qs10 = g1(qs01). But since g1 is decreasing, qs00 < qs10 ≤ qs and we
would then have a contradiction.

Equation (18) becomes F (qs00) ≥ F (qs01) + max{F (qs11)−F (qs), 0}. Thus qs00 ≥
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qs01. Together with qs > qs00 this implies qs10 = g1(qs01) and qs00 = g1(qs00). Since g1

is strictly decreasing, we obtain qs10 ≥ qs00. We need to distinguish two subcases.
Subcase 1: qs00 = qs10. Thus qs01 = qs10 = qs00 < qs. Since qs01 = qs00,

max{F (qs11) − F (qs), 0} = 0, i.e., qs11 ≤ qs. While equilibria exist in this configura-
tion, they are outcome-equivalent to the equilibria of the pure voting game. Whenever
q < qs00, the player will choose m = 0 and v = 0 independently of her opponent’s
message and whenever q > qs00, the player will always vote v = 1.

Subcase 2: qs00 < qs10. Since qs10 = g1(qs01) and qs00 = g1(qs00), this implies
qs01 < qs00. Suppose first that qs11 > qs. For q > qs10 the function φ(s, q) is strictly
decreasing and has a zero at qs11. Therefore the configuration qs01 < qs00 < qs10 <
qs < qs11 does not constitute an equilibrium since types q ∈ (qs10, qs) prefer to deviate
from their equilibrium message strategy and send m = 1. Suppose next that qs11 ≤ qs.
For q ∈ (qs00, qs10) the function φ(s, q) is strictly decreasing and has a zero at qs10.
Thus the configuration qs01 < qs00 < qs10 < qs and qs11 ≤ qs is not an equilibrium
since types q ∈ (qs00, qs10) have an incentive to deviate and send message m = 1.

Step 2: In any responsive robust equilibrium, qs00 ≤ qs10.
Suppose by contradiction that qs00 > qs10. Then qs00 > qs10 > qs by Step 1.

Hence, qs00 = g1(qs) and qs10 = g1(min{qs, qs01}) which implies qs00 ≤ qs10 since g1 is
decreasing.

Step 3: In any responsive robust equilibrium, qs ≤ qs00.
By contradiction, suppose that qs00 < qs. Then qs00 < qs < qs10 by Step 1. Since

qs00 = g1(qs00) and qs10 = g1(min{qs, qs01}), the previous inequality implies qs01 < qs00.
So we obtain that qs01 < qs00 < qs < qs10. This leaves us with qs11. We now show
that there does not exist a robust PBE irrespective of qs11.

Suppose first that qs11 < qs. In the interval (max{qs00, qs01, qs11}, qs10) the function
φ(s, q) is strictly decreasing and it has a zero at qs10. Therefore types in the inter-
val (max{qs00, qs01, qs11}, qs) have an incentive to deviate from the candidate equilib-
rium strategy and send message m = 1. Next assume that qs = qs11. In the interval
(qs00, qs10) the function φ(s, q) is strictly decreasing and it has a zero at qs10. Therefore
types q ∈ (qs00, qs) deviate by sending message m = 1. Finally suppose that qs11 > qs.
In the interval (qs00, min{qs11, qs10}) the function φ(s, q) is strictly decreasing. Hence,
it cannot be negative on (qs00, qs) and positive on (qs, min{qs11, qs10}) and there cannot
be an equilibrium.

To summarize, so far we have concluded that

qs ≤ qs00 ≤ qs10 and qs < qs10.

This allows for three possibilities: qs01 may be strictly smaller, equal, or strictly larger
than qs. In the remainder of the proof we show that the only equilibrium configuration
in which qs01 > qs is class 0, the only equilibrium configuration with qs01 < qs is class
1, and the only one with qs01 = qs is class 2.
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Step 4: The only robust responsive equilibrium configuration with qs01 > qs is
class 0.

Since qs01 > qs, we have qs00 = g1(qs) = qs10. The relationship between qs00 and
qs01 determines three cases.

Case 1: qs10 = qs00 < qs01. Equation (18) implies that qs10 ≥ qs11. Therefore,
the function ϕ(s, q) is strictly increasing in the interval (qs10, qs01) and it has a zero
at qs01. Consequently, types q ∈ (qs00, qs01) deviate from the candidate equilibrium
strategy and send message m = 0.

Case 2: qs10 = qs00 = qs01 > qs. This implies qs00 = g1(qs) = g2(0, qs) and
qs01 = g2(qs10, qs). Since g2 is strictly decreasing in the first argument and qs10 > qs,
it follows that qs00 > qs01, a contradiction.

