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Abstract
Several externalities arise when agents shield optimally to avoid infection during an
epidemic. We classify externalities into static and dynamic and compare the decen-
tralized and optimal solutions when agents derive utility from social interaction. For
low infection costs agents shield too little; for high costs they shield too much because
of a “rat race to shield”: they delay social action until other agents contract the disease
and society reaches herd immunity. Other externalities drive more wedges between
the private and social outcomes. The expectation of a fully effective vaccine that ends
the disease faster changes results, reversing excessive shielding.

Keywords SIR models · Matching model · COVID-19 · Social distancing · Rat race ·
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1 Introduction

In this paper we model the transitions in an optimizing forward-looking model of
an epidemic, in the three-state SIR framework originally proposed by Kermack and
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10 P. Garibaldi et al.

McKendrick (1927). We focus on the consequences of individually optimal behaviour
for the dynamics of the epidemic, and in particular the externalities that arise when
private agents act in their self interest to shield themselves from the epidemic.Although
our model can be applied to the study of externalities in COVID-19, it is not specific to
this. It is motivated more generally by the SIRmodel of epidemics, in which infections
follow “social” contact and carry some cost to the individual.1

Following our derivation of the individually optimal transition rates, we show how
optimizing behaviour in the absence of policy influences outcomes. We then compare
the decentralized optimizing model and a social planning solution, with the social
planner having access to the same information set as private agents. We obtain striking
contrasts, which we derive formally and illustrate with simulations. We derive four
different types of externalities, which are classified below and are the main theme of
this paper.

In our formulation agents can be in one of four states, but by applying a modelling
trickwe collapse themodel to one that is close to the original three-state SIRmodel.We
work in discrete time. In the first state a mass St of agents are healthy but “susceptible”
to the disease; in the second state a mass It of agents are “infected” but without
symptoms, and they can pass the disease on to susceptible individuals after social
contact; in the third state the It infected individuals develop symptoms, which are
costly in terms of lifetime utility but not time; they cross from the asymptomatic
infected state in period t to recovery in period t + 1, by bearing a cost which is a
fraction of their lifetime utility and may be interpreted as the probability of dying
from the disease.

Our interest is in deriving the impact that agents have on the transitions across the
SIR states, and particularly whether these impacts are socially optimal. Individuals
respond in their own self interest, with rational expectations about the future. Our
focus is on the transition from the susceptible to the asymptomatic infected state,
which is influenced by contacts between the susceptible and the infected. The deci-
sions are taken without information about their state (whether they are susceptible
or asymptomatic infected) and with full knowledge of future transitions in the event
of an infection. For simplicity of exposition, we call individuals who are in either
the susceptible state or the asymptomatic infected state, vulnerable, so the mass of
vulnerable individuals is Vt = St + It .

We borrow ideas from search and matching theory (Pissarides 2000) which we
embed into a SIR framework in line with the solutions in the literature that followed
Kermack and McKendrick’s (1927) pioneering work. The main difference between
our model and those in the early epidemiological literature is that agents in our model
are able to reduce their probability of infection by avoiding contacts with vulnerable
individuals. We model behaviour in such a way that this difference is picked up by a
single variable xt , which we call social activity. It is action that yields utility to the
agent but in order to complete it, the agent needs to come into contact with other
agents. For concreteness we can think of it as consumption, which involves shopping
for goods and consuming them in the company of others. We normalize social action
in the non-optimizing model by xt ≡ 1 in all periods of life. In our optimizing model

1 In Garibaldi et al. (2023) we survey pre-COVID and post COVID research with these types of models.
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Static and dynamic inefficiencies in an optimizing model ... 11

we derive an optimal xt < 1 which varies over time, depending on incentives. When
xt < 1 we say that there is social distancing or shielding

The key contribution of the paper is our comparison between the decentralized
solution and the solution chosen by the social planner. The two differ substantially.
This is because private agents ignore two types of impacts of their actions on aggregate
outcomes, which give rise to deviations from the optimal path. One of these impacts
operates “within” a given point in time and the other “across” time. At a given point
in time, individuals ignore the fact that when they take social action, other people may
randomly come into contact with them and be infected. This may give rise to a static
externality.We show thatwith increasing returns in the contact function, definedhere as
an elasticity of contactswith respect to social actiongreater thanone, static externalities
will cet par make the social planner recommend more social distancing. But with
constant returns (unit elasticity), the static externalities are internalized. Across time,
when private agents shield, they reduce the future infected population and increase
the future susceptible population. These relative population changes alter the flows
across states: the lower infected pool lowers future infections and lowers congestion
in hospitals, whereas the higher susceptible pool slows down the adjustment to the end
of the epidemic. Private agents ignore these secondary effects of their actions whereas
the social planner takes them into account. We call these dynamic externalities.

By working in discrete time and deriving the optimal policies from Bellman equa-
tions, we are able to distinguish between three different kinds of dynamic externalities.
The contagion externality is caused by the impact of private actions on the stock of
infected individuals and the subsequent spread of the disease. Themedical congestion
externality is due to the fact thatmedical treatments are less good when there are more
patients, given that medical resources and personnel are not immediately adaptable to
changed circumstances. Finally, the immunity externality is caused by the impact of
private actions on the stock of susceptible agents, which in turn influences the dynam-
ics of the disease. These externalities interact with each other to produce deviations
between the private and social outcomes that can go either way and can change in the
course of the epidemic.

Consider first decisions made in the absence of a vaccine, when herd immunity is
the only path to eradication of the disease. With a sufficiently high but not unreason-
able cost of attracting the disease, our simulations show that the immunity externality
may dominate the contagion externality, and agents in the decentralized solution shield
more than in the optimal solution in the height of the pandemic. Because of forward-
looking behaviour, agents know that eventually the disease will end, with a fraction of
people who never experience the disease. Hence agents shield more than other consid-
erations would imply, to increase the probability that they belong to the infection-free
group when the disease is eradicated. This has the features of a rat race, and we refer
to it as a rat race to shield. If, say, 60% of the people need to get the disease before it
is eliminated, an efficient mechanism would be to allocate the 60% randomly across
the population (in the absence of heterogeneity). But no individual wants to be one of
those randomly selected. So instead of racing to be first as in the traditional rat race,
here there is a racing to be the last, by shielding. How much inefficient shielding there
is because of this rat race depends on the severity of medical costs. Our simulations
illustrate the sensitivity of the model to plausible costs.
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12 P. Garibaldi et al.

If a full vaccine is expected to arrive with sufficiently high probability, the herd
immunity state becomes irrelevant because agents will become immune through vac-
cination rather than recovery. Still there is a “short-term” interval between the current
period and the arrival of a vaccine (which we model as a Poisson process), dur-
ing which the externalities are present. During this period, the static, medical and
contagion externalities are still powerful. But he immunity externality by contrast is
weakened substantially because its power lays in the fact that by choosing more infec-
tions today, there will be fewer infections in the more distant future. With a vaccine
expected, this action is likely to cause more overall infections because the vaccine
will arrive (in probability) and end the disease before the society can reap the reward
of fewer infections later on. With a much weaker immunity externality, the optimal
policy now requires more shielding than the decentralized solution, until the vaccine
arrives.

The rest of the paper is organized as follows. Section2 briefly discusses some related
literature. Section3 describes the model in more detail and derives the individual
maximizing choices in a world in which no vaccine is expected to arrive, so that
the epidemic ends through herd immunity. Section4 derives the welfare maximizing
choices of a central planner. Section5 analyses the model when a vaccine is expected
to arrive with some probability. Section6 simulates themodel highlighting the key role
of the static and dynamic externalities in driving a wedge between the decentralized
and social optima. The last section concludes.

2 Related literature

There has been a very large number of working papers by economists on epidemics
since the outbreak of the COVID-19 pandemic in early 2020. Providing a survey of
this literature is beyond the scope of this paper, but we put our paper into context and
relate it to those papers that address epidemics withmodels that have common features
with ours.2 Although there is some overlap with other independently written papers,
we believe that our classification of the full set of externalities that arise in optimizing
models of epidemics, and the role of the immunity externality in particular, are new
to this paper

We should first note that although most economists became interested in epidemi-
ological models because of COVID-19, a small number of papers before COVID-19
addressed issues in epidemiology by making use of the key distinguishing feature of
economic models, the change in agent behaviour in response to the disincentive of
catching the disease. Most papers before COVID-19 modelled influenza epidemics
and focused on a negative contact externality similar to our static externality: too
little social distancing by self-interested agents that do not internalize the costs of
transmission to others. Examples of papers in that tradition include Chen (2012), who
like us obtains the externality by invoking increasing returns to scale in contacts, and
Rowthorn and Toxvaerd (2012), who use a contact function with fixed proportions and
a linear cost of disease prevention borne by the individual. Reluga (2010) introduced

2 A partial survey of this literature is Garibaldi et al. (2023).
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Static and dynamic inefficiencies in an optimizing model ... 13

the idea of an aggregate disease transmission function that depends on endogenously
determined social distancing. Quercioli and Smith (2006) go further and touch on one
aspect of the dynamic externalities. In this research social distancing decisions depend
on the state of the disease, very much along the lines of post-COVID research. Within
a SIS variant of the model, Goenka and Lin (2012) integrate an epidemiological model
with a macro growth model and show that the economy can feature both cycles and
chaos.

Another disease that attracted the interest of economists is HIV. Kremer (1996)
Geoffard andPhilipson (1996) andGreenwood et al. (2019) are three key contributions.
The framework in which these authors modelled behaviour was one of heterogeneous
individuals, in terms of their aversion to risk, and the implications of multiple partners.
An interesting feature of HIV, when contrasted with COVID-19 or influenza, is that
HIV is contracted by a susceptible agent only after a voluntary decision to engage
in sexual behaviour with a person who might be infected. In COVID-19 or influenza
infections might arise through proximity without an intentional person-to-person con-
tact. The implications of this difference for the externalities involved have not been
studied, but it is clearly the case that the externalities listed in this paper would not be
the same as in HIV epidemics. At a macro level, Chakraborty et al. (2010) propose a
general equilibrium model of HIV infection transmission, prevention investment and
rational behaviour.

