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ABSTRACT
We discuss the connections between epidemiology models and search and
matching (SAM) approach and draw conclusions about modeling the
trade-offs between lockdowns and disease spread. We review the pre-COVID
epidemics literature, which was mainly by epidemiologists, and the post-
COVID surge in economics papers that use meeting technologies to model the
trade-offs. We argue that modeling the decentralized equilibrium with eco-
nomic trade-offs gives rise to substantially different results from the earlier
epidemics literature, but policy action is still welfare-improving because of
several externalities.
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1. INTRODUCTION
Models of infectious diseases share a key feature with a large number of economic
models. This is that the utility (positive or negative) that an agent derives from
their activities requires contact with another agent in “social space.” In eco-
nomics, this feature of exchange is stronger in frictional markets, in which par-
ticipants need to search, find, and inspect alternatives before deciding to buy or
sell, than in market-clearing neoclassical markets, in which goods are homoge-
nous. A typical example is the labor market, in which participants need to search
over alternatives before agreeing to a match. Another is the housing market, in
which buyers need to search and inspect houses before buying.
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A useful way to formalize these interactions is as a dynamic process during
which the individual changes state, e.g., from unemployed to employed, or from a
renter to a homeowner.1 The transition from one state to another can then be
modeled as in the “search and matching,” or SAM, approach. This approach has
been successfully applied initially to models of the labor market and subsequently
to several others in which there is need to gather idiosyncratic information before
exchange.2

The dynamics of epidemics have been modeled as transitions between states
long before economists developed this particular methodology (Kermack &
McKendrick, 1927). But the use of models of individual behavior driven by
incentives, which motivated economists, was not applied to epidemiological
models until much later. Our motivation for writing this paper is that we believe
that epidemiological models in the spirit of Kermack and McKendrick (1927),
have a lot to gain from the insights of the SAM approach, as developed by
economists.3 We critically survey models of infectious diseases that use matching
processes to derive the transitions from a healthy (or “susceptible”) state to an
infectious one. As we will argue, variants of this approach have been used
sparingly in the pre-COVID research but exploded during the COVID-19
pandemic.

In economic models the typical SAM situation is one in which contact is the
result of some costly activity, such as search, and yields positive returns if suc-
cessful, or nothing. In contrast to this typical situation, in an epidemic there is a
positive probability that contact between two people would involve some cost:
the transmission of the disease from an infected to a healthy individual. Putting
the economic and epidemiological models together, a trade-off is created. The
more activities you pursue in social space to increase your economic payoffs, the
higher the risk of infection. Viewed from the lens of the economist, an epidemic
introduces a cost to the economic interaction in social space, which shifts eco-
nomic activities in favor of the ones that do not involve social interaction. For
example, shopping activities shift from browsing in shops to buying online.
Viewed from the lens of epidemiology, restricting social contact contains the
disease but it puts a cost on society, the reduction in utility that could be derived
from social interaction.

Before the outbreak of the COVID-19 pandemic in 2019, this trade-off led to a
modest literature, mostly written by mathematical biologists, although there are
also some papers by economists. Epidemiologists focused mainly on influenza
outbreaks, whereas the best-known papers by economists are about HIV trans-
mission. Following the outbreak of COVID-19, however, a very large economics
literature emerged, covering all aspects of the pandemic and its economic costs.
Our survey covers only a subfield of these literature strands, the one that models
transitions between states by making use of a contact function, which could be a
matching function as in SAM theory, or any other mathematical representation
of contacts.

We summarize the way that this function has been modeled by epidemiologists
and economists and show that its form influences the nature of equilibrium and
its welfare properties. We argue that although in the labor literature a
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linear-homogeneous function has received a lot of empirical support, in epide-
miology it is more common to use a function with increasing returns to scale
(usually the quadratic).4 This distinction is plausible because in economics con-
tacts are usually used for the exchange of a single good, e.g., a house or a service
that only one person can enjoy, whereas in epidemiology a person carrying the
virus can pass it on to a large number of contacts. This distinction turns out to be
important because an action such as social distancing is much more effective in
reducing contacts if the contact function is quadratic than if it is linear. So the
policy recommendation due to the quadratic, or any other increasing returns
function, is usually for more social distancing, but the exact recommendation
depends also on other features of the model, such as heterogeneity or
forward-looking behavior.5

We split the pre-COVID economics research into two main strands. First, we
review the HIV research, working mainly with an SI (susceptible-infected) model.
Second, we review models that use Kermack and McKendrick’s (1927)
susceptible-infected-removed (SIR) model. Key contributions to the HIV
research on the SI model are Geoffard and Philipson (1996) and Kremer (1996).
These models do not introduce explicitly an aggregate contact function that
depends on individual incentives. Yet, they show that the flow from susceptible to
infected individuals depends on the number of people currently infected and the
prevailing sexual activity, which depends on the HIV infection risk. The SIR
model pre-COVID was applied mainly to the modeling of influenza epidemics,
and the question usually addressed was how much social distancing should the
government legislate during an epidemic. Early models that introduced some
kind of contact function in influenza models include Reluga (2010) and Chen,
Miahoua, Rabidoux, and Robinson (2011).

With the outbreak of COVID-19, the economics literature exploded. A large
number of papers focus on the optimal control of the pandemic by policy-makers,
given a trade-off between deaths from the disease and GDP losses from lock-
downs. Alvarez, Argente, and Lippi (2021) is an example of this class of models
in the case of homogeneous agents while Acemoglu, Chernozhukov, Werning,
and Whinston (2021) and Favero, Ichino, and Rustichini (2020) focus on het-
erogeneous agents. Acemoglu et al. (2021) use a SAM-type matching function to
model contacts and assume increasing returns to contacts.

Several other models solve for equilibrium in the decentralized economy, in
which optimizing agents respond to economic incentives or infection disincen-
tives, depending on their state and information set. The main states which are
influenced by individual decision-making are the susceptible and infected. In the
susceptible state the decision of the individual whether to interact in social space
or not influences their probability of infection, whereas in the infected state the
influence is on the probability of infecting others. These models often obtain also
the planning solution. Several of the papers in this class of models use a variant of
the matching function to derive contacts between agents, which are usually
restricted to be either linear-homogeneous or quadratic. We discuss models in this
class in the main body of the paper.6
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Section 2 discusses pre-COVID research, with emphasis on HIV and influenza
epidemics. Section 3 focuses on the large COVID-19 literature that exploded in
2020, distinguishing between models with homogenous agents and models with
heterogeneous agents. We then discuss the role of externalities between the
decentralized and centralized solutions in both pre-COVID and COVID research.
Section 4 concludes.

