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Since the outbreak of the Covid-19 pandemic economists have turned to 
the SIR model and its subsequent variants for the study of the pandemic's 
economic impact. But the SIR model is lacking the optimising behaviour 
of economic models, in which agents can inuence future transitions with 
their present actions. We borrow ideas and modelling techniques from the 
Mortensen-Pissarides (1994) search and matching model and show that there 
is a well-de!ned solution in line with the original claims of Kermack and 
McKendrick (1927) but in which incentives play a role in determining the 
transitions. There are also externalities that justify government intervention 
in the form of imposing more restrictions on actions outside the home than a 
decentralised equilibrium would yield.
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1 Introduction

The disruption to the global economy caused by the covid-19 pandemic has led many
economists to turn to Kermack’s and McKendrick’s (1927) SIR model and its sub-
sequent variants for the study of its economic impact.1 The SIR model is one in
which agents inhabit di↵erent states and transition according to some process, so it is
eminently suitable for economic analysis, being similar to models already in use, for
example in the study of labour market dynamics.2 But it is lacking the optimizing be-
haviour of economic models, in which agents can influence future transitions with their
present actions. Transitions in the SIR model are determined by aggregates without
a foundation in individual decision-making, in contrast to economic models, in which
transitions are influenced by optimizing behaviour that evaluates the costs and returns
of doing something now against the expected future payo↵s. In this paper we introduce
individual decision making in the SIR model, following established techniques from the
economics literature.

To give an example of a process that plays a critical role in our paper, consider
the “social distancing” decision of a “susceptible” agent, one that belongs to the state
S of the SIR model and who is healthy but could catch the disease by coming into
contact with an infected individual. In normal circumstances, without the disease, this
person takes various actions that bring her into contact with others, such as working
in an o�ce environment, shopping in person or spending her leisure time socializing
or attending sports events. When there is a possibility of an infection as a result of
such actions, the agent may decide to restrict her social interactions by foregoing some
of these actions, e.g., by buying groceries online for home delivery. Such restrictions
reduce the payo↵s of the agent but they also reduce the probability that the agent will
transition to a state of infection (the I in the SIR model). The decision of how much
to restrict present action (social distancing) is an optimizing one and it influences the
later transitions. Policy makers talk regularly about the need to restrict social contact
but individual responses to the covid-19 pandemic and why there is need for policy-
makers to impose more social distancing than that chosen by agents are absent from
the SIR model or any of its variants.

Our approach is to use the simple three-state model SIR, with state S consisting
of individuals who are susceptible to the disease, state I consisting of individuals who
are infected and state R consisting of the recovered individuals who have immunity.

1See for example Atkeson (2020), Stock (2020), Toda (2020) and Berger et al. (2020). All these
papers o↵er extensions of the SIR model to account for the economic cost of the disease. Eichenbaum
et al (2020) also extend the SIR model by endogenizing the infection rate but through working hours
and consumption, not contact technologies.

2A introduction to the mathematics of the SIR model is in Weiss (2013) Useful sum-
maries of the history of the SIR model and the basic mathematical formulation can be found
in https : //en.wikipedia.org/wiki/Mathematical modelling of infectious disease and https :
//en.wikipedia.org/wiki/Compartmental models in epidemiology
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We assume that there are no natural births or deaths because of the di↵erence in the
time dimension of demographics and covid-19 transitions.

We borrow ideas and modelling techniques from the Mortensen-Pissarides (1994)
search and matching model (Pissarides, 2000) and show that there is a well-defined
solution in line with the original claims of Kermack and McKendrick (1927) but in
which incentives play a role in determining the transitions. There are also externalities
that justify government intervention in the form of imposing more restrictions on ac-
tions outside the home than a decentralized equilibrium will yield. We show that in an
epidemic free agents will restrict their social contacts in order to reduce the probability
of a future infection but they will not restrict them enough for two reasons. First, they
will ignore the costs they cause when they transmit the disease to others and second
they ignore any possible congestion externalities on health services.3 These external-
ities justify government action that imposes more social distancing than people will
choose.

But in a forward-looking economy restricting social action may delay reaching herd
immunity, when the disease is no longer active, and this dynamic externality works
against the planner’s social distancing policy.4 We show with simulations that when
the transition rates are determined by the optimizing decisions of our model herd
immunity is indeed delayed, sometimes substantially, but interestingly the number of
people who get infected before it is reached is much lower than the number reached in
the standard SIR model. To be more specific, in all our simulations we find that the
fraction of susceptible people in the economy converges to the highest possible number
consistent with herd immunity. We conjecture that this important finding will hold for
a wide set of parameter values.