Post-COVID-19 the economics literature exploded, working mainly with the SIR
model proposed by Kermack and McKendrick (1927) or later variants (see Garibaldi
et al. (2023) for details). Several papers focused on deriving optimal policies from a
social welfare function that encapsulated the trade-off between the costs of the disease
(usually deaths or restrictions on behaviour that require social interaction) and GDP
losses from social distancing.3 Unlike our paper, the objective of these papers is to
derive directly optimal policies without commenting on whether the decentralized
solution replicates them.

Another group of papers derives non-cooperative maximization policies for
economies that face similar trade-offs between the costs of the disease to the indi-
vidual and the costs of shielding. Some also derive the socially optimal solutions and
make comparisons, so they are more directly comparable with our paper. In the case
of homogeneous agents, Eichenbaum et al. (2021) solve for both the centralized and
decentralized equilibrium, but unlike our paper, they do not derive analytical expres-
sions for any externalities. They adopt a quadratic meeting technology in the spirit
of Diamond and Maskin (1979), and infections come from social interaction during
consumption activities.

Acloser and simultaneous paper to our own is byFarboodi et al. (2021). Their setting
is in continuous time, and the meeting technology is again quadratic. Their treatment
of the static externality, which, as in our model, arises in their model because of the

3 See, e.g., Alvarez et al. (2021) and Hritonenko and Yatsenko (2022) for homogeneous agents and
Acemoglu et al. (2021), Favero et al. (2020) and Makris (2021) for heterogeneous agents. Within the same
class of papers, Federico and Ferrari (2021) treat the transmission rate as diffusive stochastic state variables,
Bosi et al. (2010) consider the role of altruistic behaviour in a SIS variant of the model, and La Torre et al.
(2021) consider a planner that chooses not only the degree of social distancing but also that of therapeutic
treatment.
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14 P. Garibaldi et al.

increasing returns to scale in meetings, is similar to ours. But they do not disentangle
the dynamic externalities, which does not enable them to identify the forces that might
lead a social planner to command more social interaction early on in the course of
the pandemic. Another paper in this strand, with homogeneous agents, is by Rachel
(2020), who solves for the optimal lockdown and highlights the role of social policy
in the presence of infection externalities. It has both a static and a dynamic dimension
and derives ambiguous overall effects on the planner’s choice. He derives his results
from a less general model than in this paper, with only a two-state (high or low) social
action, which does not enable him to give a full listing of the dynamic externalities. The
same applies to Lebeau (2020) paper. Nævdal (2020) shows that there are increasing
returns to scale to social distancing and to other means to control the epidemic, which
are a cause of externalities.

Also, in this class ofmodels, somepapersmodel heterogeneous agents; for example,
Alfaro et al. (2020) and Brotherhood et al. (2020). The latter consider optimal policies
when there are two groups, young and old, and the old suffer medical costs from
infections. Their focus is the role of testing and the interactions between young and old.
They also consider the decentralized and centralized solution and provide quantitative
measurement of the externalities.

Finally, mention should bemade of several papers that focus on the labourmarket in
isolation. Jones et al. (2020) explicitly link working from home with optimal contain-
ment policies. Kapicka and Rupert (2020) model the labour market dimensions of the
pandemic, and solve for the centralized program that takes into account an infection
externality similar to our contagion one, which arises because agents do not take into
account that once infected, the probability that others will get infected increases. The
labour market response to the COVID-19 pandemic within a search environment is
also studied by Gregory et al. (2020), but without reference to the planner solution.
The potential uncertainty about one’ s infection status, which plays an important role
in our paper, and the role of testing, are also studied by Berger et al. (2020) and von
Thadden (2020).

3 Decentralized equilibrium in amodel of epidemics

In this section we develop a model of transitions with forward-looking individual
decision making and no vaccine against the disease. We first set up the basic epi-
demiological framework. Then we model individually optimal activity levels given an
exogenous relationship between own activity level and the risk of attracting the dis-
ease. Next we define a contact technology that maps the activity levels of individuals
into a transmission rate for the disease. Finally we define equilibrium.

3.1 Basic epidemiological framework

Wework in discrete time and define the period to be the length of time that an infected
person is asymptomatic. In terms of COVID-19, the length of the period is therefore
about two weeks, although it could be longer. During this period infected individuals
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Static and dynamic inefficiencies in an optimizing model ... 15

are unaware that they are contagious, and we refer to them as infected. At the end of
the period of infection symptoms arrive and the individual bears an overnight cost.
The next period her status changes, and she has recovered. In the recovery state the
individual is immune to the disease.

The sequence of events is as follows. In the initial state, the population is normalized
to 1. Of these, all but a very small number ε are susceptible, withmass S0 = 1−ε.4 The
ε individuals are infected with no symptoms, so they belong to state I . In the following
period some susceptible individuals transition from state S to state I , because of
contacts with the ε infected individuals. All individuals in state I in period t who
survive make a transition to recovery a period later and join state R, after bearing a
disease cost between periods t and t + 1. The transition out of I and the recovery
cost between periods depend only on medical conditions related to the disease that the
individual cannot influence.

Key in our analysis is that the spread of the disease depends on the average activity
level of the individuals in society. We will discuss this at some length below. For now
we state that the “basic reproductive number” R0t is time dependent. The rate at which
people in the economy become infected in a given period t is given by R0t St It , where
R0t is endogenously determined in equilibrium.

We follow the influenza and COVID-19 epidemiological literature and assume
that the population is constant. Deaths in these epidemics is such a small fraction of
infections that including them in the dynamic equations would greatly complicate the
theoretical model for trivial extensions to the results.

With transition probability from state S to state I given by R0t It , the number of
people in state S falls each period by the same fraction. This is also the number of
people who join the I state, whereas a period later infected individuals are removed
from both states S and I . In discrete time, the dynamics of the system can be written
as5

St+1 = St − R0t It St (1)

It+1 = R0t It St . (2)

Rt+1 = Rt + It (3)

The effective reproductive number, or R-number, is given by R0t St .This number plays
a key role in the dynamics of the disease. From (2), infections begin to fall when the
R-number drops below 1. A key element in our analysis is to determine R0t .

3.2 Individual behaviour

In our economy, individuals choose their activity levels. We will discuss examples
of activity levels below. At an abstract level, activities are actions that give the

4 We use S, and later I and R, to denote both the state and the mass of individuals that belong to it. In
general, when reference is to the state there is no subscript but when reference is to the mass it is dated with
a time subscript.
5 The equations are slightly simpler than in the standard SIR model, reflecting that all infected indivduals
in period t have recovered in period t + 1.
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16 P. Garibaldi et al.

agents utility but also increase the risk of attracting the disease. An activity level
of xt in a given period gives the agent a utility in that period equal to φ(xt ), where
φ : Rn+ → R is continuously differentiable and strictly concave in xt . We assume that
limxt→0+ φ(x) = −∞, and that φ(xt ) has a maximum at a value of xt normalized to
1. We further assume that φ(1) > 0.6

As noted above, infected agents are without symptoms, hence they cannot distin-
guish between being in state S or in state I . However, before an infected agent recovers,
she incurs a cost, and hence observes that she moves to the recovered state. So indi-
viduals perceive to be in one of two states: not recovered or recovered and immune.
Not recovered individuals are either healthy but susceptible to the disease or infected
without symptoms. We introduce a new term for these individuals, vulnerable. All
vulnerable individuals choose the xt that maximizes their lifetime expected returns
subject to the probabilities of belonging to state S or I .7

Vulnerable agents perceive a risk of infection from contacts with infected individu-
als. This probability depends on the activity level of the agent in question, the activity
level of the other agents in the economy, and the number of infected people in the
economy. In general, an agent who is in state S in period t enters state I in period t +1
with probability,

pt+1 = p(xt , ·), (4)

where xt is the choice of social activity made by the agent, and · denotes a set of
variables that are exogenous from the point of view of the individual agent, to be
specified below. We assume that ∂ p(xt ,.)

∂xt
≥ 0. Note that pt+1 is the probability that

the susceptible agent attracts the virus in period t and is infected in period t + 1, and
so it is predetermined at the start of period t + 1.

The NPV of utility of a recovered individual is denoted by WR
t . Assuming infinite

lives and immunity, the recovered individual chooses xt so as to maximize φ(xt ) every
period.8 By assumption the solution is xr = 1. With a discount factor β we write

WR = φ(1)

1 − β
. (5)

The NPV of utility of an infected individual is denoted by W I
t , while the NPV

of utility of a susceptible individual is denoted by WS
t . Consider now a vulnerable

individual in period t . She chooses xt without knowing whether she is in the infected
state or in the susceptible state. The expectedNPVof utility of vulnerable individuals is
denoted byWV

t . The vulnerable person knows that she was susceptible in the previous
period t − 1, otherwise she would have been sick and recovered between t − 1 and
t , and she knows the probability pt that she contracted the virus in that period, which
is now predetermined. She chooses the present-period xt by maximizing the expected
value of the PDVs given her pt :
6 In Garibaldi et al. (2020) we discuss the micro-foundation of φ(x).
7 Testing the population not in the recovery state would reveal the information needed to distinguish
between the susceptible and the infected agents, but it is assumed absent.
8 For an economic model with waning immunity in SIRS model see Goenka and Nguyen (2022).
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Static and dynamic inefficiencies in an optimizing model ... 17

WV
t = max

xt

{
ptW

I
t + (1 − pt )W

S
t

}
. (6)

Both infected and susceptible individuals obtain utility from activity φ(xt ). An
individual who is infected in period t will suffer overnight a utility loss associated
with treatment. An infected individual is assumed to enter period t + 1 with expected
utility (1 − δ(It ))WR . The expression δ(It )WR is the expected cost of contracting
the disease. We assume that δ′(It ) > 0, to indicate medical congestion. The medical
congestion is due to fixed hospital space and medical personnel, at least in the time
scale of the disease. It therefore follows that theNPVof utility of an infected individual,
W I

t , is,

W I
t = φ(xt ) + β(1 − δ(It ))W

R . (7)

Recall that a susceptible individual is infected with probability pt+1, hence

WS
t = φ(xt ) + β

[
pt+1W

I
t+1 + (1 − pt+1)W

S
t+1

]

= φ(xt ) + βWV
t+1. (8)

Substituting (8) and (7) into the maximization problem of a vulnerable individual, (6),
this problem becomes,

WV
t = max

xt

{
φ(xt ) + β pt (1 − δ(It ))W

R + β(1 − pt )W
V
t+1

}
. (9)

Differentiation of (9) for period t + 1, using (4), gives

∂WV
t+1

∂xt
= −β p′(xt )

[
WV

t+2 − (1 − δ(It+1))W
R
]
.