2. PRE-COVID RESEARCH
We distinguish between two contrasting strands in the pre-COVID research. In
the first strand authors addressed transmissions of HIV, or other sexually
transmitted diseases (STDs), by making use of a SI epidemiological model; in
other words, a model in which there are no deaths or recoveries. The disease
imposes some cost on the infected, which gives the reason people want to avoid it.
In STD models, the contact that leads to the transmission is planned and usually
restricted to two people. This contrasts with the second class of models, the study
of influenza epidemics, which usually makes use of the original SIR model, in
which there are recoveries from the disease (Kermack & McKendrick, 1927). In
this class of models, disease transmissions can also arise after unplanned chance
meetings between individuals.

In both types of models, contact between infected and susceptible individuals
has features of the SAM approach. The typical labor situation with SAM is one
in which two agents come into contact with a view to forming a productive
relationship. The match takes place if both parties agree to it. This parallels
contacts in STD situations virtually exactly.7 In contrast, infections in the case of
influenza can arise in a variety of situations in which people share space, giving
rise to a different set of solutions. For example, one might plan a restaurant visit
and get infected by someone else who happens to be in the restaurant.

The implications for the contact technology are that in STD situations the
contact function can be approximated by a linear one. For example, suppose that
in an HIV world a person engages in sexual contact with n other persons and
contact with each involves a disease transmission risk b. The infection probability
for this person is p5 12 ð12bÞn. If b (and consequently p) is small, this
approximately satisfies p5bn, a linear transmission rate.

But in influenza situations, as in COVID-19, there is a proportionally bigger
effect on infections if a person increases or restricts social behavior. As an
approximation, the contact technology is typically assumed to be quadratic. To
see the origins of this, suppose a person goes into social space n times during the
week. Each time they goes out she gets sufficiently close to m other people that
could infect her with probability b each. If m is fixed and independent of n, we
could reason as in the case of HIV and proxy the infection probability by
p5bnm. But m must depend on the number of times other agents go to social
space. Let n be the average number of times other agents go to social space, then
m is proportional to n, m5 xn; e.g., if everyone else doubles the number of times
they go to social space, the person who goes out n times will be twice as likely to
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meet someone in that space. Therefore, the infection probability becomes
p5bxnn, and so in symmetric equilibrium, p5bxn2:

In HIV situations, this “increasing returns” effect does not arise because if a
person decides that they will have n partners, they can keep the n partners irre-
spective of how many partners others have and how many other “propositions”
they get. But in influenza situations other people could affect the infections
probability without the consent of the person in question.

We review each literature strand separately.

2.1 The SI Model and the Economics of HIV Epidemics

Early models (Geoffard & Philipson, 1996; Kremer, 1996) of STDs did not work
with a general matching function in the spirit of SAM theory, but interpreted
instead the standard incidence of the epidemiological model (Hetcote, 2000)
through the lens of a random matching game. Of course, random matching is
consistent with a simple matching function in which the aggregate probability of
infection depends linearly on the stock of infected people, and this is the main
transmission mechanism explored by these papers. The linear dependence of the
transmission probability on the number of infected people is also a standard
result in SAM models with linear technologies.

Consider the SI model studied by Toxvaerd (2019), who discusses the differ-
ences between the model without an economic dimension and the impact that
economic incentives might have on it. In the former, a population P5 ½0; 1�
consists of a continuum of infinitely lived individuals who at each instant t$ 0
can be in one of two states, namely, susceptible or infected. The set of infected
individuals is denoted by IðtÞ and has measure IðtÞ, whereas the set of susceptible
individuals is denoted by SðtÞ and has measure SðtÞ. In the absence of births and
deaths the population size is normalized to unity, so these measures can be
interpreted as fractions. IðtÞ is referred to as the disease prevalence.8

At each instant, the population mixes homogeneously. This corresponds to
random matching, where each individual has an equal chance of meeting any
other individual, irrespective of the health status of the two matched individuals.
A match between two infected individuals or two susceptible individuals does not
create a new infection, but a match between an infected and a susceptible indi-
vidual may do. In a continuous time model, the rate at which infection is
transmitted in a match with a member of the IðtÞ set is denoted by b. 0, so in a
short interval of time dt the rate of getting the disease from an infected individual
is bdt. This parameter captures the infectiousness of the disease. With random
matching and large numbers, it follows that the probability that a susceptible
person in this population is infected during the short interval dt is

lðtÞ ¼ bIðtÞdt:

It follows that the average rate at which susceptible individuals become
infected is
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2
dSðtÞ
dt

¼ bIðtÞSðtÞ; (1)

with 2 dSðtÞ
dt giving the flow from the susceptible state to the infected. Thus, the

rate of new infections, or disease incidence, is proportional to disease prevalence.
With this interpretation, the key transmission rate can be interpreted as the

outcome of a SAM mechanism with linear technology (Diamond and Maskin
(1979)). To turn the classical SI model into an economic model, Toxvaerd (2019)
assumes that individuals earn a flow payoff pS . 0 per instant while susceptible, a
flow payoff pI ,pS per instant while infected, and that time is discounted at rate
r. In Toxvaerd’s notation p5pS 2pI . 0 denotes the health premium. The
health premium should be thought of broadly as the benefits of not being
infected. To model the possibility of engaging in preventive behavior, assume that
the individuals can affect the rate of infection by controlling the rate at which
they expose themselves to a potential infection. In particular, at each instant
t$ 0, each susceptible individual i2SðtÞ noncooperatively chooses exposure level
eiðtÞ2½0; 1�, at personal cost ð12 eiðtÞÞc$ 0. Here, eiðtÞ5 0 denotes complete
shielding from social action whereas eiðtÞ5 1 denotes no shielding at all, so c is
the unit cost of shielding from social action. The introduction of shielding reduces
the rate of infection to eiðtÞbIðtÞ. This formalization captures the notion that
exposure is desirable, but shielding is pursued because it reduces the chance of an
infection and the loss of the health premium. In a symmetric equilibrium,
eiðtÞ5 eðtÞ and the aggregate infection rate becomes (on the assumption that the
infected population chooses full exposure),

2
dSðtÞ
dt

¼ eðtÞbIðtÞSðtÞ:

Several new results follow from this general framework, since the choice of
exposure depends both on the economic costs of contracting the disease and on
the cost of shielding.

Returning now to HIV, in an early paper, Geoffard and Philipson (1996) show
that in an optimizing model the aggregate transmission rate depends on incidence
and derives some results about behavior from it. The model is SI; there is a
population composed of agents who are either susceptible or infected, and engage
in either protective or transmissive (exposed) activity. When susceptible, an agent
can either become infected or remain susceptible; once infected, an agent remains
infected. Agents continuously meet one another over time, and upon each
meeting, they must decide whether to engage in transmissive or protective
behavior. Susceptible agents who choose the former run the risk of contracting
the disease, while susceptible agents who choose the latter run no such risk.
Transmissive behavior is assumed to be desirable, and protective behavior costly.
Since infection is an absorbing state, in the framework of Geoffard and Philipson
(1996) no selfishly rational infected agent engages in protection and their problem
is basically static. Even though individual behavior takes the form of a binary
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decision, because of large numbers at the aggregate level the hazard function
from susceptible to infected depends continuously on individual choices.