Section 2 describes the model in more detail and derives the individual maximizing
choices. Section 3 shows the divergencies between the decentralized solutions and the
choices of a central planner. Section 4 shows with simulations the impact of individual
choices on the aggregate flows between states.

3These externalities are the two main reasons that the British government is giving for imposing
strict social distancing. The slogan is “stay at home, protect the NHS and save lives.”

4Once again the British context is revealing here. At the onset of the disease the government
was emphasizing more the need to keep in good health to withstand the disease but warned about
the prospect of many deaths as necessary to get rid of the disease and return to normal. But very
quickly once the first deaths appeared the policy was changed to strict social distancing, never again
mentioning herd immunity. It seems that faced with the imminent prospect of disease and death
people (and their representatives) emphasize much more the short term need for survival than long-
term social outcomes (act with a much higher rate of time preference).
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2 A Simple Covid-19 model: Decentralized equilib-

rium

In this section we develop a model of transitions with individual decision making that
restricts functional forms to approximate the features of covid-19 as we know them
today. In particular, transitions of susceptible individuals from state S to I depend
on contacts, which arise in a variety of situations, such as work, shopping and leisure
activities. Transitions for individuals in the infected group I to recovery R depend
only on medical conditions related to the disease that the individual cannot influence.

We work in discrete time and define the period to be short; for simplicity we assume
that infected individuals spend one period in that state. In terms of covid-19 the period
is therefore a minimum of two weeks and a maximum of about five. We ignore deaths,
as is usually done in the SIR model, being a small fraction of the infected population,
in order to make use of the convenient assumption that population is constant.

Before we move on to describe the transitions in the susceptible state we write the
simple value functions implied by these assumptions for individuals in states R and I,
working in that order.

We assume that individuals who recover from an infection become immune to fur-
ther infections. Given infinite horizons we can then write a constant V R for the value
of recovery. In the infected state individuals receive medical care. Although the total
medical facilities available to covid-19 patients are not a constant, as even new hospi-
tals have been put in place in some countries, our assumption is that they change much
more slowly than the total number of infections. It follows that as total infections rise
the facilities available to a patient fall, creating a medical congestion externality. In
this state the individual receives care without making her own choices. We assume that
the utility from being in this state is vt, which could be either positive or negative. We
assume that it is an increasing function of the per-capita medical facilities available,
as in that case the patient is getting better quality care. To simplify the notation we
make explicit only the dependence on the number of patients under treatment, It, the
members of set I in period t, and assume, vt = v(It) with v0(It)  0. The value of
being in state I in period t is therefore,

V I
t =

v(It)

1 + r
+

V R

1 + r
, (1)

where r is the rate of discount (making use of end of period discounting). If in turn
we make the plausible assumption that the cost of being sick (e.g., hospitalization)
depends on the value attached by the individual to the state of recovery (for example,
earning capacity is a determinant of V R and it is lost when the person is sick), (1)
further simplifies to

V R
t =

1� �(It)

1 + r
V R, (2)
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where � is the fraction of V R that corresponds to the cost of the disease to the indi-
vidual, i.e., �(It) ⌘ �v(It)/V R and so �0(It) � 0.

Susceptible individuals enjoy utility from their activities during the period. There
are two types of activities in which the person can engage, activities in the home, such
as work at home, home production, online shopping and home leisure activities, such
as watching TV, and activities in society and the marketplace, such as going to the
o�ce, visiting shops and spending leisure time with friends. Social contact results only
from the second set of activities. We denote the first set of activities by xh and the
second by xs and write the per-period utility function as,

ut = u(xht, xst). (3)

This function is assumed to satisfy the standard restrictions of a two-good utility
function, with the additional assumption that u(xht, 0) � 0, i.e., survival does not
require a person to leave the home. The choice of xht and xst is constrained by a cost
function which we assume for simplicity that it is a convex utility cost c(xht, xst). We
define net utility from all activities by,

�t = �(xht, xst) = u(xht, xst)� c(xht, xst), (4)

assumed to be single peaked with �(xht, 0) � 0. The latter defines the value of net
utility in the state of complete social distancing.

In state S individuals enjoy net utility as in (4) but run also the risk of infection
through social contacts. Social contacts increase in xst, in a way that we specify below,
and depend also on the number of people in each of the three states. We assume in
addition that not all social contacts lead to infection and let k 2 [0, 1] denote the
probability that a contact leads to infection.5 If k = 0 the disease is not infectious
whereas k = 1 makes it extremely infectious, with every single contact between a
person in state S and one in state I leading to infection. In general, we write the
transition probability of a single agent from S to I as,

pt = p(xst, x̄st, k, St, It, Rt), (5)

where x̄st are the choices of social activities of other agents and St, It and Rt are
the numbers of people in states S, I and R respectively and satisfy the normalization
St + It +Rt = 1 8t. We assume,

@p(xst, .)