The first order condition for xt that is obtained from problem (9 ) is therefore given
by,

φ′(xt )
1 − pt

= β2 p′(xt )
[
WV

t+2 − (1 − δ(It+1))W
R
]
. (10)

It is clear from the first order conditions that in the case of an infectious disease
vulnerable agents restrict their activities to avoid infection. We refer to this property
as social distancing or shielding.

3.3 Contact technology

We now specify the contact technology that yields the infection probability p(xt , .).
This parallels the matching function of labour economics (Petrongolo and Pissarides,
2001), but with some important differences. In the matching function of the labour
literature, more workers looking for jobs reduces the success probability of a sin-
gle worker because of congestion externalities in the application process. Here more
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18 P. Garibaldi et al.

individuals coming out in the marketplace increases the chances of infection because
a single exposed individual can infect many people; the infectious disease is “non-
exhaustible,” in the sense that many people could acquire it from a single person at
the same time.

To provide an intuitive derivation of our contact function suppose x̄t stands for the
number of trips outside the house that each person does on average.9 Assume that with
x̄t trips, each person experiences on average mt contacts, defined by a well-behaved
function mt = m(x̄t ), with m′(x̄t ) ≥ 0. The function m(.) is similar to the match-
ing function of labour economics in the sense that it depends on the structure of the
marketplace, including density of population, transportation facilities, types of estab-
lishments etc.10 Some of these contacts are between susceptible and infected people,
which lead to the infection of the susceptible agent with some positive probability that
depends on the infectiousness of the disease.

Our formulation of the contact function implies that the presence of recovered
individuals does not influence the infection rate of susceptible individuals. This is a
reasonable assumption in situations in which meetings do not crowd out each-other,
and is also the most common assumption in the literature. However, the assumption
may be less reasonable when meetings are one-to -one. Alternative formulations of
the contact technology are discussed further in Garibaldi et al. (2023). Numerically,
the exact formulation of the contact function in this respect matters little.

Consider now the choice of activity level made by a single individual. Here we
follow the method used in search theory to choose the optimal search intensity (Pis-
sarides 2000, chapter 5). With m(x̄t ) representing the total number of contacts for
x̄t outings, each outing on average generates m(x̄t )/x̄t contacts. So if the individual
chooses an activity level xt , her contacts are on average xtm(x̄t )/x̄t . On average the
fraction of contacts that are infected is equal to the fraction of persons in set I in the
population. With the normalization of the population size to unity, we obtain that the
probability that a contact is with an infected person is simply It .11 Finally, suppose that
the probability that a contact between a susceptible and an infected person leads to the
infection of the susceptible person is an exogenous medical constant k. The transition
from the susceptible to the infected state for the person who chooses xt becomes,

pt+1 = k
xtm(x̄t )

x̄t
It . (11)

Hence we assume that the probability that a person is infected is proportional to the
number of people she meets. One way of motivating this is as follows: Since for each
contact there is a probability (1− It ) that the person does not meet an infected person,
there is a probability (1− It )xm(x̄)/x̄ that the person does not meet any infected persons

9 Appendix 1 derives a special example of a contact function from the urn-ball game, which satisfies the
main properties of the general form discussed here.
10 The dependence of m(.) on a single variable parallels the contact function used by Diamond (1982) in
his famous “coconut” paper. He assumes that there are b agents with a coconut each coming into contact
pairwise, for a contact technology m(b) with m′(b) > 0.
11 If death was included in the formal analysis, the fraction of infected people would be slightly higher
than It . That would be the only implication of allowing for deaths.
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Static and dynamic inefficiencies in an optimizing model ... 19

in her x outings. If I is a small fraction of the population, this is approximately equal
to exp{I xm (x̄) /x̄}, so the probability of meeting an infected person is 1− exp{.} and
for small transition probability this is approximately equal to the expression in the
text.12

3.4 Equilibrium

We assume that the agents have rational expectations regarding the dynamics of the
aggregate state variables St , It and Rt given by (1)–(3). In a symmetric Nash equilib-
rium all agents choose the same policy, so xt = x̄t . For notational simplicity we drop
the bar from x̄t . Hence, from (11), p′(xt ) = k m(xt )

xt
, which inserted into the first-order

condition for xt , (10), gives that

φ′(xt )
1 − pt

= β2k
m(xt )

xt
It

[
WV

t+2 − (1 − δ(It+1))W
R
]
. (12)

Furthermore, from (11), we have that

pt+1 = km(xt )It , (13)

where xt is the solution to (12). It follows that R0t = km(xt ) in (1)–(3). This completes
the specification of behaviour in our model. We are now in a position to define our
decentralized equilibrium.

Definition 1 A decentralized epidemic equilibrium is a set of sequences of state vari-
ables {St , It .Rt }∞t=0, a set of value functions {WV

t ,WR}∞t=0, a sequence of social
contacts {xt }∞t=0, and a sequence of infection probabilities {pt }∞t=0, such that, for given
initial conditions S0 = 1 − ε, I0 = ε,

1. St , It and Rt solve Eqs. (1)–(3) with R0t = km(xt ).
2. The value functions WR and WV

t solve Eqs. (5) and (9), respectively.
3. xt solves the first order condition (12)
4. pt solves Eq. (13).

Note that the derivative of pt with respect to xt along the equilibriumpath, as defined by
(13), does not have to be equal to the derivative of pt with respect to xt at the individual
level, given by (11); this will depend on the scale properties of the matching function
and will be discussed below.

Some obvious properties of the model, given our functional assumptions, can easily
be derived. There is more social distancing (lower xt ), for higher k and higher It , and
for higher recovery costs.13

12 This approximation is reasonable for the infection probabilities we encounter in the simulations of the
optimizing SIR model. With the lowest cost of infections, the highest infection probability is around .13
calculated using (11). The exact probability using the Poisson distribution is .122.
13 We have not shown existence or uniqueness of equilibrium. However, our simulations show that equi-
librium exists, and do not indicate the existence of multiple equilibria.
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4 Externalities and deviations from social efficiency

4.1 Formal statement

As in other models of pairwise interaction, we would expect the decision strategies
derived in the preceding section to be subject to externalities and inefficient outcomes.
We derive the socially optimal strategies by assuming the existence of a social planner,
who chooses social activities for all agents. The information that the social planner
possesses about agent identities and the future path of the economy coincides with
that of private agents. As with private agents, the planner chooses the same xt for all
vulnerable agents and a separate xrt for the recovered. However, since the recovered
are immune, and they do not influence the transition rates of the susceptible or infected
individuals, the social plannerwill chooseφ′(xrt ) = 0∀t .Thismatches private choices
so it can be ignored and we can focus our analysis on the vulnerable agents only.14

There are two reasons for why the social solution deviates from the decentralized
solution. First, one person’s activity level may influence other people’s meeting rate.
Second, the planner is aware that her actions today influences the future dynamics
of St and It , through Eqs. (1)–(2). These facts are ignored by private agents in the
decentralized equilibrium. We called externalities that might arise from the first chan-
nel static externalities. The externalities due to the second channels are the dynamic
externalities,which we subdivided into the medical congestion, contagion and immu-
nity externalities.

Given WR , the planner cannot influence the utility of an infected individual. The
NPV utility of all vulnerable individuals is the same value function WV

t as defined
above. Hence we can derive the social optimum choice of xt by having the social
planner step into the shoes of the vulnerable agent and select xt to maximize WV

t .

The planner’s controls are the activity levels {xt }∞t=0. In any period, pt , St , and It
are pre-determined state variables.15 The objective of the planner is the constrained
maximization of the value function

WV
t (St , It , pt ) = φ(xt ) + β ptW

R(1 − δ(It ))

+β(1 − pt )W
V
t+1(St+1, It+1, pt+1), (14)

subject to the laws of motion (13) and (1)–(2) for pt , St and It , respectively. The
first-order condition for xt then reads

14 As discussed in Sect. 3, some types of meeting technologies may imply that a high activity level of
immune individuals may reduce the transmission rate in society. If so, the planner may want to increase the
activity level of the recovered individuals above 1. In this paper we do not consider this special case.
15 Since St , It and pt are predetermined variables, we include them all as state variables. Note that with
identical activity levels for all agents, pt is equal to the fraction of infected to non-recovered individuals
(pt = It/(St + It )). Still it is very convenient to include pt as a separate state variable. In the decentralized
solution, agents consider pt (on individual level) as a state variable that depends on their activity level in
the previous period. Including pt as a state variable in the planner’s problem thus facilitates the comparison
of the planner’s solution and the decentralized solution.
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− φ′(xt ) = β (1 − pt )

{
∂WV

t+1

∂ pt+1

∂ pt+1

∂xt
+ ∂WV

t+1

∂ It+1

∂ It+1

∂xt
+ ∂WV

t+1

∂St+1

∂St+1

∂xt

}
. (15)

The left-hand side of (15) measures the utility cost of the social distancing in the
current period, the deviation of φ′(xt ) from the unconditional optimum 0. The right-
hand side gives the gains in expected lifetime returns from the social distancing, which
accrue to the susceptible individuals (the fraction 1 − pt of all vulnerable), from the
next period onwards, discounted to the present at β.

We show:

Proposition 1 he social optimum level of social activity is the solution to the following
equations:

− φ′(xt )
1 − pt

= −β2km′(xt )It
[
WV

t+2 − (1 − δ(It+1))W
R
]

+ β

(
∂WV

t+1

∂ It+1
− ∂WV

t+1

∂St+1

)
km′(xt )St It . (16)

∂WV (St , It , pt )

∂ It
= −β ptδ

′(It )WR − φ′(xt )
m(xt )

m′(xt )It
(17)

∂WV (St , It , pt )

∂St
= 1 − pt+1

p′
t+1St

[
φ′(xt ) + β(1 − pt )p

′
t+1

∂WV
t+1

∂ pt+1

]

+ β(1 − pt )
∂WV

t+1

∂ It+1
, (18)

where the dynamics of pt are given by (13).