Geoffard and Philipson (1996) argue that “in standard mathematical epide-
miology, this hazard rate is an increasing function of prevalence. In other words,
the larger the fraction of infected people in the population, the larger is the
fraction of uninfected people who become infected in the next period. This is
because the larger the disease is, the larger is the chance that an individual who is
still susceptible will meet an infected individual. This is true across a wide variety
of epidemiological models, since they all share the feature that the demand for
exposure does not respond to prevalence.” In contrast, introducing economic
considerations into the model implies that the hazard rate into infection may be a
decreasing function of the prevalence of the disease because the individuals who
are still susceptible face a larger risk of infection and increase protective behavior.
Geoffard and Philipson (1996) show that the aggregate dynamics of the model
can be written as

2
dSðtÞ
dt

¼ bGðIðtÞÞQðtÞIðtÞ: (2)

As before, SðtÞ and IðtÞ denote the susceptible and infected population,
respectively, and b denotes the infectiousness of the disease. QðtÞ denotes the
probability that a susceptible agent who engages in transmissive activity (in the
case of HIV, engages in sexual activity) during period ½0; t� is still susceptible at t,
and GðIðtÞÞ is an endogenous probability that keeps track of the share of sus-
ceptible people who engage in transmissive activity in t, as a function of preva-
lence IðtÞ. The function GðIðtÞÞ picks up the disincentives that susceptible agents
have; unlike the earlier epidemiological models without disincentives from
prevalence, in which Gð:Þ5 IðtÞ, Geoffard and Philipson (1996) show that Gð:Þ is
a decreasing function of prevalence IðtÞ. Note that it is only the present level of
prevalence that matters, not expected future prevalence levels. To understand
why, note that IðtÞ is increasing in t as there are no deaths in the model.
Furthermore, protective behavior reduces the probability of infection to zero. As
a result, the individual decision of whether to protect oneself or not becomes like
an optimal stopping problem, and the person stops transmissive behavior when
the instantaneous gain from this behavior is exactly equal to the instantaneous
cost associated with the risk of becoming ill. After that point, the person will
never again engage in risky behavior. The future development of IðtÞ is therefore
irrelevant for the optimal stopping decision.9

A matching interpretation for this mechanism is one in which an individual is
engaged in search sequentially but stops the search and enters an absorbing state
when the cost of continuing rises up to the benefits of stopping. In this case the
cost of continuing is the risk of infection, which rises during search because of the
monotonic increase in infections. As in the simple matching model, there is
heterogeneity across individuals which is not modeled explicitly and not identified
a priori, but reflects the frictions inherent in the matching function (Pissarides,
2000, pp. 3–4). The friction here is the information about the health status of
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other individuals in the market. When a susceptible individual meets another
person, she has to decide if that person is a good match (susceptible) or a bad one
(infected), and the more infected individuals there are, the more likely is the
person to reject contacts. Of course, the absence of a priori information may lead
to a failure early on, despite the low perceived probability GðItÞ.

Kremer (1996) – in a paper published in the same year as Geoffard and
Philipson (1996) – also argues that most epidemiological models treat behavior as
independent of prevalence. In contrast, he argues that his “analysis differs both
from the traditional epidemiological analysis, which takes behavior as indepen-
dent of prevalence, and from the few attempts to introduce behavioral consid-
erations into epidemiology, which do not formally model how decisions about the
rate of partner change depend on the composition of available partners.” Kremer
(1996) models the behavioral choice in the rate of partner change by writing

2
dSðtÞ
dt

¼ iðIðtÞÞbIðtÞSðtÞ; (3)

where the function iðÞ is the rate of partner change. The key contribution is thus
similar to Geoffard and Philipson (1996), in the sense that the rate of partner
change is the outcome of an optimizing decision that corresponds to partner
selection. This rate depends on the stock of infection, referred to as incidence in
this literature. The motivation given is different, and appealing in the context of
HIV, in that partner change involves a potential cost, the possibility of getting
infected from the new partner. In the context of social activity in epidemics that
we discussed in our introduction, staying with the same partner in HIV epidemics
has a similar impact on the spread of the disease as complete social distancing in
epidemics such as COVID-19.10

Greenwood, Kircher, Santos, and Tertil (2019) introduce directed search ideas
into the HIV model, by distinguishing three states in which agents may find
themselves: healthy, infected, and infected with treatment.11 The dynamics
between the three states are simulated based on individual decisions that choose
to participate in one of three alternative “markets,” or “meeting places,”
respectively for single-partner long-term sex, casual sex with condoms, or casual
unprotected sex. This segregation of market structures eliminates any complex-
ities due to differences in the interests of partners: they have the same intentions
when they enter the same market. Finding a partner generates utility from sexual
behavior. Marriage has the additional benefit of continued interaction without
the need to search again.

There are four types of status for each individual, and these are labeled
abstinence, long-term sexual relationship, short-term unprotected sex, and
short-term protected sex. In each of these states people can be susceptible to HIV,
infected with no treatment and infected with treatment. The health status is only
known to the individual and it cannot be observed by the sexual partners.12

Infected and susceptible people choose rationally the submarket to enter by
optimally choosing the odds of finding partners in each of the three sexual sub-
markets (pl ;pp;pu where subscript l; p; u refer respectively to the odds of finding
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a long-term relationship, a short-term protected one, and a short-term unpro-
tected one). Searching in a market has both a convex effort cost and the cost of
possibly contracting HIV. The odds are chosen on the basis of convex cost
functions CiðpiÞ where i2fl; p; ug. While pl;pp;pu represent the probabilities of
an individual finding a partner in the three submarkets, they also represent the
fractions of people searching in each market that will find a partner, given the
large size of the economy.

The transition rates as well as the infection rates are thus fully endogenous and
respond to economic incentives, in line with the economic models outlined above.
In equilibrium, each market is characterized by its riskiness and by a transfer that
one partner could be making to the other. These transfers clear the market on the
basis of the preferences of the potential partners. The equilibrium is characterized
by an adverse selection problem: Individuals with a tendency toward risky sexual
behavior enter the market for casual unprotected sex. As a consequence, this
market tends to have a high rate of HIV incidence. Healthy individuals who do
not have a strong preference for risky sexual behavior are further discouraged
from entering this market because of the heavier concentration of infected indi-
viduals. This exacerbates the riskiness of the market for casual unprotected sex.
The model is solved numerically and calibrated to match key moments of HIV
and sexual behavior in Malawi. The calibration matches most targeted moments
well, even though the model is sparse on gender differences.