@xst
� 0,

p(0, .) = 0, (6)

5Weiss (2013) defines a parameter ⌧ as the fraction of her contacts that an infected individual
actually infects and refers to it as the “transmissibility” of the disease. Our k is related to this
parameter.
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where p(0, .) is the transition to infection in the state of complete social distancing.
We will make explicit the dependence of individual transitions on the social actions of
other agents and the number of agents in each state later in this section.

The value function of a single individual in state S is,

V S
t = max

xht,xst

(
�(xht, xst)

1 + r
+ pt

V I
t+1

1 + r
+ (1� pt)

V S
t+1

1 + r

)

, (7)

with the transition probability pt given by the function in (5)-(6). The maximization
conditions with respect to xht and xst are

@�(xht, xst)

@xht
= 0 (8)

@�(xht, xst)

@xst
+

@p(xst, .)

@xst

⇣
V I
t+1 � V S

t+1

⌘
= 0. (9)

We impose the restriction
⇣
V I
t+1 � V S

t+1

⌘
< 0, which is intuitive as it represents the

di↵erence in values from being infected and not being infected. It is clear from the first
order conditions that in the case of an infectious disease healthy agents restrict their
activities outside the home to avoid infection. Without an infectious disease the first
order condition for activities outside the home would be @�(xht, xst)/@xst = 0, yielding
a higher xst than the solution in (8)-(9).

We now specify the contact technology that yields the infection probability p(xst, .).
This parallels the matching function of labour economics (Petrongolo and Pissarides,
2001) but with some important di↵erences. In the matching function of the labour lit-
erature, more workers looking for jobs reduces the success probability of a single worker
because of congestion externalities in the application process. Here more individuals
coming out in the marketplace increases the chances of infection because a single ex-
posed individual can infect many people; the infectious disease is “non-exhaustible,”
in the sense that many people could acquire it from a single person at the same time.

To provide an intuitive derivation of our contact function suppose xs stands for the
number of trips outside the house (omitting time subscripts for convenience). In each
trip the person comes into contact with some individuals. How many these contacts are
depends on how many times on average other people circulate outside their home. Let
x̄s be the number of times that people on average come out each period and assume
that each person experiences, again on average, m contacts per period, defined by
m = m(x̄s), with m0(x̄s) � 0. The function m(.) is similar to the matching function
of labour economics in the sense that it depends on the structure of the marketplace,
including density of population, transportation facilities, types of establishments etc.
For example, consider two cities that are identical in all respects, except that one has
more co↵ee bars than the other. If a resident goes out for a co↵ee, she will come across
more people in the city with the fewer co↵ee bars, because each one in that city will
be selling more co↵ee. So if x̄s is the same in the two cities, m(x̄s) will be larger in

�
&
RY
LG
�(
FR
QR
P
LF
V��

���
��
$
SU
LO�
��
��
���
��
�



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

the city with the fewer co↵ee bars. In this paper we assume that the function m(.) is
fixed, at least in the short to medium run, although it is likely to be di↵erent across
locations like cities or countries.6

Consider now the choices made by the individual who does not influence market
outcomes, where as before xs without the bar is the chosen activity level of the person.
Here we follow the method used in search theory to choose the optimal search intensity
(Pissarides, 2000, chapter 5). With m(x̄s) representing the total number of contacts for
x̄s outings, each outing on average generates m(x̄s)/x̄s contacts. So if the individual
chooses to go out of the home xs times, her contacts are on average xsm(x̄s)/x̄s. These
are total contacts. We are interested in the contacts that can potentially lead to
an infection, and these are contacts that involve a person from set I. Here we make
a simplifying assumption that is common in the SIR literature, that the susceptible
person cannot distinguish a priori who is in which state. We assume that on average
the fraction of contacts that are infected is equal to the fraction of persons in set I
in the population. With the normalization of the population size to unity, we obtain
that the probability that a contact in period t is with an infected person is simply It.
Given that the probability that a contact with an infected person leads to an infection
is the constant k, we write as an approximation the transition from the susceptible to
the infected state for the person who chooses xst outside activities as,7

pt = k
xstm(x̄st)

x̄st
It. (10)

This expression satisfies the extreme properties that for a non-infectious disease (k = 0)
or complete social isolation (xst = 0), pt = 0.