Equation (16) follows from the first order condition (15), the fact that
∂WV

t+1
∂ pt+1

=
β(WV

t+2 − (1 − δ(It+1))WR) from (14), and that ∂ pt+1/∂xt = km′(xt )It from (13).
Proofs of Eqs. (17) and (18) are given in Appendix 2.

If we compare the market solution given by (12) and the planner’s solution given by
(16), we note the following: the first term on the right-hand side of the planner’s first
order condition is similar to the right-hand side of the decentralized solution, with the
exception that k m(xt )

xt
is replaced by km′(xt ). If the two differ, this is the source of the

static externality. The last term in the planner’s solution is absent in the decentralized
solution and reflects the dynamic externalities.

Equation (17) expresses the social cost of having one more infected individual in
period t + 1. This cost has two parts. First, more infected people may increase the
cost of being infected for all infected agents. This is the medical externality and is
captured by the first term. The second term is the contagion externality, the impact
of higher It+1 on future infections. One additional unit of It increases the number of

123



22 P. Garibaldi et al.

infected people in the next period with the same number as m(xt )
m′(xt )It additional units

of xt .16 The unit cost of reducing xt is φ′(xt ). The marginal cost of increasing It due
to the potential for more infections in period t + 1 is the product of the two, as in the
second term on the right-hand side of (17).

Finally, (18) is the basis of the immunity externality associated with the induced
changes in St , which is the most subtle of the externalities. For a given (optimal)
sequence of activity levels xt , xt+1, . . ., a unit decrease in St does not influence the
pay-offs in period t , nor the probability pt+1, since pt+1 = xt km(xt )It . However, St
does influence the number of infected people in period t + 1, It+1 = km(xt )St It , and
hence also the probability of contracting the virus in that period, pt+2 = It+1km(xt+1),
and in later periods as well. A fall in St thus reduces infections in later periods, and
takes the economy closer to herd immunity.

To give some intuition for the expressions in (18), we note that the planner can cost-
lessly react to an increase indSt by increasing xt by

1−p(xt+1)
p′(xt+1)St

dSt units, therebykeeping

St+1 unchanged.But this increases It+1 by one unit and pt+1 by p′(xt ) 1−pt+1
p′
t+1St

dSt units.

The per-unit gain to the planner of increasing xt is φ′(xt ) units. Together this gives
(18). This argument is also made rigorous in the Appendix. Note that

∂WV
t+1

∂ It+1
is given

by (17), and
∂WV

t+1
∂ pt+1

follows readily by taking the derivative of (14).

Our main interest is the net effect of the immunity externality and the contagion exter-
nality. To this end, consider the case in which δ(I ) = δ0 (no medical externalities).

Define Zt+1 ≡ ∂WV
t+1

∂ It+1
− ∂WV

t+1
∂St+1

as the net dynamic externalities; the difference between
the contagion and immunity externalities. If Zt ≤ 0 for some t , the contagion exter-
nality dominates over the immunity externality at this point in time, and the social
planner will want to impose more social distancing than in the decentralized solution.

In Appendix 2 we show that along the planner’s optimal path, the net dynamic
externality Zt evolves according to the following difference equation

Zt+1 = −φ′(xt+1)
m(xt+1)

m′(xt+1)It+1
+ β(1 − pt+1)φ

′(xt+2)
m(xt+2)

m′(xt+2)It+2

+ β(1 − pt+1)(1 − pt+2)Zt+2. (19)

For given vectors of variables St , It , and xt , (19) is a relatively complex first order
difference equation. As is standard in rational expectations models, the associated
homogenous equation is not stable, as β(1− pt+2)(1− pt+1) < 1. The value of Zt at
any point in time depends on all future values of Zt , albeit with decreasing weights,
due both to discounting and to the fact that fewer and fewer people are still susceptible.

We can calculate the value of Zt at the limit, denoted Z∞, with I = I∞ = 0 and
S = S∞, and hence obtain a terminal value for Zt . Clearly, at the limit, the immunity
externality is 0, as one more susceptible individual will not influence the utility NPV
of a vulnerable individual when there are no infected people around. However, the
contagion externality will still be strictly positive. Even though the epidemic is over,

16 This follows from the fact that d It+1 = km(xt )St d It + km′(xt )St It dxt .
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one infected individualmay still infect others before the illness again dies out. Suppose
the number of infected individuals rises from 0 to δ I . The δ I individuals will in
expectation pass on the illness to R0t S∞δ I < 1 individuals, who in turn will each
pass it on to the same expected number of individuals. Since society has obtained herd
immunity at this stage, the process converges. In the Appendix we show that Z∞ can
be written as

Z∞ = − β2R0

1 − βR0 S̄
δ0W

R < 0, (20)

so contagion trivially dominates.

4.2 Discussion of externalities

As already pointed out, the first order condition for the planner, given by (16), deviates
from that of the agents in the decentralized solution, given by (12), in several ways.

First, in the first term on the right-hand side, the factor k m(xt )
xt

in the decentral-
ized solution is replaced by km′(xt ) in the planner’s solution. The two solutions give
identical outcomes when the meeting technology exhibits constant returns to scale:

xtm′(xt )
m(xt )

= 1. (21)

This requirement parallels the familiar elasticity condition frommatching theory, often
referred to as the Hosios (1990) condition, which applies to situations of pairwise
matching (Pissarides 2000, chapter 8). If the condition is not satisfied, the social
planner will want to impose more or less social distancing because of this (static)
externality.

To show how the returns to matching and social distancing bring about this exter-
nality, we differentiate the infection probability of a single agent, (11), with respect
to other agents’ actions, x̄t . With constant returns in m(x̄t ), the partial is zero, so less
social distancing by others in the market does not influence this person’s infection
probability. But with increasing returns, ∂ pt+1/∂ x̄t > 0; a person is more likely to
be infected when other people in her community reduce their social distancing. This
is the essence of the externality: it arises in situations in which a change in a typical
individual’s social distancing has an impact on other people’s infections probability.17

Consider next the dynamic externalities. Intuitively, the contagion externality will
make the social planner want more social distancing. When the private agent reduces
her social activity, she reduces the number of infected people next period, so makes
some other people better off. She ignores this effect of her actions, so the social planner
will want her to reduce her social activities further.

But the immunity externality will have the opposite effect. When the private agent
reduces her social action she raises the number of susceptible people and delays the
end of the epidemic. The social planner, in contrast to the agents in the decentralized

17 See the pioneering work of Diamond and Maskin (1979), in which they explore meetings with linear
and quadratic “search technologies.”
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solution, takes into account the impact of the lower xt on the path of susceptible agents
and the prolongation of the epidemic. If the immunity externality is stronger than the
other externalities present, so that the planner (for given state variables St and It )
shields less than the agents in the decentralized economy, we say that we have a race
to shield.18

The medical congestion externality, which we have ignored so far, introduces yet
another dimension to the divergence between private and social outcomes. Medical
congestion ariseswhen infections are high, so the planner’s objective is to reduce peaks
in infections. This is something that private agents do not take into account in their
decision making. Given that a certain number of infections needs to take place before
herd immunity, for the social planner a flat infections curve is better formedical reasons
than one that goes up and down. This will typically imply more social distancing by
the regulator early on, when infections are rising fast, but less later, when they flatten
out.

5 Vaccination

Our discussion of the dynamic externalities in the preceding section has made it clear
that they depend on the time that it takes the disease to end. We get the externalities
because the social planner chooses a different path to the end of the disease from the
one implied by private shielding decisions. A vaccine is therefore expected to have a
large impact on the externalities, because it alters the end game of the disease.

Vaccines typically have limited effectiveness; for example, a vaccine might be less
than 100% effective at avoiding the disease, or it might reduce the health costs to
the individual once contracted.19 These situations are easily handled in our model.
A vaccine that gives limited immunity is one that reduces the infectiousness of the
disease, the k in our model, to a number that is still positive, but less than the number
before its introduction. One that reduces the medical cost can be modelled as a fall in
the disease cost δ(I ).

Rather than repeat our derivations for smaller k or δ(.) parameters, which would
be trivial, we focus on a more interesting case. What if there was no vaccine as yet,
but there was expectation that one would arrive. We are looking to find the impact of
this expectation on our externalities, before the vaccine arrives. We assume that the
process that brings the vaccine is Poisson and is correctly anticipated by both private
agents and the social planner.

Two other assumptions help tomake our analysis sharper. One is that once a vaccine
arrives it eliminates the spread of the disease instantly. This avoids the impact of delays
in the administration of the vaccine, or limitations in its effectiveness, which, although
important in real life, would complicate results and lose clarity about the externalities

18 Some considerations in this direction were stated in Britain at the very beginning of the COVID-19
pandemic, including the “eat out to help out” campaign in the summer of 2020. See https://www.politico.eu/
article/dominic-cummings-uk-coronavirus-herd-immunity-hearing-committee/ for the government views
about the prospect for herd immunity.
19 For an optimal vaccination policy when the vaccine does not give immunity forever see Federico et al.
(2022)
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that arise when there is expectation of a vaccine arrival. Note though that the vaccine
is not a cure, so it will not help those who are in the infected state.

The second assumption is that the expected time before the introduction of the
vaccine is short enough so the disease is expected to end by the vaccine and not by
herd immunity.

To derive the impact of these assumptions on the externalities, suppose there is a
probability λ > 0 that a fully effective vaccine will arrive between this period and
the next. The expected duration of the disease is therefore 1/λ. If a vaccine arrives
in period t , it does so before the agents make their activity choice xt . We develop
the theory and subsequently simulate the solution for a λ value that implies that in
expected value terms, the disease will end through vaccinations and not through herd
immunity.

Private agents might shield a little more when the expectation is that the disease will
end long before herd immunity, because the continuation value of staying susceptible
increases. The planner might also be subject to these considerations and reduce social
action a little more. In addition, a concern for the planner before was to reduce the
length of time that society needed to get to herd immunity. This length of time is now
likely to be shorter and independent of private actions, since it is the vaccine that will
stop the epidemic and not immunity through infections.