2.2 Behavioral Influenza, SIR, and the Pre-COVID Contact Function

Before the emergence of COVID-19, the economics profession had only just
began to propose behavioral SIR models, in which all three states, including that
of recovery, were explicitly modeled and long-run equilibrium led to herd
immunity, in line with Kermack and McKendrick (1927). These contributions
were mostly published in journals specializing in theoretical and computational
biology, so they remained unknown to the mainstream economics profession.
Reluga (2010), Chen et al. (2011), and Chen (2012) are important contributions in
the modeling of influenza epidemics with explicit reference to the influence of
contact functions in the SIR framework. Although the marriage between these
contact functions and the economic incentives of the SAM approach was still a
long way off, papers that appeared on either side of the millennium explicitly
modeled matching environments in product and labor markets.13

A typical example is Reluga (2010), who introduced the idea of an aggregate
function that depended on endogenously determined social distancing. His pri-
mary objective was to derive the dynamics of epidemics by making the social
distancing decision dependent on the state of the disease, very much along the
lines of post-COVID research. He defines social distancing as the adoption of
behavior by individuals in a community which reduces the risk of infection by
either reducing contact with other individuals or reducing the transmission risk
during each contact. The paper also recognizes that social distancing incurs some
costs in term of individual behavior, although there is no connection between
these costs and withdrawal from specific economic activities. The choice of social
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distancing follows the tradition of symmetric Nash equilibrium games, with
individuals choosing action cs by taking as given the population average cs. The
dynamics of epidemics depend on aggregate social distancing through a function
sðcsÞ, which is defined as the relative risk of infection given an investment cs in
social distancing. If there is no investment, the relative risk is sð0Þ5 1. Reluga
(2010) argues that the function sð:Þ features diminishing returns with increasing
investment, so that sð:Þ is convex. The key transmission rate is thus modeled as,

2
dSðtÞ
dt

¼ bs
�
cs
�
IðtÞSðtÞ (4)

with the same notation as before. Reluga (2010) solves for a Nash equilibrium in
cs and shows that social distancing reduces the epidemic peak and prolongs the
epidemic, a result that has featured in a number of COVID-19 papers.

Chen et al. (2011) and Chen (2012) built on Reluga (2010)’s work and focus
mainly on more elaborate game-theoretic solutions from which they derive the
aggregate dynamics of the disease. They use an aggregate contact function which
bears several similarities to the aggregate matching function of SAM theory.
Chen (2012) considers an SIR model in discrete time with a continuum of agents.
At each point in time, an agent can be in one of three health states: susceptible,
infected, and recovered. An infected agent recovers at the end of any period with
probability r2½0; 1�. A recovered agent is fully immune and remains so for the rest
of life.

Assume that there is no entry or exit of agents so that the population size is
constant. The behavior of agents is specified as follows. In every period, agents
choose how much time a$ 0 to spend outside the home during a period, referred
to as the level of public activity. Individuals’ choices of their public activity levels
affect the rate at which contacts occur in the population and so the rate at which
an infectious disease spreads. Assume that a belongs to the interval ½0;a� where
a5 1 can be interpreted as agents’ “normal” public activity level in the absence of
the infectious disease. As is standard in the literature, agents are self-interested
and seek to maximize their own payoff, without regard to the payoffs of other
agents. In addition, assume that, all else being equal, an agent prefers less public
avoidance over more. Since recovered agents cannot be infected, they have no
incentive to engage in public avoidance behavior; thus recovered agents always
choose a5 1 for their level of public activity. Similarly, self-interested infected
agents would not choose to adopt public avoidance behavior. However, the state
of being infected can be sufficiently debilitating to cause some infected agents to
have to stay home. Let us assume that, in any period, the fraction 12 g of
infected agents, where g2½0; 1� are too sick to engage in any public activities. The
remaining infected agents – those who have only mild symptoms – fully partic-
ipate in public activities, i.e., a5 1 for these infected agents.

Let us now consider the contact structure and the disease transmission process.
A susceptible agent who chooses public activity level at at time t has probability
atlt of being infected in that period, where lt denotes the probability of infection
in period t per unit public activity level.
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This probability lt is a function of the disease prevalence pt (which is equal to
infections) as well as the public activity levels chosen by all other agents at time t.
Now, letting rt denote the time t fraction of recovered agents, the mean level of
public activity in the population at time t is nt 5 gpt 1 rt 1atð12 pt 2 rtÞ, pro-
vided all susceptible agents choose public activity level at in period t. Suppose lt
is specified as follows:

lt ¼ lðpt; rt;atÞ ¼ mðntÞbgptnt

where b2½0; 1� is the transmission probability, and m is the meeting or contact
function that specifies the rate at which a susceptible agent encounters other
agents per unit of public activity. Note that bgpt=nt is the probability of
becoming infected when meeting another agent. Chen (2012) assumes that the
function m is positive increasing, since encounters with others are more likely
when other people spend more time out in public, i.e., mðnÞ$ 0 for all n2½0; 1�; he
also assumes that mðnÞ is increasing. If mðnÞ# 1 is can be interpreted as a
probability of meeting another agent per unit of public activity. Chen (2012)
solves for a Nash equilibrium in ap. As it will become clear when we discuss the
post-COVID literature, these papers’ specifications of contacts parallel the
assumptions made by papers that adopt the SAM matching function with
increasing returns to scale, justified by the assumption that when other agents
take part in public activities, meeting probabilities increase even if there is no
additional effort from a given agent.

3. COVID-19 RESEARCH
With the outbreak of COVID-19 economists turned in large numbers to research
on the dynamics of infections, the economic costs of the disease versus the per-
sonal costs of infections, and the optimal policy that might be followed by
governments in the face of macro trade-offs. As we mentioned in Section 2, the
economic interpretation of the epidemiological model can be formulated in terms
of a SAM model in which the disease spreads from meetings between susceptible
and infected agents. The recent economics literature on COVID-19 that uses this
or a related approach is too large to survey in any detail. We discuss here a
selection of papers that are either particularly relevant in terms of approach or
that explicitly make use of the properties of SAM models to derive their results.