It follows from (10) that pt now depends on a smaller set of variables than in the
general expression (5) and its partial derivative satisfies,

@pt
@xst

= k
m(x̄st)

x̄st
It =

pt
xst

. (11)

In moving from individual transitions to the average for a market where all agents
optimize we assume a symmetric Nash equilibrium in which all agents choose the same
policy, so xst = x̄st. For notational simplicity we drop the bar from x̄st and write the
equilibrium pt as,

pt = km(xst)It, (12)

6For example, reports in the media warn that it would be very di�cult to reduce social contacts in
very dense cities like Mumbai, whereas there has been success in such reductions in less dense cities
like London.

7Another derivation of the probability of meeting at least one infected individual is to reason
as follows. Since for each contact there is a probability (1 � It) that the person does not meet an
infected person, there is a probability (1 � It)xsm(x̄s)/x̄s that the person does not meet any infected
persons in her xs outings. If I is a small fraction of the population, this is approximately equal
to exp{Ixsm (x̄s) /x̄s}, so the probability of meeting an infected person is 1 � exp{.} and for small
transition probability this is approximately equal to the expression in the text.
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with xst obtained as the solution to (8), (9) and (11), under the restriction x̄st = xst

and given all the value equations previously derived.
This completes our specification and derivation of the solution equations for the

agents in the model. It is noteworthy that when comparing with the epidemiologi-
cal SIR model, our innovation is the insertion of xst in the transition probability pt,
which picks up the disincentives that the susceptible individuals have when they go
out of their homes. Some obvious properties of this choice, given our strong functional
assumptions, can easily be derived. There is social distancing (lower xst), for higher
k and higher It (more infectiousness of the disease or more infected people) and for
higher unpleasantness from treatment (higher di↵erence between the value of avoiding
infection V S

t and getting infected, V I
t ).

We now complete the description of the decentralized equilibrium by deriving the
transitions implied by our individual models. With transition probability from state
S to state I given by (12), the number of people in the S state falls each period by
the fraction in (12). This is also the number of people who join the I state, whereas a
period later every infected individual joins the recovery state R. The implied transitions
are,

�St+1 = �km(xst)ItSt (13)

It+1 = km(xst)ItSt (14)

�Rt+1 = It, (15)

with � denoting the first di↵erence operator. We note that in the standard SIR model
the parameter � that gives the transition from S to I plays a critical role and is usually
assumed to be a constant; here � ban be expressed as,

� = �(xst) = km(xst). (16)

In addition, since we assume that infected people recover in one period, our model
implies that R0 = �(xst), where R0 is the key parameter referred to as the “basic
reproductive number” of the disease and it is critical in determining the future path of
the disease. It has also featured prominently in the policy debate around Covid-19.

We are now in a position to define our decentralized equilibrium.

Definition 1 A decentralized epidemic equilibrium is a set of sequences of state vari-
ables {St, It, Rt}1t=0, a set of value functions {V S

t , V I
t , V

R
t }1t=0, and a set of sequence of

probabilities and social contacts {pt, xht, xst, }1t=0 such that, for given initial conditions
S(0) = 1� ✏, I(0) = ✏, R(0) = 0

1. St, It, Rt solve equations (13-15)

2. V S
t , V I

t , V
R
t solve equations (7), (1) and (2)

3. xht and xst solve the first order conditions (8) and 9)
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4. pt solves equation (12)

The next step is to ask whether the social distancing obtained from this equilibrium
is the optimal one in a decentralized society or whether stricter government restrictions
are needed.

3 Externalities and deviations from social e�ciency

As in other models of pairwise interaction, we would expect the decision strategies
derived in the preceding section to be subject to externalities and ine�cient outcomes.
We address this question in the following simple manner. Take equation (7), which
describes the value of being in the initial state S and is forward-looking with an infinite
horizon. If a social planner was making the choices that the individual was making,
would she choose the same level of xht and xst as the individual? The social planner is
aware that the equilibrium is a symmetric Nash equilibrium and that contacts involve at
least two people, so when one person meets another the other person is also involved
in a meeting. The social planner is also aware that there is a medical congestion
externality due to limited medical resources and welfare depends on the quality of
medical services, and also has foresight and is aware that with her actions she can
influence the size of the states S and I in future periods.

With these assumptions the relevant transition probability for the social planner is
(12), in which xst = x̄st, and the choice variable is the average for all persons in S, xst.
We do not allow the planner to use “mixed strategies” and allow di↵erent individuals
to choose di↵erent activity levels in the same period. The social planner takes the
stocks in period t as predetermined and solves the problem,

V̂ S
t (St, It) = max

xht,xst

(
�(xht, xst)

1 + r
+ pt

V̂ I
t+1

1 + r
+ (1� pt)

V̂ S
t+1(St+1, It+1)

1 + r

)

, (17)

with V̂ I
t+1 given by (14). The first-order conditions are,

@�(xht, xst)

@xht
= 0 (18)

@�(xht, xst)

@xst
+

@p(xst, .)