So for a high value of λ, we expect to find large differences between the planner’s
solution with and without a vaccine. To derive formally the impact of the vaccine
arrival rate, denote by W̄ V V

t the net present value of utility of a vulnerable agent in
period t if a vaccine arrives between t − 1 and t, and WVN

t the utility if it does not
arrive. Define

WVV
t ≡ λW̄ V V

t + (1 − λ)WVN
t . (22)

Hence, WVV
t is the expected NPV of utility of entering period t as vulnerable, in the

absence of a vaccine in period t and without knowing that a vaccine will arrive in t .

5.1 The decentralized solution

Suppose the vaccine arrives in the beginning of period t . Because it immediately
stops the disease, the continuation pay-off for an individual is βWR if uninfected
and β(1 − δ(It ))WR if infected. Both are independent of her activity level xt that
period. Hence the individual sets xt = 1 and obtains an instantaneous utility φ(1) =
(1 − β)WR . It follows that

W
VV
t = φ(1) + β(1 − pt )W

R + β pt (1 − δ(It ))W
R

= [1 − β ptδ(It )]W
R, (23)

that is, the NPV utility of the recovered less the utility loss that accrues if the agent is
already infected.

Now suppose the vaccine has not yet arrived in period t . With predetermined prob-
ability pt , the individual got infected, and her continuation value is β(1 − δ(It ))WR ,
independently of whether or not the vaccine arrives. With the complementary proba-
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bility, the agent is not infected, and obtains a continuation pay-off of βWVV
t+1 . It follows

that

WVN
t = max

xt

{
φ(xt ) + β pt (1 − δ(It ))W

R + β(1 − pt )W
VV
t+1

}
(24)

It follows from Eqs. (22), (23), and (24) that

∂WVV
t

∂ pt
= −λβδ(It )W

R − (1 − λ)β
[
WVV

t+1 − (1 − δ(It ))W
R
]

= −β
[
WVV

t+1 − (1 − δ(It ))W
R
]

− λβ(WR − WVV
t+1 ). (25)

So the first order condition for the agents’ maximization problem as defined by (24)
reads

φ′(xt )
1 − pt

= β2 p′(xt )
[
WVV

t+2 − (1 − δ(It+1))W
R + λ(WR − WVV

t+2 )
]
. (26)

The first two terms inside the square brackets reflect the cost of being infected if a
vaccine does not materialize before the next period, and correspond to the analogous
terms in (12). The last term reflects the expected gain to the susceptible from the
vaccine’s arrival, which the infected will not take part in.

The decentralized equilibrium can be defined analogously to the definition with no
vaccine, given by Definition 1, with WV

t replaced by WVN .20 Furthermore, the first
order condition for xt , (12), is replaced by (26).

5.2 The planner

Before a vaccine arrives, the planner chooses activity level so as to maximize the net
present value of utility of the representative vulnerable person WVN defined by (24).
As above, the planner maximizes WVN given the constraints (13), (1), and (2) (the
law of motion for pt , St and It ). Parallel to (15), the first order condition for xt reads

− φ′(xt )
1 − pt

= β

{
∂WVV

t+1

∂ pt+1

∂ pt+1

∂xt
+ ∂WVV

t+1

∂ It+1

∂ It+1

∂xt
+ ∂WVV

t+1

∂St+1

∂St+1

∂xt

}
. (27)

Parallel to (16), we expand the first order condition to,

20 It is slightly more cumbersome to characterize WVN
t than WV

t . WV N
t is given by (24), which again

depends onWVV
t+1 , defined by (22), and which includesW

VV
t+1, defined by (23), whileW

V
t is defined simply

by(9).
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φ′(xt )
1 − pt

= β2km′(xt )
[
WVV

t+2 − (1 − δ(It+1))W
R + λ(WR − WVV

t+2 )
]

+ β

(
∂WV

t+1

∂ It+1
− ∂WV

t+1

∂St+1

)
km′(xt )St It . (28)

The two dynamic externalities captured in the last term can be derived with the same
methodology as when vaccines are absent, but taking into account that there is a
probability 1−λ that the externalities unfold in the next period and (1−λ)2 that they
unfold two periods ahead. It follows that

∂WVV (St , It , pt )

∂ It
= −(1 − λ)φ′(xt )

m(xt )

m′(xt )It
− β ptδ

′(It )WR (29)

∂WS(St , It , pt )

∂St
= (1 − λ)(1 − pt+1)

p′
t+1St

[
φ′(xt ) + β(1 − pt )p

′
t+1

∂WVV
t+1

∂ pt+1

]

+(1 − λ)β(1 − pt )
∂WVV

t+1

∂ It+1
.

Naturally, the medical externality (the last term in the first equation) is unaffected by
the prospect of vaccines, as it concerns those who are already infected when it arrives.
The contagion externality is scaled down by a factor of 1− λ, the probability that the
vaccine has not yet arrived. That is also the case for the first term in the immunity
externality. However, the second term of the immunity externality is scaled down by

a factor (1 − λ)2 (since
∂WVV

t+1
∂ It+1

is scaled down by 1 − λ). It follows that the planner is
expected to reduce her optimal activity level by more than private agents are expected
to do, and so weaken the race to shield.

To sum up, we would expect that private agents shield a little more when the
expectation is that the epidemicwill end before herd immunity, because the overall gain
from staying susceptible increases as the likelihood of getting infected in the future
falls. The planner is also subject to these considerations. The immunity externality
will weaken, because it arises when private agents’ shielding increases the number of
susceptible individuals in the future, which is now more of a good thing as a vaccine
then may have arrived. Hence we expect that the prospect of a vaccine reduces the
activity level set by the planner more than the activity level set in the decentralized
solution.

6 Simulations

6.1 Parametrization and calibration

In this section we parameterize the model, calibrate some important parameters, and
simulate the model with different assumptions regarding the severity of the illness,
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arrival rates of vaccines, returns to the contact functions, and the strength of themedical
externalities.

We use the following parametrization of the net semi-indirect payoff function:
φ(xt ) = A + lnxt − xt . With this function the optimal xt for all recovered agents
satisfies the normalization xr = 1. The PDV after recovery isWR = (A−1)/(1−β).

We set β = 0.998. If a period is two weeks, this corresponds to an annual discount
rate of 0.05.

The parameter A is certainly important, as it influences the value of life relative
to the value of social activity. Hall et al. (2020) argue that the statistical value of life
is 6 times higher than the NPV of consumption weighted by the marginal value of
consumption. Although at a stretch, we interpret xt as consumption, as do Farboodi
et al. (2021). Furthermore, we interpret ln xt as the utility of consumption, and xt as the
utility cost of making consumption available (for instance the utility cost of reduced
leisure). We evaluate the marginal value of consumption at xt = 1, the consumption
level obtained in the absence of an epidemic and when recovered. The per period
consumption value weighted by the marginal value of consumption is then 1. The
per period utility is A − 1. Hence, for the per period utility (or NPV utility) to be 6
times higher than the per period level of consumption (or NPV value of the level of
consumption), we must have that A = 7. We therefore set A = 7.

We model the cost of catching the disease (as a proportion of lifetime utility) as
δ(It ) = δ0eδ1 It , where δ0 and δ1 are non-negative parameters. We simulate the model
with a high and a low value of δ0, the high value equal to 0.0083 (5/6 %) and the
low value equal to 0.00177 (1/6 %). If the cost of the disease is death, the high and
low costs can be interpreted as fatality rate of 0.0083 and 0.00177, respectively. The
values span the fatality rates typically used in the recent epidemiological literature, as
well as the COVID-19 death rates in Europe.21 In the welfare analysis below we will
use both the high and low values of δ0.

Recall that the R0t = km(xt ), where R0t is the basic reproductive number in period
t . Wewrite R0t = R0xα

t , where the constant R0 is the basic reproductive number when
x = 1 and S = 1 (the basic reproductive number at the outbreak of the epidemic). As
in most studies we set R0 = 2.4.22

We begin our main simulations by focusing on the net impact of the two dynamic
externalities, which quantitatively is the main new contribution of this paper. In order
to do this as cleanly as possible, we set, in what we refer to as our baseline simulations,
δ1 = 0 and α = 1, thus shutting down the static externality and themedical congestion
externality.

6.2 Preliminary simulation: the role of optimizing behaviour

As a preliminary to our main simulations, we first compare the baseline simulations
of the decentralized solution of our model to the SIR model solutions without social
distancing. We assume that no vaccine is expected to arrive, and set δ0 at the high

21 See https://covid19.who.int/.
22 In order to economize onnotation,wenow let k denote the product of the infection probability conditional
on a contact and any constants that might belong to m(xt ).
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value. The plots are shown in Fig. 1. In each chart the red/broken line refers to the
decentralized outcome from our model while the black/continuous line to the non-
optimization standard SIR model. As in most figures that follow, the top chart shows
the activity level {xt }, the middle chart the mass of susceptible people, and the bottom
chart themass of infected people. Figure1 shows the first 100 periods of the simulation
(about 4 years).

Before the disease the twomodels have the same activity level, normalized to unity.
But whereas without optimization the activity level remains at that level throughout the
epidemic, in the decentralized simulation it drops a little when the ε infections are first
introduced and then drops dramatically and very quickly to a number below 0.5. This
drop cuts the effective reproductive number in the decentralized equilibrium to below
1.2St . The middle panel plots the stock of susceptible people, initially normalized to
one for bothmodels. In the SIRmodel with the high activity level continuing, the stock
of susceptible people drops very quickly to the new steady state level. After about ten
periods (20 weeks) only 3.7% of the susceptible people avoid the infection, which
virtually corresponds to the end of the diseases (It = 0), reached when 3.6% avoid
it. Adjustments are much slower in the case of the optimizing solution. As people
drop the level of activity, the stock of susceptible people falls smoothly and gradually
throughout the epidemic. After 10 periods, 72.5% of the population are still disease-

Fig. 1 Standard SIR versus optimizing SIR: 100 periods
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Fig. 2 Matching-SIR: planner versus market, low δ0

free. We will discuss this in more detail below. In the bottom panel of Fig. 1 we plot
the stock of infected people. At its peak it is around 10 times higher in the SIR model
without social distancing compared with the optimizing SIR model.