3.1 Optimal Control and Optimizing Behavior in Macro Models

A number of papers use optimal control theory to derive optimal policies in the
pandemic. Alvarez et al. (2021) is a good representative paper. They take a
variant of the SIR model and formulate an optimal control problem by consid-
ering policies familiar from the pandemic, in particular, lockdowns ðLtÞ, quar-
antine (Qt), and testing ðTtÞ. A central planner chooses optimally at each point in
time the stock of lockdown individuals (Lt) as well as the stock of quarantined
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people (Qt). These stocks are chosen to minimize an aggregate social welfare cost.
The key flow from the susceptible to the infected state is modeled as

2
dSðtÞ
dt

¼ b~SðSt;LtÞ~IðIt;Lt;QtÞ; (5)

where the number of susceptible people in public places ~Sð:Þ is a function of all
susceptible people and the number engaged in lockdown Lt; and the number of
infected individuals ~I is a function of both those in lockdown and those in
quarantine. Alvarez et al. (2021) write

2
dSðtÞ
dt

¼ b½Stð12 uLtÞ�½ðIt 2QtÞð12 uLtÞ� (6)

where u2ð0; 1� is a measure of the lockdown effectiveness. In this framework the
stock of quarantined agents follows the law of motion _Qt 5Tt 2 gQt where
Tt #T denotes the flow per unit of time of agents that are traced, tested (posi-
tive), and placed into quarantine, and T is a capacity constraint on the number of
agents that can be traced per unit of time. The policy prescribes a severe lock-
down beginning a few weeks after the outbreak, covering almost 50% of the
population after a month, with a total duration of approximately four months.

Eichenbaum, Rebelo, and Trabandt (2021) and Kaplan, Moll, and Violante
(2020) propose behavioral SIR models in which the reproduction rate of the
disease depends on aggregate consumption and hours of work, motivated by the
fact that the more there is of each, the more likely it is that there will be social
contacts and infections. The trade-off studied is between health and GDP losses;
cutting down on consumption and work improves aggregate health outcomes
through lower infections, but involves GDP losses. Eichenbaum et al. (2021)
argue that people can become infected in three ways. First, consumption requires
shopping in social space. The number of newly infected people that results from
shopping activities is p1ðStCs

t ÞðItCs
t Þ. The terms StCs

t , ItC
s
t represent total con-

sumption expenditures by susceptible and infected people, respectively. The
parameter p1 reflects both the amount of time spent shopping and the probability
of becoming infected as a result of that activity. Second, susceptible and infected
people can meet at work. The number of newly infected people that results from
interactions at work is given by p2ðStNs

t ÞðItNi
tÞ. The terms StNs

t and ItNi
t

represent total hours worked by susceptible and infected people, respectively. The
parameter p2 reflects the probability of becoming infected as a result of work
interactions. Third, susceptible and infected people can meet in ways not directly
related to consuming or working. The number of random meetings between
infected and susceptible people is StIt. These meetings result in p3StIt newly
infected people. The total number of newly infected people is given by

2
dSðtÞ
dt

¼ p1
�
StCs

t

��
ItCs

t

�
1p2

�
StNs

t

��
ItNi

t

�
1p3StIt (7)
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In this formulation, the corresponding equation of the classical Kermack and
McKendrick (1927) can be interpreted as special case in which the propagation of
the disease is not related to economic activity ðp1 5 0;p2 5 0Þ. We note, however,
that this approach does not allow changes in shopping or work practices that
offset, partially or wholly, a higher probability of attracting the virus; for
example., online shopping replacing the trip to the shop or working from home
instead of the office. In this sense, their approach is likely to give a higher GDP
cost than would be observed in a world where there are different shopping and
work possibilities. In a variant of this approach, Kaplan et al. (2020) argue that
the reproduction number is bt 5bðCst;Lwt; tÞ, where Cst is aggregate social
consumption and Lwt is aggregate workplace hours.

3.2 COVID-19 and Optimizing Behavior with Search: Homogeneous Agents

We turn now to research with optimizing agents, which took center stage in
COVID-19 related research. Unlike HIV epidemics, COVID-19 is more appro-
priately modeled within a traditional SIR model in the spirit of Kermack and
McKendrick (1927), or one of its variants.14 Economists contributed to the
literature in at least three directions. First, in line with some of the early pre-
COVID research surveyed in section 2, most papers model individuals as rational
forward-looking optimizing agents. Second, the transition probabilities between
different states, and notably between the susceptible and infected status, are
explicitly modeled with the techniques traditionally used in SAM literature.
Third, most models solve both a decentralized equilibrium and a central planning
problem, and derive several types of externalities, due mostly to the fact that, as
in the SAM literature, agents tend to ignore various external effects related to
their search activities.

In this section, we discuss models that derive the equilibrium dynamics of the
disease for homogenous agents, focusing on the implications of optimizing
behavior during social interactions. We discuss the deviations between the
decentralized and central planning solutions after we consider the role of
heterogeneity.

Garibaldi, Moen, and Pissarides (2020b) work in discrete time and model, the
case in which the infected people are, at least for an initial period, asymptomatic.
The implication of this assumption is that the social action chosen by susceptible
and infected agents prior to the arrival of symptoms is the same. Given this
common action, which is denoted by xt, a single vulnerable agent who chooses
social action xt transits from the susceptible to the infected state between periods t
and t1 1 with probability,

pt1 1 ¼ p
�
xt; xt; xr;St; It;Rt

�
: (8)

xr are the choices of recovered agents, and St, It, and Rt denote the mass in each
respective state (informally referred to as the number of people in the state). A
key assumption is
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∂pðxt; :Þ
∂xt

$ 0;

pð0; :Þ ¼ 0;

(9)

where pð0; :Þ is the transition to infection in the state of complete social
distancing.

Garibaldi et al. (2020b) claim that the contact technology that yields the
infection probability pðxt; :Þ parallels the matching function of labor economics
but with some important differences. In the matching function of the labor
literature, more workers looking for jobs reduce the success probability of a single
worker because of congestion externalities in the application process. In epidemic
models, more individuals coming out in the marketplace increase the chances of
infection because a single exposed individual can infect many people; the infec-
tious disease is “non-exhaustible,” in the sense that many people could acquire it
from a single person at the same time.

Garibaldi et al. (2020b) provide an intuitive derivation of the contact function.
Suppose xt stands for the number of trips outside the house that each person does
in a single period. They assume that with xt trips, each person experiences on
average mt contacts, defined by a well-behaved function mt 5mðxtÞ, with
m9ðxtÞ$ 0. The function mð:Þ is similar to the matching function of labor eco-
nomics, in the sense that it depends on the structure of the marketplace, including
density of population, transportation facilities, types of establishments, etc. Note
that the dependence of mð:Þ on a single variable parallels the contact function
used by Diamond (1982) in his “coconut” model. With respect to the mt contacts
in the epidemic context, some of these contacts are between susceptible and
infected people, which lead to the infection of the susceptible agent with some
positive probability that depends on the infectiousness of the disease.