@xst

⇣
V̂ I
t+1 � V̂ S

t+1

⌘

+pt
@V̂ I

t+1

@xst
+ (1� pt)(

@V̂ S
t+1

@It+1

@It+1

@xst
+

@V̂ S
t+1

@St+1

@St+1

@xst
)

= 0 (19)

The first choice in equation (18) corresponds exactly to the one in decentralized equi-
librium, (8), so conditional on the choice of xst, the choice of xht in the decentralized
equilibrium is e�cient.
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The two first terms in equation (19) in the first line of the equation capture the
utility gain from the social activity and the transition cost of the activity associated
with more people being infected, respectively. Analogous terms can be found in the
first order conditions for the decentralized maximization problem (9). We refer to
these as the static welfare e↵ects of increasing xst. The choice of the e�cient number
of social contacts depends in addition on two terms that are not in (9). The first of
these captures the medical congestion externalities, in that decisions made today about
contacts influence the number of sick people tomorrow and hence the cost of treating
them. Recall the definition of V I

t in (1) and the transition (14), which clearly show this
dependence. Finally, the activity level in period t determines the stocks of susceptible
and infected people in period t + 1, and hence the continuation value of V S. This is
captured by the term in (19) in the second line of the equation, and we refer to it as
the immunity externality. We refer to these as the dynamic aspects of the planner’s
maximization problem.

The ine�ciencies of the static maximization problem

Suppose for the moment that we zero the dynamic e↵ects, so the e�cient outcome for
xst is given by

@�(xht, xst)

@xst
+

@p(xst, .)

@xst

⇣
V̂ I
t+1 � V̂ S

t+1

⌘
= 0. (20)

The solution from this equation for xst coincides with the solution from (9) if the partial
derivative @p(xst, .)/@xst coincides with the solution for the partial in the decentralized
problem. The latter is given in (11) whereas the former can easily be calculated from
(12), and it is

@p(xst, .)

@xst
= km0(xst)It =

ptm0(xst)

m(xst)
. (21)

Comparison with (11) immediately gives that in the absence of the medical externality
e�ciency of the decentralized decision requires,

xstm0(xst)

m(xst)
= 1. (22)

This requirement parallels the familiar elasticity condition from matching theory, often
referred to as the Hosios (1990) condition, which applies to situations of pairwise
matching (see Pissarides, 2000, chapter 8). What does it mean in our context?

Unit elasticity in matching, or linear matching technology, is a restriction that can
be justified when the agent has full control over the number of people she meets when
going out. For example, suppose an agent decides beforehand to go out to meet exactly
x0 people and does not come into contact with any other. If she goes a second time
with the same plan then she meets 2x0 people - constant returns. If she goes out to
get a co↵ee and no one crosses her in the street or comes close to her in the co↵ee bar,
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she meets exactly one person, the barrista. If she goes out a second time for a co↵ee,
the same happens, has a second meeting with a barrista. If one believes that this is an
accurate description of a meeting process then private social distancing is the same as
a benevolent social planner would choose.

But in practice we come into contact with many people who are going about their
business in social space. These contacts are unintended and on average they will be
more the more people choose social activities. It is more likely that the contact process
will be exhibiting increasing returns to scale, because as circulation increases in given
space the number of random contacts increases by more than in proportion. Consider
again the co↵ee example. Suppose that on the way to getting a co↵ee the person
crosses at random two other people and everyone in this economy goes out of the home
twice a day. Then each time she goes out she comes into contact with three people, the
barrista and the two street contacts, and so the total meetings of this person during the
day are 6. But now if everyone doubles their activity, instead of two random meetings
she will have four, so each time she goes out she will meet five people. With double
her social activity she will go out four times, so the total meetings during the day are
5 ⇤ 4 = 20. Doubling xst from 2 to 4 led to an increase in contacts from 6 to 20.

The justification for increasing returns is similar to the one used by Peter Diamond
in his famous “coconut” paper (Diamond, 1982). In that paper islanders posses a
coconut which they acquire by climbing a tree but they cannot consume their own
coconut. They have to find another islander with a coconut and swap nuts. Diamond’s
claim was that if the number of islanders climbing trees doubled, a passive islander
was more likely to come out and climb a tree because the probability of finding a
trade would be higher. Subsequent work did not find support for this claim because as
both buyers and sellers double in number they create congestion for each other and so
many swaps are crowded out (Petrongolo and Pissarides, 2001). In the context of an
epidemic it is precisely this congestion that justifies the increasing returns, because of
the non-exhaustive nature of the disease. I can pass a disease to a very large number of
people but I can only give my coconut to one person. Diamond’s intuition for increasing
returns applies to this model much more than in a model of exchange.