6.3 The planner’s solution

In this subsection we will first compare the planner’s solution and the market solution
in our main simulations with δ1 = 0 and α = 1.23

We first consider a situation with low cost of attracting the disease, δ0 = .017. Fig-
ure2 shows the activity level and the numbers of susceptible and infected individuals
along the decentralized equilibrium path and the planner’s optimal path. The dotted
(red) line refers to the decentralized outcome while the continuous (blue) line refers
to the central planner solution. From Fig. 2 we see that the planner tends to impose
more social distancing than the decentralized equilibrium, particularly just after the
peak of the disease (when It is at its maximum) and during the recovery.

This contrasts sharply with the impact of higher medical costs. For a fixed cost
δ0 = 0.0083, Fig. 3 shows that there is a race to shield; the planner shields less than

23 As a consistency check, we have simulated the model using different methods: the first order conditions
of the planner defined above, first order conditions derived using Lagrange’s method, and a more plain
method where we search for a maximum over a grid. The computationally most efficient way of simulating
the model is by using the Lagrangean. The simulations are done by Per August Moen, research fellow and
Ph.D. student at the Department of Mathematics, University of Oslo.
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Fig. 3 Matching-SIR: planner versus market, high δ0

the agents in the decentralized solution. In the first fifty periods of the epidemic (except
briefly at the very top) the planner wants to raise the social activity level chosen in the
decentralized solution, because of a strong immunity externality. Private agents shield
too much when the medical costs are high, delaying the transition to herd immunity.
However, towards the end of the epidemic the planner shields more than the agents in
the decentralized solution, so that the aggregate number of infected people over the
course of the epidemic is higher in the decentralized solution than in the planner’s
solution.24

Recall that the net dynamic externality Zt captures the effect onWV
t of having one

more person infected and one less susceptible. With our parametrization, it follows
that Eq. (19) can be written as

Zt+1 = −1 − xt+1

It+1
+ β(1 − pt+1)

1 − xt+2

It+2
+ β(1 − pt+2)(1 − pt+1)Zt+2. (30)

24 Note that except in the very beginning, the number of infected and susceptible individuals along
the decentralized solution path and the planner’s path differ, implying that one should be cautious when
comparing the graphs of the planner’s solution and the decentralized solution.
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Fig. 4 Zt first 20 periods

Recall that a negative Zt implies that the contagion externality dominates and the
social planner wants to impose more social distancing, whereas a positive one implies
the opposite, that the balance of the dynamic externalities is for less social distancing
by the planner.

The first 20 periods of Zt are plotted in Fig. 4, and the first 150,000 periods in
Fig. 5. Zt is negative and increasing in the very beginning, then turns positive and
peaks around period 10, and then decreases again to converge to Z∞, as defined in
Eq. (20) (horizontal line in Fig. 5). However, full convergence of Zt takes a very long
time (thousands of years).25

The dynamics of Zt can easily be understood by inspecting (30) and the simulated
values of It shown in Fig. 3. We know that Z∞ < 0 (and large in absolute terms).
After their peaks, It and xt are both decreasing in t , 1−xt+1

It+1
<

1−xt+2
It+2

. If the relative
difference between the two terms is bigger than the factor β(1 − pt+1), the sum of
the two first terms is positive. In this case, as we move backwards in time, Zt+1 will
be strictly greater than Zt+2 as long as Zt+2 is negative (or positive but not too large)
since the factor in front of Zt+2 is less than 1. This is also what we see in the plot of
Zt . We also see that Zt switches sign around period 12.

25 Each of the figures actually shows two plots, Zt calculated by using (18) and Zt calculated with (30).
The two are so close that they cannot be distinguished from each-other. Since Zt defined by (30) holds only
if the first order condition is satisfied, this is a consistency check of our results.
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Fig. 5 Zt first 150,000 periods

However, at the early stages of the epidemic, before It and xt peak, they are both
increasing in t . Hence the sum of the two first terms is negative, and Zt+1 will surely
start to decrease again as we go back in time and t decreases. From Fig. 4 we see that
Zt becomes negative as t is approaching zero.

Our results beg the question: why is the planner closing down more than the market
when medical costs (δ0) are low, and less when they are high?

The epidemic ends when the number of infected agents converges to zero. i.e.,as It
approaches 0. Furthermore, xt converges to 1 because the infections risk is zero. At this
stationary point, the effective reproduction number must be lower than 1. Hence, in the
limit as t → ∞, R0t St = km(1)St ≤ 1. Therefore, the supremum of the number of
susceptible individuals who never catch the disease, S∞, is given by Smax = 1/km(1),
which, with our parameters, is equal to 0.417 (i.e., amaximum41.7%of the population
can avoid the epidemic).

With awareness of the requirement that herd immunity will bring an end to the
disease with S∞ ≤ Smax, the social planner faces a trade-off. Speed up the infection
process to get to the end quickly and save the costs of deviations of xt from its optimum,
or slow down the process, bear more costs from lower activity levels, but reach the
end with a bigger S∞.

Compared with the decentralised solution, and for a low δ0, the planner does much
better when it comes to the aggregate number of infections. At T = 40 (approximately
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after 1.5 years) the epidemic is for all practical purposes over both in the planner’s
solution and in the decentralized solution. At this stage the number of susceptible
individuals is .36 in the planner’s solution and .28 in the market solution. It follows
that the planner is much closer to the maximum achievable number of susceptible
individuals consistent with herd immunity. Note also that in the decentralized solu-
tion, S is 0.37, well below Smax, already in period 10. Since curbing the epidemic
takes time, as infected individuals will infect others before the epidemic dies out, the
planner will cut back on activity relative to the decentralized solution early on in the
epidemic in order to reduce the total number of infections before herd immunity is
reached.

For a high δ0, this is different. In the decentralized solution, the epidemic now
moves much more slowly. After 40 periods, the fraction of susceptible individu-
als is still .45, well above Smax = .417. It takes 60 periods before S falls below
Smax, and in the limit (after 300,000 periods), S = .40. The number of suscepti-
ble individuals is also very high for the planner. At T = 40, S is equal to .45 (the
same number as in the market solution). In the limit (after 300,000 periods) S in the
planner’s solution is equal to .41663, extremely close to Smax. The decentralized equi-
librium also moves slowly in the beginning, after 10 periods the value of S is still
.73.

It follows that with the high δ0, the scope for the planner to do better than the
decentralized solution in terms of a lower total number of individuals being infected
is much less than with the low δ0. The agents in the decentralized solution cut back
more on xt in the early phases of the epidemic than the planner needs to do in order to
obtain a total number of infections close to the minimum. With the need to cut back to
preserve lives removed, the dominant preoccupation of the planner becomes the long
time needed to get to herd immunity. She shortens that time by choosing more social
interaction early on, as dictated by the immunity externality. In other words, although
private agents do well to shield more when medical costs are high, they overdo it when
they exceed a certain level.

6.4 Implications of a vaccine

As we explained above, the expectation of a vaccine is likely to increase shielding
by both the planner and the private agents, as the value of remaining susceptible
increases. But because the planner responds to both the contagion and the immunity
externality, and the latter is expected to weaken by more, we would expect the planner
to reduce social activity by more than private agents. These expectations are con-
firmed in our simulations, for a fairly high, but not completely implausible, vaccine
arrival rate. We select λ = 0.05, implying an expected duration of the disease of
20 periods (about 40 weeks). Although the COVID-19 vaccines were invented and
approved very fast (on December 8, 2020, Britain became the first country to approve
the Phizer-BioNTech vaccine, about 37 weeks after the first COVID-19 lockdown),
there are some important differences between our assumptions about vaccines and
COVID-19. The COVID vaccines took some time to implement, offered partial pro-
tection and needed renewal every few months. See below for more discussion of the
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impact of less effective vaccines like the ones for COVID-19 and the annual influenza
ones.

To see the significance of this parameter, refer to Fig. 3. Without a vaccine, the
expected length of time before the end of the epidemic is in excess of 40 periods
in decentralized equilibrium, whereas the social planner wants to reduce it to about
20. The corresponding trajectories with a vaccine are shown in Fig. 6. The optimal
policy is to enforce much more shielding until the vaccine arrives, and much more
than the agents in the decentralized solution, who change their behaviour very little.
Of course, with this very cautious policy, if there are delays in the arrival of a vaccine,
herd immunity is much harder to achieve. Even after 100 periods without a vaccine,
the fraction of susceptible individuals in the optimal solution is around .8, and the
epidemic is still far from ending. With our assumptions, the probability of reaching
100 periods without a vaccine arriving is around 1/2 percent.

A concern for the planner beforewas to reduce the length of time that society needed
to get to herd immunity. This concern is now less relevant, since the epidemic is likely
to end as a result of a vaccine arriving. For a sufficiently high value for the arrival
probability λ, and a correspondingly weakened immunity externality, the planner’s
action is dominated by the contagion externality. If the vaccine is expected to arrive
quickly, avoiding infections even more than before is socially a good outcome.

We have focused on the extreme version of a vaccine, a fully effective one that
ends the epidemic as soon as it arrives. Although this analysis illustrates well the
implications of a vaccine, it is not what we see in practice. Vaccines for epidemics
such as influenza or COVID usually offer substantial but not 100% protection, or
they reduce the severity of an infection. We do not fully formalize such a scenario
but our analysis so far gives good indications of the dynamics of the epidemic when
vaccines are not fully effective. We reinterpret our formalization as one in which on
arrival the vaccine reduces medical costs to zero. Consider the more realistic alterna-
tive, that on arrival infections can still happen, but the medical cost before recovery
is substantially reduced. We have shown in our basic simulations that lower medical
costs have a bigger impact on the immunity externality than on the contagion one.
It follows that less effective vaccines that reduce medical costs still have the exter-
nality effects that we studied in the case of fully effective vaccines, but in weaker
form. The immunity externality is weaker, but might still be sufficiently strong to
offset the contagion one, depending on how much medical costs are reduced by the
vaccine.

6.5 Medical externalities

We consider the impact of the medical congestion externalities in the absence of a
vaccine, so our results in this subsection should be compared with those in Fig. 3.
Figure3 shows a high peak in the number of infected people in the optimal solu-
tion. With medical costs increasing in It due to congestions in the health sector,
the social planner will want to avoid the congestion by flattening the infections
curve. This is shown in Fig. 7. Recall that δ(I ) = δ0eδ1 It . We set δ0 = 0.0058
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Fig. 6 Planner versus market with vaccine, λ = 0.05

Fig. 7 Planner versus market with medical externalities
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Fig. 8 Decentralized equilibrium with constant and increasing returns to scale, high δ0, no vaccine or
medical externalities

(35/600%) and δ1 = 6, so that medical costs increase fast with It and the mean
overall cost between It = 0 and It at its maximum in the absence of the med-
ical externality is approximately 0.0833, as in the case of the high fixed medical
costs.