In order to derive the optimal xt for a single optimizing agent, Garibaldi et al.
(2020b) follow the method used in search theory to choose the optimal search
intensity (Pissarides (2000), chapter 5). With mðxtÞ representing the total number
of contacts for xt outings, each outing on average generates mðxtÞ=xt contacts. So
if the individual chooses to go out of the home xt times, her contacts are on
average xtmðxtÞ=xt. Of these, there is an infection with probability bIt, where b as
before is the infectiousness of the disease and It is the fraction of infected indi-
viduals. It follows that the transition probability from the susceptible to the
infected state for the person who chooses xt is,

pt1 1 ¼ b
xtm

�
xt
�

xt
It: (10)

In an economy without an infectious disease, agents allocate their time
between noninteractive activities and social activities xt, given their utility func-
tions and costs. During an epidemic, choosing social activities involves a prob-
abilistic cost summarized in (10), which is the cost of an infection. In
decentralized equilibrium, the typical agent therefore chooses a smaller xt,
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shifting activities to noninteractive pursuits, such as working at home, buying
consumption goods online, and cooking at home instead of going to restaurants.
The difference between the xt chosen in the absence of an epidemic and the xt
chosen in an epidemic is defined as the social distancing that agents choose during
the epidemic.

In moving from individual transitions to the average for a market where all
agents optimize, Garibaldi et al. (2020b) assume a symmetric Nash equilibrium in
which all agents choose the same policy, so xt 5 xt. With St susceptible agents
choosing social action xt, the transition from the susceptible to the infected state
is therefore given by,

pt1 1St ¼ bm
�
xt
�
ItSt: (11)

A question that arises and which is important for the welfare analysis is the
degree of homogeneity of the meeting technology. Some of the early literature
assumed homogeneity less than one in large markets (Chen et al., 2011), whereas
the labor literature converged on constant returns (Petrongolo & Pissarides,
2001). However, when there are unintended contacts in fixed social space,
increasing returns are a more plausible assumption, driven by the fact that a given
individual has no full control over chance meetings in social space (refer again to
the discussion at the beginning of section 2). Intuitively, the justification for
increasing returns is similar to the one used by Diamond (1982). In that paper,
islanders possess a coconut which they acquire by climbing a tree but they cannot
consume their own coconut. They have to find another islander with a coconut
and swap nuts. Diamond’s claim was that if the number of islanders climbing
trees doubled, a passive islander was more likely to come out and climb a tree
because the probability of finding a trade would be higher: a positive externality.
Subsequent work did not find support for this claim in labor or goods markets,
because as both buyers and sellers double in number they create congestion for
each other and so many swaps are crowded out. In the context of an epidemic it is
precisely this congestion that justifies the increasing returns because of the non-
exhaustive nature of the disease. An infected agent can pass a disease to a very
large number of people but in Diamond’s example they can only give their
coconut to one person. Diamond’s intuition for increasing returns applies to this
model much more than in a model of exchange.

Farboodi, Jarosch, and Shimer (2020) use a contact functions similar to
Garibaldi, Moen, and Pissarides (2020a), and discuss the modeling of the contact
function going back to Diamond and Maskin’s (1979) seminal introduction of the
distinction between a quadratic and a linear matching technology. With
quadratic matching, additional social activity by others raises the likelihood of
social contact and thus the disease transmission for all individuals. For example,
with more individuals in parks, restaurants, and public transport, any given trip
to a park/restaurant/subway is more likely to lead to disease. As we discuss also in
Section 3.4, such a matching function has a search externality that traditionally is
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viewed as positive (Diamond, 1982) but that turns negative in the context of
disease.

3.3 COVID-19 and Optimizing Behavior with Search: Heterogeneous Agents

A well-documented feature of COVID-19 is the differential impact of the disease
on individuals of different age or preexisting medical conditions. Given the
importance of age, and the ease of observing it, several models worked out
equilibrium outcomes with heterogeneous agents, distinguishing them across the
age spectrum. Within the SAM tradition, Acemoglu et al. (2021) and Brother-
hood, Kircher, Santos, and Terlit (2020) are key contributions.

Acemoglu et al. (2021) propose a multigroup SIR (MG-SIR) with three age
groups, young, middle-aged, and old. The model is solved in the spirit of optimal
control as proposed by Alvarez et al. (2021) and derives the optimal lockdown
across the three groups. Let uj be the intensity of lockdown for each group, hj the
probability that an infected person fails to be isolated, and rjk the contact rate
across groups. As a result, infections for group j evolve according to,

2
dSjðtÞ
dt

¼ b
�
12 ujLj

�
Sj+

k
rjkhjkð12 ukLkÞ (12)

In Acemoglu, Chernozhukov, Werning, and Whinston (2020)’s interpretation,
(12) is the classic law of motion of SIR models, assuming a quadratic matching
technology. In Acemoglu et al. (2021), a more general nonquadratic contact
function Mj is considered so that

2
dSjðtÞ
dt

¼ Mj
�
12 ujLj

�
Sj+

k
bjkhjkð12 ukLkÞ (13)

where

MjðS; I ;R;LÞ ¼
 
+
k
bjk

��
Sk 1hkIk 1 ð12 kkÞRk

�
12 ujLk

��
1 kkRk

�!a2 2

Note that if a5 2 thenM5 1 and also Rk drops out of the equation, so only S
and I matter. In addition, with a single group the equation reduces to
2

dSjðtÞ
dt 5bSIð12 uLÞ2, an expression identical to Alvarez et al. (2021). The

quantitative analysis of optimal policies is applied to the United States. Ace-
moglu et al. (2021) find that optimal policies differentially targeting risk/age
groups quantitatively outperform optimal uniform policies and most of the
gains can be realized by having stricter lockdown policies on the oldest group. A
strict and long lockdown for the most vulnerable group both reduces infections
and enables less strict lockdown for the lower-risk groups, which reduces the
economic cost. Favero et al. (2020), in a quantitative model applied to two Italian
regions with a very large number of age differences, reach similar conclusions,
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even though the modeling of individual behavior and transmission rates are only
sketched.

Brotherhood et al. (2020) propose a model with age heterogeneity and focus
on optimal policies. Age is indexed by a2fy; og where y is young and o is old. The
modeling of infection does not relate directly to a matching or contact function in
the spirit of Garibaldi et al. (2020a), yet in Brotherhood et al. (2020) the key
transmission risk PtðaÞ is a time-varying function that depends on the number of
infected people and how much time these people spend in social space. In equi-
librium ntðj; ~aÞ and ltðj; ~aÞ denote the measure of agents of each type j of age ~a
who are outside the home for work or leisure. The aggregate probability of
getting infected for a fraction of the period spent outside and given an exogenous
SI transmission rate P0 (a parameter specific to the disease) is

bPt ¼ P0 +
~a;j2f:fi ;i;hg

�
nt

�
j; ~a
	
1 lt

�
j; ~a
		

Mt

�
j; ~a
	

(14)

where each individual j can be in a state of infection ðiÞ, hospital ðhÞ or fever and
infected ðfiÞ, and Mtð:Þ is a law of motion that maps from the state vector, the
equilibrium actions and the infection rates in period t to the number of agents of
each type Mt1 1 in the next period.15 Using this setting, Brotherhood et al. (2020)
find that older individuals socially distance themselves substantially in equilib-
rium. Thus, the optimal lockdown is binding most for the young.