Suppose then for the sake of illustration of the impact of the externality that
m(xst) = x↵

st, with ↵ � 1. Then (21) implies

@p(xst, .)

@xst
= km0(xst)It = ↵

pt
xst

, (23)

and so comparison of (9) with (20) immediately yields that the social planner will
choose a higher marginal e↵ect @�(xht, xst)/@xst, or lower social activity. If individuals
choose their own social activity they will go out too much because they ignore the
infectious impact that their social activities have on others.
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The ine�ciencies of the dynamic maximization problem

In order to examine the role of dynamic externalities we turn o↵ the static externality
by working with a linear contact technology. Suppose also for now that the cost of
illness is independent of the number of people infected, so that there are no medi-
cal externalities. Dynamic externalities still imply that the equilibrium allocation is
generically ine�cient.

Combining equations (14) and (19) gives that

@V̂ S
t+1

@It+1

@It+1

@xst
+

@V̂ S
t+1

@St+1

@St+1

@xst
=

 
@V̂ S

t+1

@It+1
� @V̂ S

t+1

@St+1

!

km0(xst)StIt (24)

Consider first the derivative @V̂ S
t+1/@It+1. This is a contagion externality: if more

people are infected in this period, more people are around to infect susceptible people
in the next period. As long as the planner wants to keep the number of infected
individuals down, this e↵ect is negative.

Consider then the derivative @V̂ S
t+1/@St+1. This is the e↵ect of having fewer sus-

ceptible people around, or, since Rt = 1� St � It, the e↵ect (for a given It) of having
more recovered people around. This is a positive e↵ect, as it moves the society closer
to herd immunity. We refer to this as the immunity externality.

From an a priori perspective, it is not clear if the planner would like to implement
a higher or a lower activity level than the level realized in the decentralized solution.
Clearly, the internalization of the contagion externality may easily lead the planner to
reduce the activity level, but the immunity externality may give a strong push-back.
Each individual has an incentive to reduce her activity level in order to avoid being
among those who get ill before herd immunity is obtained. However, this is similar to
a rat race, and introduces a positive externality from activity (a negative externality
from passivity) that the planner internalizes.

Consider finally the impact of medical congestion. In a static perspective, this leads
to a negative externality associated with activity that the planner might internalize by
imposing more social distancing. To show this we note, from (19) and (1), that,

pt
@V̂ I

t+1

@xst
= pt

v0[km0(xst)It+1]

1 + r
< 0, (25)

and so again the social planner will choose lower social activity than the decentralized
equilibrium. This e↵ect works through the number of people in the infected state
next period, and so the intuition behind it is that by lowering the transition rate, the
planner reduces the medical congestion externalities and improves the medical facilities
available to patients. However, in a dynamic equilibrium this is less clear. If the medical
externalities are expected to be bigger in the more distant future, the planner on the
margin may prefer more people being ill early on (when there is spare capacity in the
health sector) rather than later on (when the capacity constraint binds).
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Clearly, the planner will aim at reaching herd immunity with the highest possible
share of people remaining susceptible. As will be clear below, the decentralized so-
lution reaches herd immunity with the highest possible number remaining susceptible
consistent with herd immunity, given that x is privately optimal in the new steady
state. We conjecture that the optimal path will converge to the same steady state
level of S, with x converging to its pre-infection level, albeit at a slower speed than the
decentralized equilibrium.

We close this section by briefly considering the impact of vaccination, had one
being made available. The probability that the vaccine arrives between two consecutive
periods is denoted �. If a vaccine arrives, a susceptible individual obtains the same
lifetime value as a recovered individual, V R, without having to go through a costly
period of illness. It follows that the Bellman equation of a susceptible individual
adjusts to

V S
t = max

xht,xst

(
�(xht, xst)

1 + r
+ (1� �)

 

pt
V I
t+1

1 + r
+ (1� pt)

V S
t+1

1 + r

!

+ �
V R

1 + r

)

(26)

People become more cautious to avoid the disease in the hope that a new vaccine will be
discovered. We know that V R is greater than V S and V I . Therefore, V S is increasing
in � while V I stays constant. It follows that an increase in � will increase the utility
loss associated with getting the disease, and hence reduce the privately optimal xst.

In addition, the possibility of obtaining a vaccine in the future reduces the value
of obtaining herd immunity from infections, and hence reduces the positive externality
associated with a higher number of recovered individuals. As a result, we conjecture
that the possibility of a discovery of a vaccine will reduce the planner’s optimal activity
level more than the activity level in the decentralized equilibrium.