Case 3: qs10 = qs00 > qs01 > qs. There are four possibilities determined by the
position of qs11. Suppose first that qs11 ≤ qs. In the interval (qs, qs01) the function
φ(s, q) is strictly increasing and it has a zero at qs01. Types in this interval thus want
to deviate from the candidate equilibrium strategy and send message m = 0. Assume
next that qs11 ∈ (qs, qs01]. Since qs01 = g2(qs10, qs) and qs11 = g2(qs11, qs) and g2 is
strictly decreasing in its first argument, this would imply qs01 < qs11, a contradiction.
Finally, suppose that qs11 ≥ qs10. Since qs11 = g2(qs11, qs) ≤ g2(qs10, qs) = qs01 < qs10,
we obtain a contradiction.

We are left with the configuration

qs < qs01 < qs11 < qs00 = qs10

All these cutoffs are uniquely identified by equations (15) and (16).10 This candidate
is in fact an equilibrium configuration and we denote it as class 0. By inspecting the
φ(s, q) function, we observe that it is strictly increasing and it has a zero on (0, qs01).
This in turn identifies qs. φ(s, q) is strictly decreasing on (qs01, qs11), it has a zero at
qs11, and it is constant and equal to zero for q ≥ qs11. In order to show the existence
of an equilibrium of class 0, it suffices to show that the system of equations (15) and
(16) admits a solution that satisfies the above configuration. The existence proof is
a straightforward extension of the existence proof for one-sender game and is thus
omitted.

To show that the equilibrium is robust, note that all voting cutoff are uniquely
determined in equilibrium, but the function φ(s, q) is flat and equal to zero for q ≥
qs11. Assign the tremble such that with a small probability the players must vote v = 0
after sending message m = 1 irrespective of the received message. That amounts to
mixing the original φ(s, q) with the extension to R of the segment of φ(s, q) that
belongs on (0, qs01). Since the latter is strictly increasing and larger than zero, the
mix is larger than zero, the indeterminacy is solved to get qs = qs01. The mix does not
modify the incentives on any other segment of the original φ(s, q). Symmetry allows
us to conclude that the equilibrium is robust.

10This implies that all cutoffs associated with signal s = 0 (s = 1) are above (below) 1/2.
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Step 5: The only responsive robust equilibrium condition in which qs01 < qs is
class 1.

Note that qs01 < qs implies qs00 < qs10. Moreover, we have qs11 < qs10. Otherwise,
since qs11 = g2(qs11, qs) ≤ g2(qs10, qs) = qs01 < qs10, we would obtain a contradiction.
The relationship between qs and qs00 yields two cases.

Case 1: qs00 = qs. Depending on the position of qs11 there are two possibilities.
First assume that qs11 ≤ qs. In the interval (qs01, qs00) the function φ(s, q) is strictly
increasing and it has a zero at q̂ = g2(qs, qs01) < g2(qs, 0) = g1(qs) = qs00. Therefore,
types in (max{q̂, qs01}, qs00) prefer to deviate at the message stage and send m = 1.
Assume next that qs11 ∈ (qs, qs10). We have qs11 = g2(qs11, qs) < g2(0, qs) = g1(qs) =
qs00 = qs, a contradiction.

Case 2: qs00 > qs. There are three possibilities depending on the position of
qs11. First suppose that qs11 ∈ [qs00, qs10). We have qs11 = g2(qs11, qs) < g2(0, qs) =
g1(qs) = qs00, a contradiction. Suppose next that qs11 ∈ (qs, qs00). For q ∈ (qs11, qs00)
the function φ(s, q) is strictly increasing and it has a zero at q̂ = g2(qs, qs01) >
g2(qs, qs11) = qs11. Therefore, types in (qs11, min{q̂, qs00}) prefer to deviate at the
message stage and send m = 0.

We are left with the configuration

qs01 < qs < qs00 < qs10 and qs11 ≤ qs

This is the equilibrium configuration which we denote as class 1. The function φ(s, q) is
strictly increasing and always negative on (0, qs01) and strictly increasing on (qs01, qs00)
with a zero in the interior of that interval. Moreover, φ(s, q) is strictly decreasing
and always positive on (qs00, qs10) and it is zero for any q ≥ qs10. To show that the
system of equations (15) and (16) has a solution that respects the above configuration
is again straightforward extension of the proof for the one-sender game.

To show that the equilibrium is robust, notice that the voting cutoff qs11 is undeter-
mined. However, weak dominance restricts the domain of definition to q011 ∈ [1/2, q0]
and q111 ∈ [0, q1]. A different perturbation should thus be derived for any couple
(q011, q111). However, since qs11 is outcome-irrelevant, if we find one such couple, then
we know that any other robust equilibrium is outcome-equivalent. Consider the per-
turbation in the voting stage where each player votes v = 0 with small probability
after sending m = 1 and receiving M = 1. Along the perturbation, we have

qs11 =
1

1 + Pr(s|ω=1)
Pr(s|ω=0)

Pr(m=1|ω=1)
Pr(m=1|ω=0)

= g2(1, qs),

and qs = g2(qs, qs01) > g2(1, qs) = qs11 because qs < 1 and qs01 < qs. It remains to
consider the message cutoffs. The function φ(s, q) is flat and equal to zero only when
q ≥ qs10. We can take a perturbation that makes the player vote v = 0 with small
probability if and only if she received the message M = 0 (regardless of the message
sent). That amounts to mixing the original φ(s, q) with the extension to R of the
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segment of φ(s, q) that belongs on (qs01, qs00), which is strictly increasing and above
zero on (qs10, 1), thus assuring the mixture to be always positive. The mix does not
modify the incentives on any other segment of the original φ(s, q). The argument is
completed by introducing a perturbation that consists of a mixture of the two different
perturbations with weight on the first perturbation which is infinitesimal with respect
to the weight placed on the second one.

Step 6: The only responsive robust equilibrium condition in which qs01 = qs is
class 2.

The equality qs01 = qs immediately implies qs00 = g1(qs) = g1(qs01) = qs10. More-
over, we have already shown that qs10 > qs. Depending on the position of qs11 there
are three cases to consider.

Case 1: qs11 ≥ qs10. Then qs11 = g2(qs11, qs) ≤ g2(qs10, qs) = qs01 < qs10, a
contradiction.

Case 2: qs11 ∈ (qs, qs10). In the interval (0, qs) the function φ(s, q) is strictly
increasing function and it has a zero at q̂ = g2(qs10, qs11) < g2(qs, qs11) = qs. Hence,
types in (q̂, qs) deviate from the equilibrium by sending m = 1.

Case 3: We are left with the configuration

qs11 ≤ qs = qs01 < qs00 = qs10

This is the equilibrium configuration we define as class 2. The function φ(s, q) is
strictly increasing and always negative on (0, qs01) and is identically equal to zero for
q ≥ qs01. The existence proof is identical to the existence proof for the one-sender
game after setting Rs = Rr = R, imposing r1

s0 = q1
s1 and r1

s1 = q1
s , and relabeling

qs01 = q1
s and qs10 = q1

s1, where the superscript 1 denotes the one-sender game cutoffs.
To show robustness, for the voting stage proceed as for the class 1 equilibrium

and notice that qs = qs01 = g2(qs10, qs) > g2(1, qs) = qs11 because qs10 < 1. With
respect to the message cutoffs, the function φ(s, q) is flat and equal to zero only when
q ≥ qs01. We can take a perturbation that makes the player always vote v = 0 with
small probability. That amounts to mixing the original φ(s, q) with the extension to
R of the segment of φ(s, q) that belongs on (0, qs01), which is strictly increasing and
above zero on (qs01, 1), thus assuring the mixture to be always positive. As for the
class 1 equilibrium, the argument is then completed by taking a suitable mixture of
perturbations.

Finally, we show that equilibria of class 0 are outcome-equivalent to equilibria
of class 1. Given a class 0 equilibrium (q0

s , q
0
smM), it is easy to show by inspecting

the equations that characterize the equilibria that there exists an class 1 equilibrium
(q1

s , q
1
smM) such that

q0
s = q1

s01, q0
s11 = q1

s , q0
s10 = q1

s10

The above equalities and the fact the the cutoffs q1
s11, q1

s00, and q0
s01 are irrelevant for

the outcome imply that the two equilibria are outcome-equivalent. In the same way,
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given a class 1 equilibrium, it is possible to construct an outcome-equivalent class 0
equilibrium. The details of the proof are available upon request.

Proof of Proposition 4. Available upon request.
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Not Submitted for Publication

Proof of Lemma 1. In any babbling equilibrium both players use a cutoff voting
strategy. The cutoffs of the sender (qsm) and those of the receiver (rsm) are given by:





qsm = 1

1+
Pr(s|ω=1) Pr(vr=0|ω=1)
Pr(s|ω=0) Pr(vr=0|ω=0)

rsm = 1

1+
Pr(s|ω=1) Pr(vs=0|ω=1)
Pr(s|ω=0) Pr(vs=0|ω=0)

(20)

Consider now a non-responsive equilibrium in which the receiver is pivotal with posi-
tive probability after both messages. The equations characterizing the voting cutoffs
are: 




qsm = 1

1+
Pr(s|ω=1) Pr(vr=0|m,ω=1)
Pr(s|ω=0) Pr(vr=0|m,ω=0)

rsm = 1

1+
Pr(s|ω=1) Pr(vs=0,m|ω=1)
Pr(s|ω=0) Pr(vs=0,m|ω=0)

(21)

In any non-responsive equilibrium rs0 = rs1 and therefore:

Pr(vs = 0,m = 0|ω = 1)

Pr(vs = 0,m = 0|ω = 0)
=

Pr(vs = 0,m = 1|ω = 1)

Pr(vs = 0,m = 1|ω = 0)
=: x

This implies that

Pr(vs = 0|ω = 1)

Pr(vs = 0|ω = 0)
=

Pr(vs = 0,m = 0|ω = 1) + Pr(vs = 0,m = 1|ω = 1)

Pr(vs = 0,m = 0|ω = 0) + Pr(vs = 0,m = 1|ω = 0)
= x.

Also rs0 = rs1 implies that Pr(vr = 0|m = 0, ω) = Pr(vr = 0|m = 1, ω) and therefore

Pr(vr = 0|m = 0, ω = 1)

Pr(vr = 0|m = 0, ω = 0)
=

Pr(vr = 0|m = 1, ω = 1)

Pr(vr = 0|m = 1, ω = 0)
=

Pr(vr = 0|ω = 1)

Pr(vr = 0|ω = 0)
.

This implies that any solution to system (21) also solves the system (20). Hence in
both equilibria the sender and the receiver adopt the same voting strategy.

Finally, suppose that the receiver is not pivotal after some message m. In this
case the cutoffs associated with the non-responsive equilibrium are found by solving
system (21) without considering the equations for rsm. In this case we have Pr(vs =
0,m|ω = 1) = Pr(vs = 0,m|ω = 0) = 0 which implies that for m′ 6= m,

Pr(vs = 0,m′|ω = 1)

Pr(vs = 0,m′|ω = 0)
=

Pr(vs = 0|ω = 1)

Pr(vs = 0|ω = 0)

Again, any solution to system (21) is also a solution to system (20).

Lemma 3 In the two-sender game, any symmetric non-responsive equilibrium is
outcome-equivalent to a symmetric babbling equilibrium.
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Proof. Let V denote the opponent’s vote. In any babbling equilibrium both
players use a cutoff voting strategy. All cutoffs are given by the following expression:

qsmM =
1

1 + Pr(s|ω=1)Pr(V =0|ω=1)
Pr(s|ω=0) Pr(V =0|ω=0)

(22)

Consider now a non-responsive equilibrium. Since a player must be pivotal after some
message, assume without loss of generality that the pair (qs00, qs10) is uniquely iden-
tified by the equilibrium equations. Moreover, since in a non-responsive equilibrium,
qsm0 = qsm1 for both messages, all voting cutoffs are uniquely identified. The equation
characterizing the voting cutoffs is:

qsm0 =
1

1 + Pr(s|ω=1) Pr(V =0,M=0|m,ω=1)
Pr(s|ω=0) Pr(V =0,M=0|m,ω=0)

(23)

We distinguish two cases. If Pr(V = 0,M = 1|m) > 0, then

qsm1 =
1

1 + Pr(s|ω=1) Pr(V =0,M=1|m,ω=1)
Pr(s|ω=0) Pr(V =0,M=1|m,ω=0)

But since qsm0 = qsm1,

Pr(V = 0, M = 0|m,ω = 1)

Pr(V = 0, M = 0|m,ω = 0)
=

Pr(V = 0,M = 1|m,ω = 1)

Pr(V = 0,M = 1|m,ω = 0)

and so both expressions are equal to

Pr(V = 0|m,ω = 1)

Pr(V = 0|m,ω = 0)

If Pr(V = 0,M = 1|m) = 0, then Pr(V = 0,M = 0|m,ω) = Pr(V = 0|m,ω) for any
ω ∈ {0, 1}. Therefore, for any M ∈ {0, 1}

qsmM =
1

1 + Pr(s|ω=1)Pr(V =0|m,ω=1)
Pr(s|ω=0)Pr(V =0|m,ω=0)

The condition qsm0 = qsm1 implies that each player’s vote v does not depend on
the opponent’s message M, i.e. Pr(v = 0|M = 0,m, ω) = Pr(v = 0|M = 1,m, ω).
Since

Pr(v = 0|M = 0, ω) = Pr(v = 0|M = 0,m, ω) Pr(m|ω) + Pr(v = 0|M = 0,m′, ω) Pr(m′|ω)

Pr(v = 0|M = 1, ω) = Pr(v = 0|M = 1,m, ω) Pr(m|ω) + Pr(v = 0|M = 1,m′, ω) Pr(m′|ω)
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it follows that Pr(v = 0|M = 0, ω) = Pr(v = 0|M = 1, ω) and therefore

Pr(v = 0|M = 1, ω = 1)

Pr(v = 0|M = 1, ω = 0)
=

Pr(v = 0|M = 0, ω = 1)

Pr(v = 0|M = 0, ω = 0)
=

Pr(v = 0|ω = 1)

Pr(v = 0|ω = 0)

and, by symmetry,

Pr(V = 0|m = 1, ω = 1)

Pr(V = 0|m = 1, ω = 0)
=

Pr(V = 0|m = 0, ω = 1)

Pr(V = 0|m = 0, ω = 0)
=

Pr(V = 0|ω = 1)

Pr(V = 0|ω = 0)
.

Therefore all the voting cutoffs coincide with

qsmM =
1

1 + Pr(s|ω=1)Pr(V =0|ω=1)
Pr(s|ω=0) Pr(V =0|ω=0)

(24)

This implies that any solution to the equation (24) also solves equation (22). Since
the final decision does not depend on the messages, any symmetric non-responsive
equilibrium is outcome-equivalent to a symmetric babbling equilibrium.

Proof of Proposition 3 (outcome-equivalence of class 0 and class 1 equi-
libria). The system that characterizes an equilibrium of class 0 is





q0
0 = 1

1+R
F (kR(q0

010)−F (kR(q0
011))+R[F (q0

010)−F (q0
011)]

R[F (kR(q0
010)−F (kR(q0

011))]+F (q0
010)−F (q0

011)

q0
011 = 1

1+R
[F (kR(q0

011)−F (kR(q0
0))+R(F (q0

011)−F (q0
0))]

[(F (q0
011)−F (q0

0))+R(F (kR(q0
011)−F (kR(q0

0)))]

q0
010 = 1

1+R
[F (kR(q0

0))+RF (q0
0)]

[F (q0
0)+RF (kR(q0

0))]

(25)

The system for class 1 is





q1
001 = 1

1+R
(F (kR(q1

010)−F (kR(q1
0))+R(F (q1

010)−F (q1
0))

R(F (kR(q1
010)−F (kR(q1

0))+(F (q1
010)−F (q1

0))

q1
0 = 1

1+R
(F (kR(q1

0)−F (kR(q1
001))+R(F (q1

0)−F (q1
001))

R(F (kR(q1
0)−F (kR(q1

001))+(F (q1
0)−F (q1

001))

q1
010 = 1

1+R
F (kR(q1

001)+RF (q1
001)

RF (kR(q1
001)+F (q1

001)

(26)

The two systems admit solutions (q0
s , q

0
smM) and (q1

s , q
1
smM) such that

q0
s = q1

s01, q0
s11 = q1

s , q0
s10 = q1

s10

Proof of Proposition 4. Suppose that both players have the same quality of
information (Rs = Rr = R) and consider an equilibrium of the one-sender game in
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which rs0 = qs1 and rs1 = qs. The characterizing system is





q01 = 1

1+R
[RF (q0)+F (kR(q0))]

[F (q0)+RF (kR(q0))]

q0 = 1

1+R
[R(F (q01)−F (q0))+(F (kR(q01))−F (kR(q0)))]

[(F (q01)−F (q0))+R(F (kR(q01))−F (kR(q0)))]

The cutoffs (q2
s , qsmM) for a class 2 equilibrium of the two-sender game are determined

by 



q000 = 1

1+R
[RF (q2

0)+F (kR(q2
0))]

[F (q2
0)+RF (kR(q2

0))]

q2
0 = 1

1+R
[R(F (q000)−F (q2

0))+(F (kR(q000))−F (kR(q2
0)))]

[(F (q000)−F (q2
0))+R(F (kR(q000))−F (kR(q2

0)))]

Given an equilibrium (qs, qsm) of the one-sender game, it is easy to show by in-
specting the above equations that there exists a class 2 equilibrium (q2

s , qsmM) such
that

qs = q2
s , qs1 = qs10

The above equalities and the fact the the cutoffs qs11 and qs0 are irrelevant for the
outcome imply that the two equilibria are outcome-equivalent. In the same way, given
a class 2 equilibrium, it is possible to construct an outcome-equivalent equilibrium of
the one-sender game.

49