3.4 Externalities in the SI and SIR Epidemic Models

Transmission of a disease is an involuntary and often unobserved event, with no
money transfers involved. It is usually the outcome of a contact initiated for other
reasons. In such situations, it is reasonable to expect that the decentralized
solution will suffer from externalities, e.g., because infected agents ignore the
impact of their actions on others. Some of these externalities are associated with
the SAM framework as such, while others are associated with the inherent
dynamics of the epidemiological models. We survey here the externalities
involved, by making the usual assumption of decentralized equilibrium models:
that the agents in the economy do not have altruistic preferences but act to
maximize their own utility. If the agents do have altruistic preferences, this may
reduce the externalities, as the agents partly internalize the negative impact of
their actions on fellow citizens.

In the context of pre-COVID research, Toxvaerd (2019) introduces policy
dimensions, welfare and externalities in the context of the models proposed by
Geoffard and Philipson (1996) and Kremer (1996). Toxvaerd (2019) shows that a
permanent decrease in the infectiousness of the disease will prompt an increase in
exposure and in steady-state disease prevalence. Although the decrease in infec-
tiousness decreases the rate of transmission per exposure, the exposure itself
increases sufficiently to lead to an increase in steady-state disease prevalence. This
outcome is not pathological and holds both for a utilitarian social planner and for
self-interested individuals.
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Related to this, under certain conditions, a decrease in the infectiousness of the
disease may lead to a decrease in social welfare. The reason is that individuals
make different choices than those preferred by a social planner. There are two
sources for this discrepancy. First, there is a pure externality effect that arises
because individuals do not internalize the benefits to others that flow from the
individual protection of themselves. As a consequence, aggregate equilibrium
protection is too low, thus causing higher future disease prevalence. This implies
that the equilibrium future path of infection faced by the individual is higher than
the path preferred (and indeed chosen) by a social planner. The second discrep-
ancy is related to the fact that each individual takes the path of aggregate
infection as given, while the planner takes into account the fact that the aggregate
path is made up of the sum of individual paths. These two externalities are in the
spirit of what the COVID-19 literature called static and dynamic externalities, to
which we turn next.

To simplify, let us consider a model with homogenous agents. Garibaldi et al.
(2020b) classify externalities into four categories: Contact externalities, medical
externalities, contagion externalities, and immunity externalities.16 The contact
externalities are most closely related to the SAM literature. A well-known result
from the labor-search literature is that if there are increasing returns to scale in
the matching function, this gives rise to search externalities and possibly multiple
equilibria. The reason is that the search activities of different agents are strategic
complements. Take the Diamond (1982) model as an example, where identical
agents search to find trading partners. Due to increasing returns to scale in the
meeting technology, the arrival rate of a trading partner per unit of search
intensity of an individual depends positively on the average search intensity in the
economy. Hence, if the other agents in the economy increase their search
intensity, the incentives for a given agent to search increases, and this strategic
complementarity leads to below-optimal social action and may also lead to
multiple equilibria.

Similar mechanisms take place in the SIR-matching model. However, since
attracting the virus has a negative impact on lifetime utility, increasing returns
give rise to substitutability, not complementarity, in the agents’ choice of social
activity. To see this, suppose mðxtÞ5 xat , a. 0. From (Eq. 10) we get that

pt1 1 ¼ bxtxa2 1
t It (15)

Hence, for a. 1, a higher average activity level will tend to increase the
marginal effect of own activity level on the probability of attracting the virus.
Everything else equal, this will tend to reduce the individual activity level. Hence,
in contrast to the findings in Diamond (1982), increasing returns to scale in the
contact function will not lead to multiple equilibria, as activity levels among the
individuals become strategic substitutes rather than complements.

Still, increasing returns to scale gives rise to a negative meeting externality. If a
(small group) of agents increase their activity, this increases the average activity
level, and hence increases the probability that the other agents attract the virus.
This negative effect will be internalized by the planner but not by the agents in the

Q1
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economy. This is the essence of the contact externality and the best policy
response is for the planner to order more social shielding.

The contact externality is related to, but different from, the contagion exter-
nality. The contagion externality is the “classical” externality that arises in
models of infectious diseases: If a person is infected, they may infect others in
subsequent periods, something a nonaltruistic person will not take into account.17

This is a powerful externality, particularly when a vaccine is expected to arrive
that will protect susceptible agents from the disease. In the pre-COVID literature,
the efficiency role of a vaccine is highlighted in the influenza literature, and
notably in Reluga (2010), even though he does not introduce an explicit welfare
function. Conversely, the HIV economics literature that deals with welfare
analysis (Greenwood et al., 2019; Toxvaerd, 2019) is less concerned with vacci-
nation and focuses on policies aimed at reducing the risk of infection during
sexual activity.

The medical externality naturally relates to the medical sector (Farboodi et al.,
2020). With fixed capacity in this sector, at least in the short run, when the disease
is spreading fast, the quality of treatment will fall as the number of agents who
are infected and hospitalized increases and reaches hospital capacity levels. This
will lead to poorer care, increased medical expenditures per person, and more
importantly to higher death rates. Optimizing individuals take into account the
individual cost of hospitalization and the fatality rate, but not the fact that by
becoming ill, they increase the cost of hospitalization and the death risk for other
people. A common slogan in the British lockdowns during the COVID-19
pandemic was “stay home, save the NHS,” precisely trying to induce altruism
with respect to medical congestion. A good policy is one that spreads infections
more evenly over time, usually achieved by imposing strict lockdown in the
beginning of an epidemic, when typically infections rise very fast.

Finally, the immunity externality, introduced by Garibaldi et al. (2020b) and
further discussed by Brotherhood et al. (2020), is the most “hidden” of the
externalities. It is, however, important in the absence of effective vaccines, in
which case society has to rely on herd immunity to get back to normality. Herd
immunity is achieved when a sufficiently large number of agents contract the
virus and recover with immunity. In the absence of many remaining susceptible
agents to visit, the virus is eradicated. It follows that there is a positive externality
to catching the disease (assuming immunity on recovery): by becoming immune
an agent helps society get closer to herd immunity, to the benefit of those who are
still free of the disease.18 This positive externality is ignored by individuals
maximizing their own net worth. In contrast, a social planner will want to
internalize it, by encouraging more social activity.19

Another way of motivating the immunity externality is in terms of a “rat race
to shield.” Forward-looking agents will know that in order to reach herd
immunity, a certain fraction of the population will have to be infected. It is
therefore optimal for someone to shield until someone else gets infected and helps
drive the economy to herd immunity. But if all shield, herd immunity will never
be reached. The optimal policy of the planner is to make sure there is no excessive
shielding, and in some simulations this policy dominates the contagion
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externality. But as this response is critically dependent on herd immunity as the
only path to eradication of the disease, it collapses if another path to eradication
is discovered, as in the case of an effective vaccine. In the latter case, it is socially
optimal to shield more to save more people from the illness, until enough people
get vaccinated to reach herd immunity that way.