4 Simulations

Parameterization

We make the following parameterization assumptions: The (indirect) utility function
can be written as a function of the control xst only. We suppress the subscript s, and
write �(xt) = xt � x2

t/(2c), c  2. In the simulations below we set c = 1. The contact
function is m(x) = kx↵, k  4, ↵ � 1. In the simulation below ↵ = 1 and k = 2.2.8

The interest rate is r = 1/0.998� 1 = 0.002 (if a period is two weeks this gives a r of
0.05 on annual basis.

After recovery, the agents set xt so as to maximize per period utility �(xt). Hence
the agent sets x = c, and obtains per period utility c/2. The latter implies that V R =

8Here k comprises of the product of the contamination probability per contact and the constant
in the meeting function, and hence can be greater than 1. The value of k = 2.2 is in the range of the
parameter R0 in the SIR model used for simulating the di↵usion of Covid-19 (Wu et al., 2020).
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c(1+r)
2r . For the cost of hospitalization, we assume an exponential function such that

�(I) = ḡeg1I . For assigning values to this function, we simply suppose that the cost of
being ill is doubled if 1 percent of the population is infected. Then g1 = ln 2/0.01 ⇡ 70.
The other parameter in the function is ḡ = .6

The key 4 di↵erence equations in the simulation thus read (we now use beginning
of period discounting)

St+1 = St � kx↵
t ItSt (27)

It+1 = kx↵
t ItSt (28)

V S
t = xt � x2

t/(2c)

+
1

1 + r

⇣
x↵
t kIt(1� ḡeg1It+1)V̄R

⌘
+

1

1 + r

⇣
1� x↵

t kEt)V
S
t+1

⌘
(29)

xt = c
⇣
1� kx↵

t It(V
S
t+1 � (1� ḡeg1It+1)V R)

⌘
(30)

The model features 3 terminal conditions for the sequences xt, It and V S
t , so that

I1 = 0; x1 = c; V S
1 = V R (31)

The model’s solution is obtained with shooting algorithm- a standard solution algo-
rithm for system of di↵erence equations that are highly non linear and feature both
initial and terminal conditions (Sargent and Stuchurski, 2020) .

Dynamic Path

We perform two simple quantitative exercises. The first simulation plots the dynamics
of the states St and It along a decentralized epidemic equilibrium (Figure 1). The top
panel in the figure refers to the dynamics of the susceptible individuals. As patient 0 is
exogenously imposed to the system, more and more people are infected as time goes by.
The stock of susceptible people, initially normalized to 1, converges to a steady state
size of .45, suggesting that approximately 55 percent of the population gets infected
before the virus dies out and I(1) = 0. If one period of time corresponds to two weeks,
Figure (1) implies that full herd immunity is reached in more than 10 years. While
the full convergence appears very slow, one should also note that after 5 years since
the outbreak of the 0-patient, more than 35 percent of the population are infected.
This pattern is entirely driven by the optimal fall in activity x, that clearly follows a
u-shaped behaviour. Interesting enough, the fall in activity reaches the minimum in
the 6th period, or 4 months after the spread of the disease. Thereafter activity rises
until the steady state. In percentage terms, the maximum fall in activity corresponds
to 55 percent of its steady state value.

The second simulation compares the forward looking epidemic equilibrium with
that of a traditional SIR model (Figure 2). The latter simulation applies a constant x
throughout the epidemic. As a benchmark case, the level of x is set so as to match the

��
&
RY
LG
�(
FR
QR
P
LF
V��

���
��
$
SU
LO�
��
��
���
��
�



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

transversality condition in the optimizing SIR. The rest of the parameters are identical.
The di↵erences between the two paths are striking. In Figure (2), the traditional SIR
simulation is the dotted line, while the continuous line refers to the optimizing SIR.
The steady state level of susceptible individuals in the standard SIR model is .08,
suggesting that 92 percent of the population gets infected.

Clearly, herd immunity is reached much faster in the traditional SIR. After ap-
proximately 4 months, 80 percent of the people get the disease, and herd immunity
is largely on its way. Nevertheless, the longer time to reach herd immunity with en-
dogenous behaviour comes with a large gain. The precautions of the forward looking
individuals save 35 percent of the population from the illness.

Herd Immunity

As discussed in the numerical simulation, an important variable is S1, the number
of susceptible individuals in the new steady state equilibrium after herd immunity is
obtained. Since in steady state I = 0, we have that R1 = N � S1, where N is the
total population.9

Let x denote the activity level in a steady state. It follows that x is the activity level
in the new steady state, and is obtained by plugging in I = 0 in the behavioural equa-
tions above. Hence x̄ maximizes the current period utility �(xh, xs) (for the optimal
value of xh). As suggested in the previous section, this is the activity level in period 0
of our model, and is the activity level in the reference model with fixed activity level.