In the comparison between Figs. 3 and 7, we see that the social planner has reduced
the high point of infectionsmuchmore than the decentralized choices. The adjustments
made to the social action that the planner chooses in order to achieve the flattening of
the infections curve are such that the paths of the planner become very close to the
decentralized paths, but this is a coincidence due to the particular parameter set that
we have simulated.

In the absence of medical congestion externalities, agents shield more than the
social planner because of the rat race to shield. The medical congestion externality
gives rise to a force in the opposite direction, as agents in the decentralized solution
shield less because they ignore the impact of their illness on the medical costs. With
our parametrization the two effects cancel each-other out.
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Fig. 9 Central planner equilibrium with constant and increasing returns to scale

6.6 Increasing returns to scale in contacts

So far the simulations of this section focused on the dynamic externalities, which is the
main new contribution of this paper. The static externalities were shut out by imposing
constant returns to scale in the contact technology. We now relax this assumption and
derive the implications of increasing returns.

We simulate two equilibrium paths, one with linear technology as before and one
with quadratic technology; i.e., we now write the contact function: km(xt ) = R0x2t .
The rest of the parameters are as in our main simulation. With a quadratic contact
function it is straightforward to derive, by substituting the quadratic expression for
m(xt ) into (11) and ( 13), that for private agents p′(x p

t ) = R0x
p
t It whereas for the

planner, p′(xst ) = 2R0xst It . We argued that because of this difference and ignoring
the dynamic externalities, the planner will want to impose more social distancing. On
the other hand, dynamic externalities are present, and may dominate the externalities
caused by the convexity of the contact function.26

26 It follows readily from (19) that for any α, Zt+1 is given by

Zt+1 = − 1 − xt+1

It+1
α−1 + β(1 − pt+1)

1 − xt+2

It+2
α−1 + β(1 − pt+2)(1 − pt+1)Zt+2.
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In Fig. 8 we compare the paths of the decentralized equilibrium with α = 1 and
α = 2. Since the elasticity of the contact function with respect to social activity is α,
the contact function is twice as sensitive to changes in the activity level with α = 2
than with α = 1. Hence reducing the activity level is much more effective in reducing
the contact rate with a quadratic contact function. As a result, the activity level during
the midst of the epidemic is reduced by less, and at the same time the number of
infected individuals is lower at its peak. The aggregate number of infections over the
life span of the epidemic is also lower with α = 2.

The effects of increasing returns on the social solution, shown in Fig. 9, are similar.
However, along the optimal path, the activity level is kept slightly below 1 for a much
longer period of time than when α = 1, keeping the aggregate number of infections
below 1 − Smax for an extended period of time. As before, adjustment to the herd
immunity state is much faster in the social planning solution in the relatively early
stages of the epidemic, because of the race to shield and the immunity externality,
which are strong with the fixed medical cost of δ0 = 0.833.

7 Conclusions

We have shown that the differences between three alternative paths from the onset of
an epidemic to its eradication can be large and complex. The first path, commonly
found in the early epidemiological literature, exposes large numbers of individuals to
the disease early on and reaches herd immunity quickly. The other two paths, chosen
by private agents in a decentralized equilibrium or by a social planner, favour much
longer adjustment paths by restricting the number of infections.

In the absence of a vaccine, such a large number of susceptible individuals when
infections end, produces a “race to shield,” especially if the costs of becoming ill are
high. With high costs, agents shield too much in the midst of the disease to increase
the chances that they will be the lucky ones who will avoid the disease altogether.
Obviously not everyone can succeed in this race; a low infection probability simply
increases the time that it takes to end the disease through herd immunity, at a higher
economic cost. The social planner will want to avoid this cost by choosing more social
activity to end the epidemic faster.

The expectation of a vaccine in the near future makes a large difference to the
results. Although private agents may still ignore the impact of their actions on the
time it takes to reach herd immunity, the social planner is much less concerned about
the potential higher economic cost, because the arrival of the vaccine will end the
disease faster than herd immunity will. Private agents also ignore the fact that if they
contract the disease they will infect others in the future, and this is something that the
planner cares about. So with the expectation of a vaccine, the social planner imposes
more social distancing, to reduce infections before the vaccine arrives. The ranking
result that we derived with a race to shield reverses.

Hence for α = 2, the first two terms are divided by 2 relative to the situation with a constant-returns to
scale contact function.
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We illustrate our results with simulations but as more data become available the
model should be taken to the data. Our model applies generally to epidemiological
models in the SIR tradition of Kermack and McKendrick (1927) and shows that quan-
titatively some parameters make a large difference to the simulated paths, such as the
lifetime cost of the disease, the elasticity with which contacts respond to changes in
social action and the vaccine arrival probability. Information on their relative magni-
tudes is still scant and may be disease-dependent. As our assumptions are consistent
with many of the features of COVID-19, data for this epidemic could shed light on
these magnitudes. Another feature that needs to be taken to the data is the economic
cost of shielding. In this paper we have assumed that it is a simple convex function
of a single variable, our measure of social action, but as many authors have shown, it
depends on a multitude of features of occupations and economic structures.

Finally, our analysis is based on the assumption that recovered individuals stay
immune permanently. If recovered individuals lose their immunity as time goes by,
thiswill change ourmodel in severalways. If the time that previously infected agent are
immune is short, herd immunity may never be reached, and the new steady state will
be characterized by equal flows of individuals moving out of and into the susceptible
state. Society “lives with the disease” as it does with new variants of influenza, and we
conjecture that without a vaccine the activity level never recovers to its first best level.
Generally, when immunity is temporary, social distancing will be larger. In addition,
the immunity externalityweakens, so the planner increases social distancingmore than
the agents do in the decentralized solution. These are topics that should be explored
in future work.

Appendix 1: The infections technology

In this Appendix we illustrate the technology of infections with a particular example
that is derived from first principles and satisfies the main properties of our general
function in the text. It is based on the urn-ball game that has been used in labour
theory and it brings out the contrast between the labour matching function and the
epidemiology transmission function.27

Suppose that a social activity is performed in one of N social spaces. By social
space we mean a place where performing an activity requires contact with at least one
other person. For a given population size S + I + R, N is a measure of the density of
the community, with smaller N indicating a more dense community. Social distancing
is also related to this measure: bigger N makes social distancing easier to achieve. A
contact in social space between a susceptible and an infected individual infects the
susceptible individual with probability k ∈ [0, 1].

We now interpret social spaces as urns. Infected individuals hold white balls and
susceptible individuals hold black balls. They all place x̄t balls each in randomly
selected urns. To simplify the exposition we assume that there is no memory of where
a previous ball was placed, so each person places each one of its balls in a randomly
selected urn out of the N available. A susceptible person gets infected with probability
k if any one of the urns that she selected for her black balls contains one or more white

27 See Petrongolo and Pissarides (2001) for discussion of the use of this game in labour theory.
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balls.28 We are interested in deriving the probability that there will be a white ball in
at least one of the xt urns selected by the i ∈ S individual, given the x̄t selected by the
infected individuals.

Our assumption of no memory makes the problem equivalent to placing x̄t It white
balls at random in urns. The probability that an urn avoids a givenwhite ball is 1−1/N ,

so, since there are x̄t It white balls, the probability that an urn contains no white balls
after all have been placed is,

ht =
(
1 − 1

N

)x̄t It

= e−x̄t It/N . (31)

Because of large numbers, ht is also the fraction of social spaces that are infection-free
(healthy).

We consider now how the choices of a single susceptible agent influence the prob-
ability that the agent will get infected. The agent selects xt urns to place black balls.
The probability that a single ball avoids an urn containing a white ball is given by
(31). So the probability that all xt black balls avoid an urn containing a white ball
is

hit =
(
e−x̄t It/N

)xt
. (32)

It follows that 1−hit is the probability that a single agent meets an infected individual
and so the probability that this person gets infected in period t is,

pt+1 = k
(
1 − e−xt x̄t It/N

)
. (33)

Differentiation of pt+1 yields,

∂ pt+1

∂xt

xt
pt+1

= xt x̄t It
N

e−xt x̄t It/N

1 − e−xt x̄t It/N
. (34)

This is a number less than 1, in contrast to the formulation in the text, which gives
unit elasticity. For small xt and It it is approximately equal to 1.29

From (33), and since there are St susceptible individuals who choose xt = x̄t , the
aggregate infections function is

Mt+1 = kSt
(
1 − e−x2t It/N

)
. (35)

28 Here is the biggest contrast with the labour matching function. A job vacancy (read infected person) can
remove at most one unemployed worker from the pool of unemployment (read, susceptible). An infected
person can remove any number that comes into contact with them.
29 An alternative formulation replicates the method used in the text exactly. From (31) the fraction of black
balls (susceptible people) which are placed in urns that contain at least one white ball is approximately
x̄t St (1 − exp(x̄t It/N )). A single individual supplies a fraction xt/x̄t St of black balls, so the probability
that this person is infected is kxt (1 − exp(x̄t It/N )), giving the proportionality between pt+1 and xt .
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For fixed N , this function exhibits increasing returns to scale in St and It . This result
is saying that bigger social spaces that have proportionally more susceptible and more
infectious individuals do not have a higher infections rate, but a proportional increase
in susceptible and infectious individuals in a given social space does lead to propor-
tionally more infections. Analogous to this result is the role of N . As it measures
density, a lower N indicates a more dense community and a higher infections rate for
given St and It .

Another property of significance is the dependence of the aggregate infections rate
on the square of the social activities of susceptible and infected individuals. For small
numbers of xt It/N , as satisfied by our model, the elasticity of infections with respect
to social action is approximately 2 but for larger numbers it is lower.

Appendix 2

Proof of Proposition 1

In an arbitrary period t , let (Sot , I
o
t , pot ) be an arbitrary, feasible triple of values of

St , It , and pt , with pot = I ot
Sot +I ot

. From this arbitrary starting point, let the sequence{
Soz , I

o
z , poz , x

o
z

}∞
z=t solve the planner’s problem.

Consider first an increase in the initial condition It from I ot to I ot +ρ, while St and
pt stay fixed at Sot and pot , respectively.

30

Define the function x I (ρ) implicitly by the function km(x I (ρ))(I ot +ρ)Sot = I ot+1.
This function exists on an interval [−ρ̄I , ρ̄I ] for some ρ̄I > 0. Clearly x I (0) = xot . It
follows that if the economy starts at I ot + ρ, Sot , and the activity level is x I (ρ), then
St+1 = Sot+1, It+1 = I ot+1, and pt+1 = pot+1. Furthermore,

dx I (0)

dρ
= − m(xot )

m′(xot )I ot
(36)

Now define the function W̃ V (Sot , It , p
o
t ) (where Sot and pot are fixed, so this is a

function of It only) for I t ∈ (I ot − ρ̄I , I ot + ρ̄I ) as

W̃ V (Sot , It , p
o
t ) = φ(x I (It − I ot )) + β pot W

R(1 − δ(It ))

+β(1 − pot )W
V
t+1(S

o
t+1, It+1, p

o
t+1) (37)

WV (Sot , It , p
o
t ) is the pay-off in optimum, and x I (0) = xot , it follows that

30 Along any path, we must have that pt = It
St+It

for all t . However, mathematically, the planner’s

maximization problem is well defined for also for initial values St , It , pt such that pt 
= It
St+It

. The

dynamic equations ensure that pz = Iz
Sz+Iz

for any z > t . Recall further that the effect of a change in It

and St through pt is captured by the term ∂WV

∂ pt
.
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W̃ V (Sot , It , p
o
t ) ≤ WV (Sot , It , p

o
t ) ∀It ∈ (I ot − ρ̄I , I

o
t + ρ̄I )

W̃ V (Sot , I
o
t , pot ) = WV (Sot , I

o
t , pot ) (38)

Hence the Benveniste–Scheinkman theorem applies, and we know that

∂W̃ V (Sot , I
o
t , pot )

∂ It
= ∂WV (Sot , I

o
t , pot )

∂ It
(39)

From this equation, and (36) and (37), it follows that

∂WV (Sot , I
o
t , pot )

∂ It
= −φ′(xot )

m(xot )

m′(xot )I ot
− β ptδ

′(I ot )V R (40)

Since the starting point Sot , I
o
t , pot is arbitrary, this shows (17).

Next, consider an increase in St from Sot to S
o
t +ρ, while It and pt stay fixed at I ot , pot .

Define x S(ρ) implicitly by the equation (Sot + ρ) − km(x S(ρ))I ot (Sot + ρ) = Sot+1.
This function exists on an interval (−ρ̄S, ρ̄S) for some ρ̄S > 0. Taking derivatives
gives

dxS(0)

dρ
= 1 − k I ot m(xot )

km′(xot )Sot I ot
= 1 − pot+1

po′t+1S
o
t

(41)

By definition we have that St+1 = Sot+1, It+1 = I ot+1 +ρ, and pt+1 = km(x S(ρ)))I ot .

Now define the function Ŵ V (St , I ot , pot ) for St ∈ (Sot − ρ̄S, Sot + ρ̄S) as

Ŵ V (St , I
o
t , pot ) = φ(x S(St − Sot )) + β ptW

R(1 − δ(I ot ))

+β(1 − pot )W
V
t+1(S

o
t+1, I

o
t+1 + St − Sot , km(x S(St − Sot ))I

o
t )

(42)

Now I ot and pot are fixed, so this is a function of St only.Again it follows by construction
that

Ŵ V
t (St , I

o
t , pot ) ≤ WV

t (St , I
o
t , pot ) ∀St ∈ (Sot − ρ̄S, S

o
t + ρ̄S)

(43)

Ŵ V
t (Sot , I

o
t ) = WV

t (Sot , I
o
t )

so that the Benveniste–Scheinkman theorem applies. Hence

∂Ŵ V (Sot , I
o
t , pot )

∂St
= ∂WV (Sot , I

o
t , pot )

∂St
(44)

Using this and (42) we get that
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∂WV (Sot , I
o
t , pot )

∂St
= dxS(0)

dρ
φ′(xot )

+β(1 − pot )
δWV

t+1

δ It+1
+ β(1 − pot )p

o′
t+1

dxS(0)

dρ

δWV
t+1

δ pt+1
(45)

Together with (41) this shows (18).

Deriving (19)

To show (19), first insert from Eqs. (17) and (18) to get that

Zt+1 ≡ ∂WV
t+1

∂ It+1
− ∂WV

t+1

∂St+1

= ∂WV
t+1

∂ It+1
− β(1 − pt+1)

∂WV
t+2

∂ It+2

− 1 − pt+2

p′
t+2St+1

[
φ′(xt+1) + β(1 − pt+1)p

′
t+2

∂WV
t+2

∂ pt+2

]

From Eq. (15) it follows that

φ′(xt+1) + β(1 − pt+1)p
′
t+2

∂WV
t+2

∂ pt+2
= −β(1 − pt+1)(

∂WV
t+2

∂ It+2

∂ It+2

∂xt+1
+ ∂WV

t+2

∂St+2

∂St+2

∂xt+1
)

= −β(1 − pt+1)km
′(xt+1)It+1St+1Zt+2 (46)

It follows that

Zt+1 = ∂WV
t+1

∂ It+1
− β(1 − pt+1)

∂WV
t+2

∂ It+2
+ 1 − pt+2

p′
t+2St+1

β(1 − pt+1)km
′(xt+1)It+1St+1Zt+2

= −φ′(xt+1)
m(xt+1)

m′(xt+1)It+1
+ β(1 − pt+1)φ

′(xt+2)
m(xt+2)

m′(xt+2)It+2

+β(1 − pt+1)(1 − pt+2)Zt+2

where we used that p′t+2 = km′(xt+1)It+1 to obtain the last equation.

Deriving (20)

To calculate Z∞, consider the limit economy with S = S∞, I = 0. The optimal
trajectory prescribes that x = 1 in all periods, and WV = WR . From this starting
point, suppose I increases from 0 to d I . Along the optimal path, behavioural changes
are of second order and can therefore be ignored.31

31 At this point herd immunity is obtained, and the system is stable around It = 0. This is not the case
initially.
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A person that is infected in period t is expected to infect km(1)S∞ persons in the
next period. Using the law of iterated expectations, it follows that in period t + 2, the
expected number of infected people is (km(1)S∞)2, and using the law repeatedly, it
follows that in period t + k the expected number of infected people is (km(1)S∞)k

people are expected to be infected and so on. With I = 0, WV = WR . It follows that
the total social cost of increasing the number of infected people from 0 to d I is

d I
(
1 + βkm(1)S̄ + (βkm(1)S̄)2 + ++

)
β2δ0W

R,

whereWR = φ(1)(1−β)−1. The first term is the private cost of obtaining the illness,
while the rest of the terms are the external effects. Hence the external effects sum to

− β2km(1)S̄

1 − βkm(1)S̄
δ0W

R .

The cost is only carried by the susceptible individuals. Recall that WV , equal to WS

when I = 0, captures the NPV utility of the representative susceptible individual. To
obtain Z∞ (the cost per individual), we divide by S̄, and we get that

Z∞ = − β2R0

1 − βR0 S̄
δ0W

R . (47)

Derivation of dynamic externalities with vaccine, Eq. (29)

Consider first an increase in It . If a vaccine has arrived, no-one is infected, hence from
Eq. (22) it follows that

∂W
VV

∂ It
= −β ptδ

′(It )WR (48)

This happens with probability λ. With the complementary probability, a vaccine does

not arrive. In this case we apply the exact same argument as when deriving ∂WV

∂ It
above,

Hence, parallel with (40) we get that

∂WVN (St , It , pt )

∂ It
= −φ′(xt )

m(xt )

m′(xt )It
− β ptδ

′(It )V R (49)

Here, and below, xt refers to optimal activity levels (as xot in the proofs above). It thus
follows that

∂WVV (St , It , pt )

∂ It
= −(1 − λ)φ′(xt )

m(xt )

m′(xt )It
− β ptδ

′(It )WR (50)

Then consider ∂WVV
t

∂St
. First note that W̄ V V

t is independent of St : If a vaccine arrives
between period t − 1 and t , no-one is infected from period t and onwards, and St is
irrelevant. If a vaccine does not arrive, we can use the exact same procedure as in the
case with no vaccine in order to find the effect on WVN . Parallel with (45) we have
that
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∂WVV (St , It , pt )

∂St
= (1 − λ)

dxS(0)

dρ
φ′(xt )

+(1 − λ)

{
β(1 − pt )

δWVV
t+1

δ It+1
+ β(1 − pt )p

o′
t+1

dxS(0)

dρ

δWVV
t+1

δ pt+1

}

(51)

where x S(0) is defined as in Eq. (45). Inserting this expression gives (29).

Simulations

The most efficient way to solve the planner’s problem numerically is to use the first
order conditions obtained by using Lagrange’s method. The planner’s objective can
be written non-recursively as (with δ = δ0 constant)32

∞∑
t=0

β t
(
(St + It )φ(xt ) + β ItW

I
)

(52)

whereW I = β(1−δ0)WR independently of t . This ismaximized given the constraints

St+1 = St − km(xt )It St (53)

It+1 = km(xt )It St (54)

The initial condition is that S0 + I0 = 1, and that I0 = ε.
The first order conditions can be written as

φ′(xt )
1 − pt

= −β p′(xt )(λI
t+1 − λS

t+1) (55)

λS
t = φ(xt ) + β(1 − pt+1)λ

S
t+1 + β pt+1λ

I
t+1 (56)

λI
t = φ(xt ) + β2(1 − δ0)W

R − βkm(xt )St (λ
S
t+1 − λI

t+1) (57)

We solve this system nummerically in the high-δ scenario, and plug the solution into
the planner’s first order condition, which is satisfied with with extreme precision. The
difference between the left-hand side and the right-hand side of (16) is minuscule
(substantially less than 10−11).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

32 It is easy to show that this is equivalent to maximize WV
0 .
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material is not included in the article’s Creative Commons licence and your intended use is not permitted
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