Finally, consider briefly the implications of different social policies for people
with different experiences of the disease. Recovered people with immunity are
safe social contacts, and this is another positive externality that is ignored by
them. If they know they cannot contract the disease, their optimal policy will be
to maximize their utility with respect to the allocation of time to domestic and
market activities, ignoring the fact that they don’t infect other people in market
activities. A social planner would take this externality into account and request
more social contact from recovered people, e.g., provide incentives for them to
take on extra social work on production of evidence of recovery.

4. CONCLUSIONS
Before the COVID-19 pandemic, economists paid limited attention to the mod-
eling of epidemics, such as influenza or HIV. Epidemiologists and mathematical
biologists created an extensive literature which addressed issues of transmission
and herd immunity, as well as optimal government policy in response to the
dynamic path of the disease, but paid limited attention to the modeling of indi-
vidual incentives to shield and the economic costs involved. Of course, notable
exceptions exist, and one of the purposes of this chapter was to review the pre-
COVID literature that addressed economic trade-offs and optimal policy.

Economic modeling of epidemics took off, at unprecedented speed, soon after
the COVID-19 pandemic took hold of countries worldwide. CEPR in its Covid
Economics series published about 1,000 papers in less than two years. It is
doubtful whether there has ever been an event that changed the economics
literature so dramatically in such a short space of time. These papers addressed
mainly the trade-off between the economic losses from social distancing and the
gains in disease control. Our approach in this chapter focused on the review of
models that used the ideas that were developed independently in the SAM
literature about the meeting of agents in social space as a precondition for
exchange. We have shown that these ideas lead to a neat modeling of the
incentives that agents have for social distancing, given the new element that is
introduced by an epidemic: the risk of infection, which translates into an eco-
nomic cost in future periods. Put in these terms, the new trade-off in an epidemic
is between a current cost when an agent refrains from social contact to avoid
infection versus a future cost that involves, with positive probability, a medical
cost and withdrawal from social contact as symptoms from a possible infection
emerge.

We have shown that the introduction of economic incentives associated with
the new trade-offs has a large impact on the dynamic evolution of the disease,
both in decentralized equilibrium and in central planning solutions. Approaching
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the epidemic problem in this way unearths different kinds of externalities that
exist in these models and which require different policy responses depending on
assumptions made about medical differences between agents, vaccinations, and
the degree of infectiousness of the disease, among many others.

NOTES
1. Of course, there is also a lot of social interaction in economics that does not fit this

description. For example, the provision of personal services, such as haircuts or restaurant
meals.
2. See, for example, Pissarides (2000), Mortensen and Pissarides (1999) and Diamond

and Maskin (1979).
3. For a discussion of more recent work and modeling of the mathematical equations,

see Hetcote (2000) and Weiss (2013).
4. See Petrongolo and Pissarides (2001) for a survey of the matching function as used by

labor economists.
5. Diamond and Maskin (1979) study the implications of linear and quadratic “search

technologies” in economic interactions.
6. See, for example, Eichenbaum et al. (2021) and Farboodi et al. (2020), who borrow

Diamond and Maskin (1979)’s “quadratic matching technology” or Garibaldi, Moen, and
Pissarides (2000a) who invoke a more traditional aggregate matching function, with both
linear-homogenous and quadratic forms as alternatives. We discuss several other references
and the implications of their matching assumptions in the main text of the paper.
7. The parallel between employment contacts and marriage (more generally, mating) has

been noted and explored in a number of papers. See, for example, Mortensen (1982) and
Burdett and Coles (1997).
8. Note that in this basic model there are no deaths from the disease.
9. Chen (2004) extends the ideas of Geoffard and Philipson (1996) by introducing entry

and exit of agents.
10. Despite the dynamic nature of Eq. (3), Kremer (1996) studies only the steady state of

the epidemic.
11. Directed or competitive search was introduced by Moen (1997). See Wright, Kircher,

Juline, and Guerrieri (2021) for a recent survey.
12. Greenwood et al. (2019) assume that in each infected status there is a probability of

moving into a final stage of HIV where the health status becomes observable.
13. For a detailed exposition of Kermack and McKendrick (1927) and its dynamic

behavior, see Hetcote (2000) and Weiss (2013). With respect to the dynamics of the model,
Weiss (2013) writes “Mass action mixing assumes that the rate of encounter between
susceptible and infected individuals is proportional to the product of population
sizes. . ..This requires that the members of both populations are homogeneously distributed
in space and thus . . .every person will encounter every other person per unit time with
equal probability.” He also argues that it is possible to formulate a stochastic analog of the
SIR model as a Markov chain. The matching interpretation that we give to the model
yields such an approach in response to the random meetings and the influence that eco-
nomic incentives have on the infections rate.
14. We note that the insights related to SAM come from the transition from susceptible

to infected, so the important states are SI. Results are broadly similar for models such as
SIR, SIS, or other variants. In the case of COVID-19, although it was believed at first that
recovery brought immunity, experience with the disease did not corroborate this belief, and
an SIRS model seems to be more appropriate. See, for example, Giannitsarou, Kissler, and
Toxvaerd (2021).
15. Brotherhood et al. (2020) write

Mt1 1 5TðMt;Nt;PtðoÞ;PtðyÞÞ
as the equilibrium allocation of the functions ntðj; ~aÞ and ltðj; ~aÞ:

Q2

Q3
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16. Brotherhood et al. (2020) and Farboodi et al. (2020) also discuss the first three
externalities.
17. Some of the infected persons may be within the person’s household. To the extent

that this is the case, the assumption of altruistic preferences may be plausible.
18. In an early review of the epidemiological literature, Fine (1993) noted that herd

immunity is “the indirect protection afforded to nonimmune individuals by the presence
and proximity of others who are immune.” This definition hints at the immunity externality
as we defined it here, in the sense that “indirect protection” is ignored by nonaltruistic
agents. The reference to “proximity” also hints at another positive externality of immunity
that is briefly discussed at the end of this section. We are grateful to an anonymous referee
for directing us to this reference.
19. There is some informal evidence that soon after the start of infections in Britain, this

was the favored policy. For example, the Prime Minister’s advisor at the time, Dominic
Cummings, stated that herd immunity was government policy in the early stages of the
pandemic but it quickly changed to shielding when the first deaths took place. See https://
www.bbc.co.uk/news/57229390.
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