Define R0 = km(x̄). This is the (basic) reproduction number in our model. In
steady state, the e↵ective reproduction number S1R0/N has to be less than or equal
to 1. Hence a lower bound for S1, Smin, is given by

Smin = R�1
0 N (32)

In the standard SIR model, which is similar to our model with constant x, the maximum
number of infected individuals is obtained when It = It+1. Plugging It = It+1 into (14),
gives that S = NR�1

0 (= Smin). At that point, the disease is on retreat, as the e↵ective
reproduction number falls below 1. However, it takes time before the disease “burns
out”, and along the path many people get infected. It can be shown (Weiss 2013) that
the equilibrium value of S in the continuous time SIR model, denoted SSIR, is given
by the solution to the equation lnSSIR/N = R0(SSIR/N � 1). This equation can be
solved numerically, and for R0 > 1 it gives that SSIR is substantially lower than Smin.

When x is set by forward-looking individuals, this is no longer the case. At the
point at which I reaches its maximum level, the probability of obtaining the illness
is at its highest, and the agents reduce their activity level relative to the steady-state
level. If we denote by xI the equilibrium value of x at the point at which I reaches
its maximum level, it follows that the stock of infected people at this point is given by

9In Section 2 total population is normalized to 1.
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SminxI/x̄ < Smin. From that point S still increases (as does x) until the disease burns
out, but from a lower level.

In our simulations, S1 = Smin, meaning that the stock of susceptible people con-
verges to the highest level consistent with herd immunity. Hence, when the model is
extended to allow for forward-looking agents, our simulations illustrate that herd im-
munity may be obtained with the lowest possible number of people becoming infected.

5 Conclusions

With the outbreak of Covid-19, the SIR epidemics model has entered mainstream
economics. The dynamic properties of the SIR models (Kermack and McKendrick,
1927) naturally feature a herd immunity at the end of the epidemic. Yet, the coe�cients
that describe the transitions across the three main states of the model are independent
of private decision-making. This paper has borrowed concepts from the search and
matching model (Pissarides, 2000) to endogenize the key transition from the susceptible
state to the infected one. Forward looking agents now choose the intensity of their
contacts to maximize utility, but are fully aware that higher social contacts lead to a
higher probability of infection. A first contribution of this paper is the introduction of
the contact function and the forward looking decisions of the susceptible agents to the
simple SIR model, in a way that will be familiar to economists and easily extendable
to other more complex situations.

Our theoretical perspective has also welfare implications. The decentralized epi-
demic equilibrium is likely to be suboptimal. The paper uncovered four types of ex-
ternalities, referring to static or dynamic situations. The externalities in a static,
short-horizon context refer to the transition probability from the susceptible to the
infected state and how it relates to the social distance between agents and the hospi-
talization congestion e↵ect when large numbers become infected. In a dynamic context
the externalities arise from changes in the stocks of susceptible and infected persons as
they a↵ect contagion and herd immunity. We argue that when comparing the private
and social equilibrium, only the herd immunity externality provides incentives to the
central planner to speed up the spread of the epidemic. We believe that the latter
two externalities would survive to a broader class of model, and are not specific to the
search and matching approach.

Much remains to be done. The model certainly needs to be taken to the data. We
argue that the contact function features increasing returns to scale, but the actual size
of the parameters is an empirical question.
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Figure 1: Dynamics of the Epidemic in Optimizing SIR
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Figure 2: Epidemic in Optimizing SIR and Standard SIR
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Annex: Shooting Algorithm for the Simulation

1. Chose initial values I0 = ✏, S0 = 1� ✏.

2. Choose a number of periods, t = 0, ..., T .

3. Choose a vector of activity levels x0, ...xT , with xT given by the transversality
condition.

4. Set x̄t = xt8t.

5. Calculate I0, ...IT and S0, ...ST using (27) and (28)

6. Calculate V S
T using the transversality (endpoint) conditions

7. Calculate backward V S
T�1, V

S
T�2, ..., V

S
0 using (29)

8. Calculate the optimal xo
0, x

o
1, ...x

0
T using (30)

9. Update choosing x0
t = �xt + (1� �)xo

t for t = 0, ..., T � 1, � 2 (0, 1)

10. Repeat the procedure from step 5 until |x0
t � xt| ⇡ 0

��
&
RY
LG
�(
FR
QR
P
LF
V��

���
��
$
SU
LO�
��
��
���
��
�


