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We present a life-cycle model for pension funds' optimal asset 
allocation, where the agents' labor income process is calibrated to 
capture a realistic hump-shaped pattern and the available financial 
assets include one riskless and two risky assets, with returns 
potentially correlated with labor income shocks. The sensitivity of the 
optimal allocation to the degree of investors' risk aversion and the 
level of the replacement ratio is explored. Also, the welfare costs 
associated with the adoption of simple sub-optimal strategies ("age 
rule" and " 1/N   rule") are computed, and welfare-based metrics for 
pension fund evaluation are discussed. 
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1. Introduction 

 
Methods for evaluating the performance of defined contribution (DC) pension funds are similar 
to those applied to mutual funds, and typically associate a higher return per unit of risk with 
better performance. These methods are adequate if a worker, or the pension fund acting on her 
behalf, has preferences defined exclusively over the mean and the variance of portfolio returns2. 
Ideally, though, a worker contributes to a pension fund in order to help stabilize consumption 
during retirement years, given that the yearly pension transfer granted by typical first-pillar 
schemes is lower than the last wage. Thus the optimal asset allocation ought to take into account, 
together with the asset return distributions and the risk aversion parameter that enter a standard 
portfolio choice problem, both any pension transfer accruing after retirement as well as the 
worker's life expectancy. Since the pension transfer is usually a fraction of labor income earned 
during the last working year (which is, in turn, the outcome of the worker's risky professional 
history) the optimal asset allocation trades off the gains from investing in high risk premium 
assets with the needs to hedge labor income shocks. 
Adopting an explicit life-cycle perspective, this paper presents a simple model that is calibrated 
to deliver quantitative predictions on optimal portfolio allocation for DC pension funds. It then 
proposes a welfare-based metric in order to evaluate their performance.  
Our model belongs to the literature on strategic asset allocation for long-term investors. The 
recent expansion of defined-contribution pension schemes, with respect to defined-benefit plans, 
and the ensuing focus on optimal investment policies, is one of the motivations behind its 
growing importance. In this research area modern finance theory, as summarized for example by 
Campbell and Viceira (2002), has made substantial progress over the traditional (mean-variance, 
one-period) approach that still forms the basis for much practical financial advice. Long 
investment horizons, the presence of risky labor income and of illiquid assets such as real estate, 
have been gradually incorporated into the analysis of optimal portfolio choice. Moreover, the 
conditions under which conventional financial advice (such as the suggestion that investors 
should switch from stock into bonds as they age, and that more risk-averse investors should hold 
a larger fraction of their risky portfolio in bonds than less risk-averse investors) is broadly 
consistent with optimal asset allocation policies have been clarified. The key intuition is that 
optimal portfolios for long-term investors may not be the same as for short-term investors, 
because of a different judgement of assets' riskiness, and because of the crucial role played by 
(non-tradable) human wealth in the investors' overall asset portfolio. 
In more detail, our life-cycle model features two risky and one riskless assets, which are 
parameterized by the first two moments of their return distribution, and correspond in our 
simulations to domestic stocks, bonds and bills. As in Bodie, Merton and Samuelson (1992) and 
Cocco, Gomes and Maenhout (2005), early in the worker's life the average asset allocation is 
tilted towards the high risk premium asset, because labor income provides an effective hedge 
against financial risks. On the contrary, in the two decades before retirement, it gradually shifts 
to less risky bonds, because income profiles peak at around age 45. 
Although these patterns are associated to given values of the parameters that describe both 
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workers' human capital and investment opportunities, as well as the institutional framework, we 
perform sensitivity analysis along several important dimensions. The first examines the reaction 
of optimal asset allocation to the labor income profile. For instance, a construction worker may 
face a higher variance of uninsurable labor income shocks than a teacher (Campbell, Cocco, 
Gomes and Maenhout 2001); alternatively, the correlation between stock returns and labor 
income may be higher for a self-employed or a manager than for a public sector employee. If 
such differences have negligible effects on optimal asset allocation, the pension plan may offer 
the same option to all participants. Instead, in our simulations optimal portfolio shares are highly 
heterogeneous across coeval agents (despite their common life expectancy, retirement age and 
replacement ratios) due to such individual-specific labor income shocks. Dispersion decreases as 
workers approach retirement, the more so the higher is the labor income-stock return correlation: 
as this increases, the histories of labor incomes tend to converge over time and so do the optimal 
associated portfolio choices. These results suggest that the optimal allocation ought to be 
implemented through diversified investment options for most occupations and age brackets. 
The pension transfer in our model is a fixed annuity (granted by an unmodelled first pillar or 
defined-benefit scheme)3 and proportional to labor income in the last working year. Replacement 
ratios vary widely across countries, as documented by OECD (2007), ranging from 34.4% in UK 
to 95.7% in Greece. Such differences also depend on the inflation coverage of pension annuities, 
which is often imperfect, implying a reduced average replacement ratio. By measuring the 
sensitivity of optimal portfolio composition with respect to the replacement ratio, we understand 
whether optimal pension fund portfolio policies should vary across countries for given members' 
types. When the replacement ratio falls, simulations reveal that agents save more during their 
working life in anticipation of lower pension incomes, thus accumulating a higher level of 
financial wealth. This determines a lower optimal share of stocks at all ages and for all values of 
the labor income-stock return correlation, holding risk aversion unchanged: with higher financial 
wealth, a given labor income becomes less apt to offset bad financial outcomes. In other words, 
our model indicates that asset allocation in low replacement ratio countries ought to be more 
conservative because workers' contributions to pension funds ought to be higher. 
Computing the optimal life-cycle asset allocation allows to use it as a performance evaluation 
benchmark, which explicitly accounts for pension plan role in smoothing participants' 
consumption risk. We propose several indicators to evaluate pension funds' performance. The 
first metric takes the ratio of the worker's ex-ante maximum welfare under optimal asset 
allocation to her welfare under the pension fund actual asset allocation: the higher the ratio, the 
worse the pension fund performance. Importantly, bad performance may derive not only from a 
lower return per unit of financial risk earned by the pension fund manager - which is what 
previous methods look at - but also from a bad matching between the pension fund portfolio and 
its members' labor income and pension risks. 
Unmodelled costs of tailoring portfolios to age, labor income risk and other worker-specific 
characteristics can be quite high for pension funds. This is why we assess the welfare costs of 
implementing two simpler strategies, namely an age rule and a strategy with portfolio shares 
fixed at  1/   for each of our three financial assets, echoing the  1/3 N   rule of DeMiguel, Garlappi 
and Uppal (2008), that outperforms several portfolio strategies in ex post portfolio experiments. 
The latter strategy performs consistently better than the age rule, making it a better benchmark 
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for evaluating the performance of pension funds. Importantly, our numerical results suggest that 
this portfolio strategy is likely to be cost-efficient for both high wealth and highly-risk-averse-
average-wealth workers in medium-to-high replacement ratios countries. In these cases, the 
welfare costs of the suboptimal  1/   rule are often lower than 50 basis points per annum in terms 
of welfare-equivalent consumption, which is likely to be lower than the management cost 
differential. Thus,  1/   may well become the benchmark asset allocation in the welfare metric 
for performance evaluation. 

3

3

The present contribution is organized as follows. The main theoretical principles that may be 
relevant for pension funds strategic asset allocation are outlined in Section 2. Section 3 presents 
our simple operative life-cycle model, showing how it can be calibrated to deliver quantitative 
predictions on optimal portfolio allocation. The welfare metrics for pension funds' performance 
evaluation are introduced and discussed in Section 4. A final section summarizes the main 
conclusions. 
 
 
2. The effects of the investment horizon and labor income on 
portfolio choice 
 
Basic financial theory provides simple asset allocation rules for an investor maximizing utility 
defined over expected (financial) wealth at the end of a single-period horizon ( EtWt1  ) and no 
labor income, under specific assumptions on the form of the utility function and on the 
distribution of asset returns. In particular, when a constant degree of relative risk aversion is 
assumed (a simplifying assumption broadly consistent with some long-run features of the 
economy, such as the stationary behaviour of interest rates and risk premia in the face of long-
run growth in consumption and wealth), i.e. investors have power utility, and returns are 
lognormally distributed, the investor trades off mean against variance in portfolio returns, 
obtaining (in the case of one risky asset) the following optimal portfolio share: 
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where  r   and  r   are the continuously compounded returns 
on the risky and riskless asset respectively,     is the conditional variance of the risky return, 
and  

t1  log1 1 Rt t
f

1  log1  Rt1
f 

t
2

  is the constant relative risk aversion parameter4. This result is equivalent to the 
prediction of the simple mean-variance analysis, and the equivalence extends also to the case of 
many risky assets, with    affecting only the scale of the risky asset portfolio but not its 
composition among differ

                                                

ent asset classes. 
The optimal investment strategy may substantially differ from the above one-period, myopic, 

 
4When     the investor has log utility and chooses the portfolio with the highest log return; when     the 

investor prefers a safer portfolio by penalizing the return variance; when     the investor prefers a riskier 
portfolio. 
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rule if the investment horizon extends over multiple periods and when a human wealth 
component is added to financial wealth. We briefly consider those two cases in turn. 
 
2.1 Multi-period investment horizons 
 
When the investor has a long-term investment horizon, maximizing the expected utility of wealth  
K   periods in the future ( EtWtK  ), returns are lognormally distributed, and the investor is 
allowed to rebalance her portfolio each period, the optimal portfolio choice coincides with the 
(myopic) choice of a one-period investor under the following two sets of conditions:5 
• the investor has power utility and returns are i.i.d. 
• the investor has log utility (   1 ) and returns need not be i.i.d. (in fact, this investor will 

maximize expected log return, and the  K  -period log return is the sum of one-period returns: 
therefore, with rebalancing, the sum is maximized by making each period the optimal one-
period choice), 

- as well understood in the financial literature since the contributions of Samuelson (1969) and 
Merton (1969, 1971). 
Optimality of the myopic strategy can be found also when the investor is concerned with the 
level of consumption in each period (and not only with a terminal value for financial wealth). In 
this framework, the joint consumption-saving and asset allocation problem is often formulated in 
an infinite-horizon setting, yielding portfolio rules that depend on preference parameters and 
state variables, but not on time. The length of the effective investment horizon is governed by the 
choice of a rate of time preference to discount future utility. With power utility, under the 
assumption that the investor's consumption to wealth ratio is constant, the consumption capital 
asset pricing model ( CCAPM  , Hansen and Singleton 1983) implies that (with  c   denoting log 
consumption and  w   log wealth): 
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where the second equality is derived from the assumption of a constant consumption-wealth 
ratio. The optimal share of the risky asset is therefore the same as in the myopic case: 
 

 t 
Etrt1 − rt1

f   t
2

2

 t
2

 
 

(again, this equivalence result is valid also in the case of multiple risky assets). The constant 
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variances for individual assets are scaled up by the same factor  K  , and the one-period portfolio solution is still 

optimal for a  K  -period investor. This result holds exactly in continuous time and only approximately in discrete 
time. However, Barberis (2000) shows that if uncertainty on the mean and variance of asset returns is introduced, 

the portfolio share of the risky asset     decreases as the investment horizon lengthens. t
 
 



consumption-wealth ratio is justified under i.i.d. returns (implying that there are no changes in 
investment opportunities over time) or in the special case of log utility (   , implying that the 
income and substitution effects of varying investment opportunities cancel out exactly, leaving 
the ratio unaffected). 

 1

All the above results have been obtained under the assumption of CRRA, power utility. This 
formulation is highly restrictive under (at least) one important respect: it links risk aversion (  ) 
and the elasticity of intertemporal substitution ( 1/ ) too tightly, the latter concept capturing the 
agent's willingness to substitute consumption over time. Epstein and Zin (1989, 1991) adopt a 
more flexible framework in which scale-independence is preserved but risk aversion and 
intertemporal substitution are governed by two independent parameters (   and     
respectively). The main result is that risk aversion remains the main determinant of portfolio 
choice, whereas the elasticity of intertemporal substitution has a major effect on consumption 
decisions but only marginally affects portfolio decisions. With Epstein-Zin preferences, in the 
case of one risky asset, the premium over the safe asset is given by: 
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where    and    1 − /1 − 1/ rp   is the continuously compounded portfolio return. The risk 
premium is a weighted average of the asset return's covariance with consumption divided by     
(a CCAPM term) and the covariance with the portfolio return (a traditional CAPM term). Under 
power utility     and only the CCAPM term is present. The two conditions for optimal 
myopic portfolio choice apply in this case as well: 

 1

• if asset returns are i.i.d. the consumption-wealth ratio is constant and covariance with 
consumption growth equals covariance with portfolio return. In this case  

Etrt1 − rt1
f   t

2

2  cov trt1 , rt1
p 

 
• which implies the myopic portfolio rule; 
• alternatively, if    1 , then    0  and the risk premium is simply  co  , again 

implying optimality of the myopic portfolio rule. 
v trt1 , rt1

p 

Therefore, what is required for optimality of the myopic portfolio choice is a unit relative risk 
aversion (not a unit elasticity of intertemporal substitution). 
 
 
2.1.1 Portfolio choice with variations in investment opportunities 
 
The portfolio choice for a long-term investor can importantly differ from the myopic rule when 
investment opportunities are time-varying. Investment opportunities can vary over time due to 
variable real interest rates and variable risk premia. Campbell and Viceira (2001, 1999), among 
others, study the two cases separately, deriving the optimal portfolio policies for an infinite-
horizon investor with Epstein-Zin preferences and no labor income. 
Preliminarily, following Campbell (1993, 1996) a linear approximation of the budget constraint 
is derived and the expected risk premium on the risky asset is expressed in terms only of 



parameters and covariances between the risky return and current and expected future portfolio 
returns 
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where     is a constant of linearization and the last term captures the covariance between the 
current risky return and the revision in expected future portfolio returns due to the accrual of new 
information between  t   and  t  . Then, (1) can be applied to portfolio choice under specific 
assumptions on the behaviour of returns over time. 

 1

If only variations in the riskless interest rate are considered, as in Campbell and Viceira (2001), 

with constant variances and risk premia, then    
and, with a single risky asset we have  cov  . From (1) the optimal portfolio 
weight on the risky asset is then given by 
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Now, in addition to the asset's risk premium relative to its variance, which determines the 
myopic demand for the asset, a second demand component is relevant (for   ). This 
component (related to the asset return's covariance with reductions in expected future riskless 
interest rates, relative to its variance) captures the intertemporal hedging demand of Merton 
(1973), whose weight tends to one as  

 ≠ 1

  increases. The risky asset is held not only for its 
expected premium, but also because it allows to hedge future expected changes in the portfolio 
return (due to changes in the riskless rate) compensating the investor for the loss in interest 
income. This role remains also when risk aversion is increased, and the myopic component of 
demand tends to zero. On practical grounds, inflation-indexed long-term bonds or, less 
effectively, nominal long-term bonds can provide this kind of intertemporal hedging, since their 
returns covary with declines in the level of interest rates, and find their place in the portfolio of 
long-term investors alongside stocks. 
A second empirically relevant case of time-varying investment opportunities involves variable 
premia on the risky assets. Campbell and Viceira (1999) explore the implications of variable risk 
premia for optimal asset allocation in the case of only one risky asset and constant riskless rate. 
Here, time-varying investment opportunities are captured by a variable, mean-reverting excess 
return on the only risky asset. Formally: 
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where the state variable  x t   summarizes investment opportunities at time  t  . Innovations  u   
and    may be correlated, with covariance    . This covariance generates intertemporal 
hedging demand for the risky asset by long-term investors, since it measures the ability of the 
risky asset to effectively hedge changes in investment opportunities. In fact 

t1

t1 u

cov trt1 ,x t1  cov trt1 , rt2  u  
so that, in the empirically relevant case    , there is mean-reversion in the risky asset 
return: an unexpectedly high return today reduces expected returns in the future. Under this set 
of assumptions, the optimal portfolio share of the risky asset contains the two components, as in 
(2): 
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where    is positive and increasing in     and decreasing in    , and  b   is positive 
and increasing in    . The intertemporal hedging demand is captured by the term involving    
: in the empirically relevant case    (and    ) a sufficiently risk-averse investor ( 

 ) will hold a larger portfolio share in the risky asset than a myopic one, exploiting the 
possibility of hedging expected future changes in investment opportunities. Overall, a 
conservative long-run investor should respond to mean-reverting risky returns by increasing her 
average portfolio share invested in the risky asset. 

b1, 2

u

u  0  0
  1

 
 
2.2 Asset allocation with human wealth 
 
The results for optimal asset allocation mentioned so far apply in the case of fully tradable 
financial wealth. Adding a typically non-tradable human wealth component (i.e. the expected 
present discounted value of future labor earnings) is an important step towards the construction 
of models useful for practical asset allocation strategies of long-term investors such as pension 
funds. In this case, the analysis above must be suitably adapted, as first done by Bodie, Merton 
and Samuelson (1992). Here, we briefly consider several cases of increasing complexity. 
 
 
2.2.1 Baseline case: riskless labour income 
 
The simplest case to analyse is the asset allocation choice of an investor endowed with power 
utility and a non-stochastic labor income, faced with one riskless and one risky asset. In this case 
(non-tradable) human wealth  Ht   is the present discounted value of all future earnings 
discounted at the riskless rate and is equivalent to the holding of the riskless asset. Therefore, the 
investor will choose the portfolio share of the risky asset     so as to make the nominal holdings 
of the asset equal to the optimal holdings in the unconstrained case of fully tradable (financial 
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Thus, in the presence of riskless non-tradable human wealth, the investor's financial portfolio 
will be tilted towards the risky asset. The share     is increasing in the ratio  t Ht/Wt   and 
therefore changes over the investor's life cycle for (at least) two reasons: (i) along the life-cycle,  
H  changes relative to  W  , being higher at the beginning of the working life and lower at 
retirement; (ii) it changes with financial asset returns: when the risky asset performs well,  W  
increases relative to  H  and the optimal share of the risky asset decreases, with the investor 
rebalancing his portfolio away from the risky asset. 
More complicated cases are now analysed, under the simplifying assumptions of power utility, 
i.i.d. financial asset returns (ruling out time-varying investment opportunities), and no life-cycle 
perspective (i.e. either a single period or an infinite investment horizon with fixed probability of 
retirement is considered). We will adopt an explicit life-cycle perspective in the operative model 
of the next section. 
 
 
2.2.2 Adding labour income uncertainty 
 
The investor has a one-period horizon (so that no saving decision is involved) and earns a 
lognormally distributed labour income  l  , potentially correlated with the return on the risky 
asset:  cov  . In this setting, the optimal portfolio rule is given by: 
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−1  1where    1  H/W   (with  H/W  being the average human to financial wealth ratio) 
captures the elasticity of consumption to financial wealth and plays a crucial role in linking 
consumption to the optimal portfolio choice. The first component of the risky asset share in (5) is 
the optimal share when labour income risk is idiosyncratic (i.e.    ), and corresponds to 
the simple case of riskless income in (lab1), confirming the result (since  1/  ) that the 
optimal share of the risky asset is higher than in the absence of labour income, when all wealth is 
tradable. The second is an income hedging component. The risky asset is desirable if it allows to 
hedge consumption against low realizations of labor income: if    the risky asset is a 
good hedge and this increases its portfolio share. 
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2.2.3 Adding flexible labour supply 
 
If labour supply can be flexibly adjusted by the investor, she can compensate for losses on the 
financial portfolio by increasing work effort: this additional margin of adjustment makes the 
investor more willing to take on financial risk, as shown by Bodie, Merton and Samuelson 
(1992). In this extended setting, the optimal share of the risky asset is 
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where 
 

w 


1  1 −   
 
with    capturing the elasticity of labour supply to the real wage and     measuring the 
covariance between risky returns and the real wage (as    , labour supply becomes infinitely 
inelastic and  

 zu

→ 0
w →    as in the case of fixed labour supply in (lab2): in all cases  0 ≤ w ≤   ). 

The ability to adjust labour supply increases the risky asset share ( w ≤ 

zu

 ) if wages are 
uncorrelated with risky returns, and as the elasticity of labour supply increases the portfolio share 
increases. The sensitivity of the portfolio allocation to a non-zero     is measured by  

  and becomes increasingly negative as     increases: investors with flexible 
labour supply are particularly willing to hedge wage risk, since they respond to fluctuations in 
real wage by changing their work effort and thus the effects of wage shocks on their labor 
income are magnified. 
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2.2.4 Extension to a long-horizon setting 
 
Following Viceira (2001), the investor has an infinite horizon (which makes decision rules time-
invariant), with a positive probability of retirement     (i.e. a zero-labour income state) each 
period. The expected time until retirement,  1/  , is the effective investor's retirement horizon. 
After retirement the investor may die with probability     in each period, so that  1/   is his 
expected lifetime after retirement. Labor income is subject only to permanent shocks (a -log- 
random walk process with drift), so that income growth is: 

r

r

d d

 

Δlt1  g   t1  
 
with 

cov trt1 ,Δlt1  cov tut1 , t1  u  



 
In each period, the investor can be in either of two states (retired or employed), and the solution 
to the intertemporal optimization problem depends on the state. For a retired investor the optimal 
portfolio share of the risky asset,    , is simply given by the myopic solution:  r

 

 t
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Etrt1 − rf   u
2

2
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For an employed investor the (approximate) portfolio share of the risky asset,   , is:  e

 

 t
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2
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u
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  (7) 
 
where  0   is the elasticity of consumption to financial wealth for an employed investor, 
and  b   is the average consumption elasticity over the two states (the 
elasticity in the retirement case being one). Given  b  , negative shocks to financial wealth 
do not cause a proportional reduction in consumption, since the employed investor can use 
labour income to shield consumption from unexpected declines in financial wealth. 

 b1
e  1

̄ 1  eb1
e  1 − e

1
e  1

The general form of the rule is the same as in the single-period case, with two components, the 
latter depending on the correlation between labor income and return shocks, thus having the 
nature of a hedging demand. In fact, when labor income is idiosyncratic (  ) only the first 
component is present, with the average wealth elasticity of consumption to wealth  b  . 
Therefore, the optimal allocation to the risky asset is larger for employed investors than for 
retired investors. The second term represents the income hedging component of optimal 
allocation, with a sign opposite to the sign of     (negative correlation implying that the risky 
asset is a good hedge against bad labor income realizations). 

u  0
̄ 1  1

u

 
 
3. A basic life-cycle model 
 
A fundamental insight from the models surveyed in the preceding section, introducing 
uninsurable labor income risk in an otherwise standard framework and adopting either a single-
period or an infinite investment horizon, is that the optimal asset allocation depends crucially on 
the ratio of discounted expected future labor income (i.e. human wealth) to accumulated 
financial wealth. This ratio typically changes over the investor's life cycle in a way that simple 
assumptions on the stochastic process generating labor income are not capable to capture. 
Instead, a model with a more realistic age profile of labor income (making human wealth 
increase relative to financial wealth in the early part of the working life to reach a peak, and then 
decline in the years towards retirement) is needed to address the issue of how investors should 
optimally adjust their financial portfolio over their life cycle. 



Adopting an explicit life-cycle perspective, this section presents a model, built mainly on 
Campbell, Cocco, Gomes and Maenhout (2001), Cocco, Gomes and Maenhout (2005) and 
Gomes and Michaelides (2004, 2005), that can be used to systematically address portfolio choice 
over the life cycle. 
We do not allow also for excess return predictability and other forms of changing investment 
opportunities over time, as in Michaelides (2002) and Koijen, Nijman and Werker (2008). While 
both papers document market timing effects on asset allocations when parameters of the return 
distributions are known with certainty, there is still considerable debate as to the ex-post value of 
market timing (De Miguel et al., 2008) and return predictability in general (Goyal and Welch, 
2008; Fugazza, Guidolin and Nicodano, 2008) when such parameters are estimated by an asset 
manager. 
 
 
3.1 The model 
 
We model an investor that maximizes the expected discounted utility of consumption over her 
entire life. Though the maximum length of the life span is  T   periods, its effective lenght is 
governed by age-dependent life expectancy. At each date   , the survival probability of being 
alive at date    is  

t
t  1 pt  , the conditional survival probability at  t  . The investor starts working 

at age  t0   and retires with certainty at age  t0  K  . Investor's  i  preferences at date  t   are 
described by a time-separable power utility function: 
 

Cit0

1−

1 −   Et0 ∑
j1

T

j 
k0

j−1

pt0k
Cit0j

1−

1 − 
 

 
where  C   is the level of consumption at time  t  ,     is an utility discount factor, and  it  1   is 
the constant relative risk aversion parameter.6 We rule out utility derived from leaving a bequest, 
introduced by Cocco, Gomes and Maenhout (2005). Moreover, we do not model labor supply 
decisions, whereby ignoring the insurance property of flexible work effort (allowing investors to 
compensate for bad financial returns with higher labor income), as in Gomes, Kotlikoff and 
Viceira (2008). 
 
 
                                                 
6As already mentioned, assuming power utility with relative risk aversion coefficient     constrains the 

intertemporal elasticity of substitution to be equal to  1/  . Moreover,     also governs the degree of relative 

prudence of the consumer  RP  , related to the curvature of her marginal utility and measured by 

RP  −CU ′′′C
U ′′C

 1  
 

Relative prudence is a key determinant of the consumer's optimal reaction to changes in the degree of income 
uncertainty. 
 
 



3.1.1 Labor and retirement income 
 
Available resources to finance consumption over life cycle derive from accumulated financial 
wealth and from the stream of labor income. At each date    during the working life, the 

exogenous labor income  Y  is assumed to be governed by a deterministic age-dependent 
growth process  

t

it

ft,Zit  , and is hit by both a permanent    and a transitory    shock, the 

latter being uncorrelated across investors. Formally, the logarithm of  Y  is represented by 

uit nit

it

 

logYit  ft,Zit   uit  nit t0 ≤ t ≤ t0  K          (8) 
 
More specifically,  ft,Zit    denotes the deterministic trend component of permanent income, 
which depends on age  t   and on a vector of individual characteristics  Zit  , such as gender, 
marital status, household composition and education. Uncertainty of labor income is captured by 
the two stochastic processes,  u   and  n  , driving the permanent and the transitory component 
respectively. Consistently with the available empirical evidence, the permanent disturbance is 
assumed to follow a random walk process: 

it it

 

uit  uit−1  it                                                                    (9) 
 

where     is distributed as  it N0,
2   and is uncorrelated with the idiosyncratic temporary shock  

 , distributed as  nit N0,n
2  . Finally, the permanent disturbance     is made up of an aggregate 

component, common to all investors,    , and an idiosyncratic component  
  uncorrelated across investors: 

it

t  N0,
2

 it  
2 N0,

it   t   it                                                                     (10) 
As specified below, we allow for correlation between the aggregate permanent shock to labor 
income     and innovations to the risky asset returns. t

During retirement, income is certain and equal to a fixed proportion     of the permanent 
component of the last working year income: 
 

logYit  log  ft0K,Zit0K   uit0K t0  K  t ≤ T                             (11) 
 
where the level of the replacement rate   is meant to capture at least some of the features of 
Social Security systems. Other, less restrictive, modelling strategies are possible. For example, 
Campbell J. Y., J. Cocco, F. Gomes and P. Maenhout (2001) model a system of mandatory 
saving for retirement as a given fraction of the (stochastic) labor income that the investor must 
save for retirement and invest in the riskless asset, with no possibility of consuming it or 
borrowing against it. At retirement the value of the wealth so accumulated is transformed into a 
riskless annuity until death. 



 



 
3.1.2 Investment opportunities 
 
We allow savings to be invested in a short-term riskless asset, yielding each period a constant 
gross real return  Rf  , and in two risky assets, called stocks and bonds. The risky assets yield 
stochastic gross real returns  Rt

s   and  Rt
b   respectively. We maintain that the investment 

opportunities in the risky assets do not vary over time and model excess returns of stocks and 
bonds over the riskless asset as 
 

Rt
s − Rf  s  t

s

Rt
b − Rf  b  t

b
                                                   (12) and  (13) 

 
where     and     are the expected stock and bond premia, and    and     are normally 
distributed innovations, with mean zero and variances  

s b t
s

t
b

s
2   and     respectively. We allow the 

two disturbances to be correlated, with correlation  
b
2

sb .   Moreover, we let the innovation on the 
stock return be correlated with the aggregate permanent disturbance to the labor income, and 
denote this correlation by  sY  . 
At the beginning of each period, financial resources available for consumption and saving are 
given by the sum of accumulated financial wealth  W   plus current labor income  Y  , that we 
call cash on hand  

it it

Xit  Wit     Y  . Given the chosen level of current consumption,  C  , next 
period cash on hand is given by: 

it it

 

Xit1  Xit − CitRit
P  Yit1                                        (14) 

 
where  Rit

P   is the portfolio return 

Rit
P   it

s Rt
s   it

bRt
b  1 −  it

s −  it
b Rf

                              (15) 
 

with    ,     and  it
s

it
b 1 −  it

s −  it
b

  denoting the shares of the investor's portfolio invested in 
stocks, bonds and in the riskless asset respectively. We do not allow short sales and assume that 
the investor is liquidity constrained, so that the nominal amount invested in each of then three 
financial assets are  Fit ≥ 0 ,  S   and  it ≥ 0 Bit ≥ 0  respectively for the riskless asset, stocks and 
bonds, and the portfolio shares are non negative in each period. 
The focus of this paper is on optimal asset allocation and savings until retirement, which 
however also depend on investment opportunities during retirement. The simulations presented 
below concern the case when the pension fund continues to optimally invest the retiree's savings 
into the same three assets. However, the results concerning asset allocation appear to be 
qualitatively similar in unreported simulations based on the assumption that retirees invest in the 
riskless asset only. 
 
 



3.1.3 Solving the life cycle problem 
 
In this standard intertemporal optimization framework, the investor maximizes the expected 
discounted utility over life time, by choosing the consumption an the portfolio rules given 
uncertain labor income and asset returns. Formally, the optimization problem is written as: 
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with the labor income and retirement processes specified above and short sales and borrowing 
constraints. 
Given the intertemporal nature of the problem, it can be restated in a recursive form, rewriting 
the value of the optimization problem at the beginning ot period  t    as a function of the 
maximized current utility and of the value of the problem at  t   (Bellman equation):  1
 

VitXit,uit  
Citt0

T−1,  it
s , it

b
t0

T−1
max Cit

1−

1 −   ptEtVit1Xit1,uit1 

                                        (17) 
 
At each time   the value function  V   describes the maximized value of the problem as a 
function of the two state variables, the level of cash on hand at the beginning of time  t  ,  

t it

Xit  , 
and  u   the level of the stochastic permanent component of income at beginning of  t   it .
In order to reduce the dimensionality of the original problem, to a problem with one state 
variable we exploit the homogeneity of degree     of the utility function, and normalize the 
entire problem by the permanent component of income  u   Thus, we can rewrite (17) as 

1 − 

it.
 

VitXit  
Citt0

T−1,  it
s , it

b
t0

T−1
max Cit

1−

1 −   ptEtVit1Xit1 

                           (18) 
 

 
The problem has no closed form solution, hence the optimal values for consumption and 
portfolio allocation at each point in time have to be derived numerically. To this aim, we apply a 
backward induction procedure and obtain optimal consumption and portfolio rules in terms of 
the state variable starting form the last (possible) period of life  T  . 
In particular, the solution for period  T   is trivial, considering that, as we do not allow for 

positive bequest, it is optimal to consume all the available resources (i.e.,  CiT      ) 
implying that 

XiT

 



ViTXT  
XiT

1−

1 −                                                         (19) 
 

The value function at  T   coincides with the direct utility function over the cash on hand 
available at the beginning of the period. Then, going backwards, for every period,  

 , and for each possible value of the state variable (the initial level of cash 
on hand at  t  ) the optimal rules for consumption and the assets' portfolio shares are obtained 
from the Bellman equation (17) using the grid search method.

t  T − 1,T − 2, . . . , t0

7 From the Bellman equation, for 
each level of the state variable  Xit  , the value function at the beginning of time   ,    , is 
obtained by picking the level of consumption and of portfolio shares that maximizes the sum of 
the utility from current consumption  U   plus the discounted expected value from 
continuation,    . The latter value is computed using  V   obtained from 
the previous iteration. In particular, given  V  , the expectation term is evaluated in two 
steps. We use numerical integration performed by means of the standard Gaussian Hermite 
quadrature method to approximate the distribution of shocks to labor income and asset returns. 
Then, cubic spline interpolation is employed to evaluate the value function at points that do not 
lie on the state space grid. 
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3.2 Simulation results 
 
The numerical solution method briefly outlined above yields, for each set of parameters chosen, 
the optimal policy functions for the level of consumption and the shares of the financial portfolio 
invested in the riskless asset, stocks and bonds as functions of the level of cash on hand. Using 
those optimal rules, it is then possible to simulate the life-cycle consumption and asset allocation 
choices of a large number of agents. In this section, we describe results obtained from this 
procedure, focussing first on a benchmark case and then presenting extensions along various 
dimensions. 
 
 
3.2.1 Calibration 
 
Parameter calibration concerns the investor's preferences, the features of the labor income 
process during working life and retirement, and the moments of the risky asset returns. To obtain 
results for a benchmark case, we chose plausible sets of parameters mainly referred to the US 
and based on Cocco, Gomes and Maenhout (2005) and Gomes and Michaelides (2004, 2005). 
The investor begins her working life at the age of 20 and works for (a maximum of) 45 periods ( 
K  ) before retiring at the age of 65. After retirement, she can live for a maximum of 35 periods 

                                                 
7According to this method, the problem is solved over a grid of values covering the space of the state variables and 
the controls, to ensure that the solution found is a global optimum. 
 
 



until the age of 100. In each period, we take the conditional probability of being alive in the next 
period  pt   from the life expectancy tables of the US National Center for Health Statistics. As 
regards to preferences, we set the utility discount fact 0.96 , and the coefficient of 
relative risk aversion    5  (capturing an intermediate degree of risk ave

or 
rsion). 

  

The labor income process is calibrated using the estimated parameters for US households with 
high-school education (but not a college degree) in Cocco, Gomes and Maenhout (2005). The 
age-dependent trend is captured by a third-order polynomial in age, delivering the typical hump-
shaped profile until retirement depicted as the dash-dotted line in Figure 1. After retirement 
income is a constant proportion     of the final (permanent) labor income, with    . The 
continuous line in the figure portrays the whole deterministic trend  

 0.68
ft,Zit

02




2  0.

, used in the 
simulations below, that allows also for other personal characteristics. In the benchmark case, the 
variances of the permanent and transitory shocks (    and  n   respectively) are     
and   ; in some of the extensions below we let those parameters vary (to explore the 
effects of increasing labor income uncertainty) but keep the permanent-transitory ratio roughly 
constant at the  0.   level. The riskless (constant) interest rate is set at  0.  , with expected 
stock and bond premia     and     fixed at    and  0.   respectively. The standard 
deviations of the returns innovations are set at  

it

0.04

it

02

0106

n
2 0.0738

14
s b

s  0.157  and    ; in the benchmark 
case, we fix their correlation at a positive but relatively small value:  

b  0.08

sb  0.2  , a value 
calibrated on the historical annual correlation in the US and close to the choice of Gomes and 
Michaelides (2004). Finally, we set  sY  0  in the benchmark case, imposing a zero correlation 
between stock return innovations and aggregate permanent labor income disturbances. 
 
 
3.2.2 Benchmark results 
 
In all simulations we took cross-sectional averages of 10000 agents over their life cycle. Figure 2 
displays the simulation results for the pattern of consumption, labor income and accumulated 
financial wealth for the working life and the retirement period in the benchmark case. The 
typical life-cycle profile for consumption is generated. Binding liquidity constraints make 
consumption closely track labor income until the 35-40 age range, when the consumption path 
becomes less steep and financial wealth is accumulated at a faster rate. After retirement at 65, 
wealth is gradually decumulated and consumption decreases to converge to retirement income in 
the last possible period of life. 
Before presenting the age profile of optimal portfolio shares, Figures 3 and 4 display the optimal 
policy rules for the risky asset shares     and     as functions of the level of (normalized) cash 
on hand (the problem's state variable); in each figure the optimal fraction of the portfolio 
invested in stocks and bonds is plotted against cash on hand for investors of four different ages 
(20, 30, 55 and 75). The basic intuition that should guide the interpretation of those optimal 
policies, on which the following simulation results are based, is that labor income is viewed by 
the investor as an implicit holding of an asset. Although in our setting labor income is uncertain 
(its process being hit by both permanent and transitory shocks), as long as the correlation of asset 
returns' innovations and labor income disturbances is not too large, labor income is more similar 

it
s

it
b



to the risk-free than to the risky assets;8 therefore, when the present discounted value of the 
expected future labor income stream (i.e. human wealth) constitutes a sizeable portion of overall 
wealth, the investor is induced to tilt her portfolio towards the risky assets. The proportion of 
human out of total wealth is widely different across investors of different age and is one of the 
main determinants of their chosen portfolio composition. 
Looking at Figures 3 and 4, in the case of an investor of age 75, the certain retirement income 
acts as a holding of the riskless asset and the relatively poor investors (with a small amount of 
accumulated wealth and current income) will hold a financial portfolio entirely invested in 
stocks.9 Wealthier investors will hold a lower portfolio share in stocks (and increase their 
holdings of bonds), since for them the proportion of the overall wealth implicitly invested in the 
riskless asset (i.e. human wealth) is lower. At age 55, the investor has yet a decade of relatively 
high expected labor income before retirement, and she will tend to balance this implicit holding 
of a low-risk asset with a financial portfolio more heavily invested in risky stocks than older 
investors: her optimal policies in Figures 3 and 4 are shifted outwards with respect to the 75-
year-old investor for all levels of cash on hand.10 The same intuition applies to earlier ages, for 
which the optimal stock and bond policies shift gradually outwards as younger investors are 
considered. The only exception to this pattern occurs for the very young investors 
(approximately in the 20-25 age range), for whom the labor income profile is increasing very 
steeply, making it optimal to hold portfolios more invested in stocks (in the figures, the policy 
functions shift outward in the 20-25 age range). 
On the basis of the optimal investment policies, the mean portfolio shares of stocks and bonds 
across 10000 agents have been obtained by simulation and plotted in Figure 5(a) against age. 
The age profiles for stock and bonds are mainly determined by the fact that over the life cycle 
the proportion of overall wealth implicitly invested in the riskless asset through expected labor 
incomes varies, being large for young investors and declining as retirement approaches. In fact, 
younger agents invest their entire portfolio in stocks until approximately the age of 40. Middle-
age investors (between 40 and the retirement age of 65) gradually shift the composition of their 
portfolio away from stocks and into bonds, to reach shares of 60% and 40% respectively at the 
retirement date. Throughout, the holdings of the riskless asset are kept at a minimum (very often 
zero); only very young investors keep a small fraction of their portfolio in the riskless asset. 
Overall, the popular financial advice of holding a portfolio share of risky stocks equal to  100  
minus the investor's age (so that     age   ), implying a gradual shift toward 
bonds over life, is not completely at variance with optimally designed investment policies. 
However, in the benchmark case above the decumulation of stocks is not linear (as suggested by 
the simple age-dependent rule, according to which the stock share should be run down from 80% 
at the age of 20 to reach 35% at retirement). A more rigorous comparison of the optimal 
investment policy with the simple age rule will be provided below. 

age
s  100 − /100

 
 
                                                 
8We recall here that in our benchmark case, there is a zero correlation between stock return and labor income 

innovations:  sY  0  . 
9The portfolio shares of the risky assets are not defined for extremely low values of cash on hand since the investor 
(af any age) has no savings in this case. 
10The step-wise appearence of the policy rules is due to the choice of the grid in the numerical solution procedure. 
The use of a finer grid would deliver smoother policies, at the cost of additional computing time. 
 
 



3.2.3 Sensitivity of mean portfolio shares allocation to labor income risk 
 
To evaluate the robustness of the above results, and to explore the sensitivity of optimal asset 
allocation to changes in the main parameters of the model, the benchmark case can be modified 
along a number of dimensions, including varying degrees of risk aversion, different shapes of the 
labor income process, and different assumptions on the moments of the asset returns' 
distributions. In this subsection, we focus on two important dimensions (and their interactions), 
concerning the correlation between stock return innovations and the aggregate permanent shock 
to labor income ( sY  ), set to zero in the benchmark case, and the variances of the permanent 
and transitory disturbances driving (the stochastic part of) labor income (    and  

  in the benchmark case), to capture changes in labor income uncertainty. Figure 5 
displays the mean share age profiles for stocks and bonds over the accumulation period, ranging 
from the beginning of the working life at the age of 20 to the retirement age of 65. 


2  0.0106

n
2  0.0738

First, we let the stock return innovations be positively correlated with the innovations in 
permanent labor income. Empirical estimates of this correlation for the US include values not 
significantly different from zero as in Cocco, Gomes and Michaelides (2005) for households 
with any level of educational attainment, and the relatively high values reported by Campbell, 
Cocco, Gomes and Maenhout (2001) and Campbell and Viceira (2002), ranging from  0.   for 
households with no high-school education to    for college graduates. Since our calibration 
of the labor income process reflects the features of households with high-school education, we 
choose an intermediate value of  

33
0.52

sY  0.4  , close to the value of  0.   used by Campbell and 
Viceira (2002). Figure 5(b) displays the optimal portfolio shares of stocks and bonds when  

37

sY  0.4  . The general pattern of asset allocation obtained in the benchmark case (Figure 5(a)) 
is confirmed for middle-aged workers, whereas for younger workers (in the 20-40 age range) 
optimal portfolio shares differ sharply. In fact, the positive correlation between labor income 
shocks and stock returns makes labor income closer to an implicit holding of stocks rather than 
of a riskless asset. Younger investors, for whom human capital is a substantial fraction of overall 
wealth, are therefore heavily exposed to stock market risk and will find it optimal to offset such 
risk by holding a relatively lower fraction of their financial portfolio in stocks. This effect 
decreases as workers get older, determining a gradual increase in the portfolio share of stocks 
until around the age of 40. Finally, as the retirement age approaches, the size of human capital 
decreases and the investor shifts her portfolio composition again towards safer bonds; this yields 
a hump-shaped profile for the optimal share of stocks during working life. 
The effects of increasing labor income risk on optimal asset allocation over the working life are 
portrayed in Figures 5(c) and 5(d). In both sets of simulations we increase the variance of both 
the permanent and the transitory stochastic components of the labor income process, setting now  

  and    , keeping their ratio approximately equal to that used in the 
benchmark case. Panel (c) plots the results for  


2  0.0408 n
2  0.269

sY  0  as in the benchmark case, whereas panel 
(d) shows optimal portfolio shares when  sY  0.4  . When there is no correlation between labor 
income and stock returns the effect of increasing labor income risk is more evident: higher labor 
income risk reduces the optimal share of stocks in the portfolio at any age. As panel (c) shows, 
the (average) investor holds a diversified portfolio of risky assets even at a very young age, and 
starts decumulating stocks and increasing the bond share from the age of around 40. At 
retirement, the share of stocks is much lower than in the benchmark case, reaching around  0.  , 4



with a correspondingly higher fraction invested in bonds. 
A similar effect is detected also in the case of positive correlation between stock returns and 
labor income shocks ( sY  0.4  ). Comparing the portfolio shares in panel (d) (with high labor 
income risk) with those in panel (b) (with low income risk), the investor chooses a lower 
portfolio share of stocks at any age, and at retirement the share of stocks is significantly lower 
than in the case of reduced labor income risk. 
 
 
3.2.4 Optimal portfolio shares heterogeneity 
 
So far, we presented simulation results in terms of the average optimal portfolio shares across the 
investors' population. However, in our framework the presence of idiosyncratic labor income 
shocks may generate substantial heterogeneity in the pattern of financial wealth accumulation 
over time, and consequently a potentially wide dispersion of the optimal portfolio shares across 
individuals of the same age (but with widely different levels of accumulated wealth). The degree 
of heterogeneity in the optimal asset allocation may be an important element in evaluating the 
performance of pension funds managing individual accounts, whereby each member's asset 
allocation is adjusted over time on the basis of age and of the history of individual labor income. 
For this reason, in exploring the sensitivity of the benchmark results to variations in risk aversion 
(   ), the replacement ratio (   ),11 and the correlation between permanent labor income shocks 
and stock return innovations ( sY  ), we focus on the main features of the whole distribution of 
optimal portfolio shares across the investors' population: for each age, Figures 6-10 display the 
median and the 5th and 95th percentiles of the distribution of optimal stock and bond portfolio 
shares. 
In Figure 6, panels (a) and (b) present the distribution of portfolio shares for the benchmark 
values of risk aversion (   ), the replacement ratio (   ), and the two values of the 
labor income-stock return correlation ( 

 5  0.68
sY  0  and  0.  ) already used in Figure 5(a)-(b). Panel 

(c) highlights the role of the correlation between permanent labor income shocks and stock 
returns by assuming  

4

sY  1. Note that even this extreme value for  sY   does not imply a 
(counterfactually) high correlation between the stock return innovation and the growth rate of 
individual labor income, since the latter includes a sizeable idiosyncratic component which is 
uncorrelated with stock returns.12 

                                                 
11We do not analyse changes in retirement age, referring the reader to Bodie, Detemple, Otruba and Walter (2004) 
who investigate this in a general life-cycle setting with stochastic wage, labour supply flexibility, and habit 
formation. 
12In fact, using (8), (9) and (10) we can express the correlation between the growth rate of individual labor income ( 

 ) and the stock return innovation (   ) in terms of  Δ logYit t
s

sY   and the variances of the aggregate and 
idiosyncratic labor income shocks as: 

corrΔ logYit,t
s  1

1  22 n
2


2

 sY  sY

 

Using our benchmark value for     and attributing all permanent disturbances to the aggregate 

component, so that     (    being  0  ), we derive an upper bound for  cor  : 

n
2  0.0738

.0106 
2

2  
2  0 rΔ logYit,t

s



The results confirm that as  sY   increases young workers invest less in stocks, gradually raising 
the share of the riskier asset until the age of 40, to start decumulating towards retirement 
(Benzoni, Collin-Dufresne and Goldstein 2007, Benzoni 2008); in the case of  sY  1  the 
highest stock share in the financial portfolio never exceeds 80%. In all panels the distribution of 
portfolio shares is highly heterogeneous due to the presence of idiosyncratic labor income shocks 
(with the exception of young workers in the case of  sY  0 , who invest the entire portfolio in 
stocks to compensate for the relatively riskless nature of their human capital). However, some 
interesting patterns can be detected. The dispersion among workers decreases as they approach 
retirement, the more so the higher is the labor income-stock return correlation: as  sY   increases, 
the histories of labor incomes and the optimal associated portfolio choices tend to converge 
over time. 
The effects of a high risk aversion (   ) are explored in Figure 7. As expected, the share of 
stocks is significantly reduced at all ages and for all values of the labor income-stock return 
correlation. The hump-shaped pattern of the optimal stock share during working life now appears 
also in the case of  

 15

sY  0 . In order to assess the effects on optimal asset allocation of the 
generosity of the first-pillar pension system (whose features are summarized by the level of the 
replacement ratio    , set at  0.   in the benchmark case), Figures 8 and 9 display portfolio 
shares for two different values of the replacement ratio,  0.   and  0.   respectively (and for 
the benchmark risk aversion    ). When the replacement ratio is   , anticipating 
relatively low pension incomes, agents choose to save more during their working life, 
accumulating a higher level of financial wealth. This determines a lower optimal share of stocks 
at all ages and for all values of the labor income-stock return correlation. Finally, Figure 10 
displays asset allocation choices in the case of only partial price indexation of pension income. 
In our framework, all income flows are expressed in real terms; this amounts to an implicit 
assumption of full indexation of pension income. Partial indexation is simply modelled as a 2 per 
cent decrease in the replacement ratio     from the benchmark value of  0.   at age 65, to reach  

  at year 100. From Figures 6-7 and 8-9 a general pattern emerges as to the dispersion in the 
portfolio shares, which decreases as the retirement age approaches, and the more so the higher is 
the risk aversion parameter and the lower is the replacement ratio. Indeed, the higher the risk 
aversion and the lower the replacement ratio, the higher is saving and the the larger is the 
accumulation of financial wealth over the working life; this, according to the policy functions 
shown in Figure 3, implies a reduced sensitivity of portfolio composition to the level of human 
capital. This insensitivity is stronger the closer is the worker to the retirement age, when 
financial wealth reaches the maximum level. 

68
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corrΔ logYit,t
s ≤ 0.26  sY  

Therefore, the values for  sY   used in our simulations ( 0.   and  1  ) correspond to (relatively low) values for  

  of (at most)  0.   and  0.  , respectively. 
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3.3 Welfare costs of suboptimal asset allocations 
 
Tailoring asset allocations to the specificities of workers' income stories may involve 
considerable management fees that are not included in our model. To practically assess the 
welfare gains from optimal asset allocation relative to simpler alternative investment strategies, 
we present in Table 1 the welfare gains of the optimal strategy computed as the yearly 
percentage increase in consumption granted by the optimal asset allocation.  
The first alternative strategy is an age rule, whereby the risky portfolio share is set at (100-age)% 
and equally allocated between stocks and bonds. This mirrors the empirical relationship between 
the average proportion invested in stocks and the fund's horizon for Target Date Funds, which is 
approximately linear with a slope of  − .1 13 The second alternative strategy fixes portfolio shares 
at 1/3 for each financial asset in our model: this mirrors the  1/N   rule of DeMiguel, Garlappi and 
Uppal (2008), that systematically outperforms several optimal asset allocation strategies in ex 
post portfolio experiments. 
The table shows the welfare cost of each sub-optimal strategy for the two values of risk aversion 
(   and  15 ) and the three values of    5 sY   considered in the simulations above. For each 
parameter combination, the table reports the mean welfare cost for the overall population and the 
welfare costs corresponding to the 5th, 50th and 95th percentiles of the distribution of 
accumulated financial wealth at age 65. 
Several results stand out. First, the magnitude of the mean welfare costs is broadly in the range 
of 1-3%, consistently with Cocco, Gomes and Maenhout (2005). Second, welfare costs fall as 
risk aversion increases, because high risk aversion implies reduced optimal exposure to the stock 
market, and risky asset in general. Looking at the cost distribution conditional on wealth, welfare 
costs increase as financial wealth falls, because a high human to financial wealth ratio implies a 
relatively high optimal exposure to the stock market. Third, higher welfare costs are associated 
to lower values of the labor income-stock return correlation, due to the more important role of 
the stock market in hedging background risk. 
Last but not least, the  1/N   strategy performs consistently better than the "age rule", showing 
lower mean welfare costs for all parameter combinations. Tabulated results suggest that an 
unconditional  1/N   asset allocation is likely to be cost efficient for high wealth worker in 
medium to high replacement ratio countries. Note, indeed, that the  1/N   rule implies a reduction 
of 49 basis points per annum in terms of equivalent consumption for a highly risk averse worker 
with median wealth and intermediate labor income correlation with stock returns. According to 
Blake (2008), the annual fee for active portfolio management charged by pension funds ranges 
between 20 to 75 basis point per year depending on assets under management. Thus, the 
reduction in welfare (as measured by equivalent consumption flow) due to a sub-optimal asset 
allocation is lower than the maximum management fee. Moreover, such reduction refers to the 
benchmark of an optimal asset allocation chosen by an investor who knows precisely the 
distribution of both labor income and asset returns. On the contrary, asset managers typically 
make mistakes when estimating the parameters of such distributions, a fact that explains why an 
equally weighted,  1/N   allocation usually outperforms optimal strategies in ex post experiments. 

                                                 
13 Bodie and Treussard (2008) adopt another variant of this formula: starting the process of saving for retirement 40 
years before the target retirement date, they set the initial proportion invested in equity to 80% letting it fall to 40% 

at the target date. Thus the formula for the equity percentage  T   years from the target date is  40  T  . 



Individual accounts are instead likely to be cost efficient for low-wealth workers, especially in 
low replacement ratio countries. 
 
4. Welfare Ratios for Performance Evaluation 
 
Standard methods for evaluating defined contribution pension funds are similar to those used for 
measuring mutual funds performance. Existing studies often examine the performance of 
delegated fund managers, which justifies the practice of using the same method. Performance 
evaluation is based either on the return of the managed portfolio relative to that of an appropriate 
benchmark or directly on portfolio holdings (see Ferson and Khang, 2002). The investor horizon 
is usually assumed to be short, and when it is relatively long, as in Blake, Lehmann and 
Timmermann (1999) the question being asked concerns whether performance is due to strategic 
asset allocation, as opposed to short-term market timing and security selection. Rarely do studies 
assess performance at the pension plan level. Recently, Bauer and Frehen (2008) manage to 
evaluate US pension funds plans against their internal benchmark portfolios.14 
In principle return-based performance evaluation is appropriate also if the worker's preferences 
are defined over consumption and there are non-traded assets, as in our life-cycle model. The 
benchmark portfolio must however be the optimal portfolio for hedging fluctuations in the 
intertemporal marginal rates of substitution of any marginal investor. On the contrary, the chosen 
benchmarks typically reflect the state of empirical asset pricing and constraints on available data 
(Lehmann and Timmermann, 2008). Thus, standard performance evaluation practice relies on 
the idea that a higher return-to-risk differential maps into better performance, overlooking the 
pension fund ability in hedging labor income risk and pension risk of plan participants. 
Computing the optimal life-cycle asset allocation allows to evaluate pension funds' performance 
with reference to a benchmark that explicitly accounts for the pension plan's role in smoothing 
consumption risk. For instance, we can take the ratio of the worker's ex-ante maximum welfare 
under optimal asset allocation,  V  , by her welfare level under the actual pension fund 
asset allocation,  V  : 

0Rit
P∗ 

0Rit
PF 

WR1 ≡
V0Rit

P∗ 

V0Rit
PF   

where  Rit
P∗   and  Rit

PF   are the optimal and actual portfolio return - net of management costs - for 
member  i  at time t  . 15 More precisely,  Rit

PF   are simulated returns which are extracted from 
the estimated empirical distribution of pension fund returns. Similarly,     results by 
simulation of optimal consumption and savings decisions for pension members, without 
optimizing for the asset allocation. The higher the value of the welfare ratio  WR  , the worse the 
pension fund performance. Importantly, a lower ratio may be due not only to a higher return per 
unit of financial risk earned by the pension fund, but also to a better matching between the 

V0Rit
PF

1

                                                 
14Elton, Gruber and Blake (2006) investigate whether 401(k) plans offer their participants appropriate investment 
opportunities such that they can span the frontier generate by an adequate set of alternative investment choices. 
15Estimated management fees ought to be subtracted from portfolio returns when computing workers wealth 
accumulation. 
 
 



pension fund portfolio and its members' labor income and pension risks. 
Table 2 displays welfare ratios  WR   computed for various combinations of risk aversion, the 
replacement ratio, and the correlation between shocks to labor income and stock returns. In the 
table, it is assumed that the fund follows a suboptimal strategy (the age rule) that is insensitive to 
members' incomes and replacement ratios, yielding a Sharpe ratio equal to  0. .  The average 
Sharpe ratio of the optimal rule is consistently lower, from a minimum of  0.   for    
and  

1

34
24   0.8

sY  0  to a maximum of  0.   for     and  31  0.4 sY  1. Thus, performance evaluated 
according to a standard return-to-risk metric is worse for the optimal than for the age rule. The 
picture changes when we look at the proposed welfare metric, that always exceeds  1   -indicating 
a higher welfare associated with the optimal asset allocation. We can also note that the value of 
pension funds in smoothing consumption risk is higher the lower are both the member's income 
and the country's replacement ratio. In fact the higher values for the welfare ratio ( 1.  ) obtain 
for the fifth income percentile and     or  0. . Such figures are associated to  

1
 0.40 68 sY  0,   

i.e. a case where the low correlation between income and stock returns allow for a better hedging 
of labour income shocks. 
Another property of this metric is that it allows for cross-country performance comparisons, 
along the lines of Antolin (2008), even if countries differ in labor income profiles, replacement 
ratios, inflation protection for pension annuities and life expectancy. These parameters enter both 
the numerator and the denominator of  ; thus the cross-country distribution of this ratio is 
only affected by how well pension funds perform their consumption smoothing role. 

WR1

It is well known that the investable asset menu in certain countries is restricted by regulation (see 
Antolin, 2008). If this is the case, the numerator of the welfare ratio ought to be computed 
conditional on the country investable asset menu so as to evaluate the pension fund manager's 
ability. If the regulator wants to assess the costs from restricting the asset menu for retirees, then 
the relevant ratio should be computed as appropriate ratio could be calculated: 
 

WR2 ≡
V0Rit

P∗ 

V0 Rit
P∗restricted

 
 
where the optimal asset allocation enters both the numerator and the denominator, but the asset 
menu at the numerator is an internationally available one. 
The previous section argues that the  1/N   strategy dominates the optimal asset allocation when 
the costs of tailoring the asset allocation to workers' profiles exceed their benefits, i.e. the 
differential in management fees is sufficiently high. In such a case, it could be appropriate to 
substitute the numerator with the ex ante welfare achieved when portfolio returns are associated 
with the  1/N   strategy,16 obtaining 

WR3 ≡
V0Rt

P1/N
V0Rit

PF   
                                                 
16In general, the numerator ought to be associated with the best suboptimal strategy, taking into account 
management costs. 
 
 



 
5. Conclusions 
 
    Modern finance theory suggests that the features of the labor income stream over the investor's 
life cycle are a crucial determinant of her optimal investment policy. Models that, incorporating 
those characteristics, generate realistic patterns of life-cycle consumption and wealth 
accumulation can advance the design of appropriate investment policies of defined-contribution 
pension funds. In this paper, we take this line of reasoning one step further and propose to base 
the assessment of DC funds by benchmarking their asset allocation to the one implied by a life-
cycle model. Thus, we abandon standard performance evaluation practice relying on the idea that 
a higher return-to-risk differential maps into better performance, overlooking the pension fund 
ability in hedging labor income risk and pension risk of plan participants. 
     To illustrate our idea, we compare our benchmark asset allocation to the one of an imaginary 
pension fund which consistently outperforms the benchmark in terms of Sharpe ratio. Thus, 
evaluation according to a standard return-to-risk metric ranks the pension fund performance 
better than the benchmark. The welfare based metric on the contrary ranks the benchmark 
higher, because it optimally smoothes consumption risk. This simulation also exemplifies how 
performance evaluation is affected by both institutional design and investor heterogeneity. For 
instance, the role of pension funds in optimally smoothing consumption risk tends to be higher 
for lower income members and replacement ratios. One limit of our welfare ratio is that it is 
conditional on a specific utility function. Further work might assess the sensitivity of our method 
to alternative characterizations of preferences. 
    The results on asset allocation sensitivity to changes in labor income profiles suggest that 
pension plans ought to offer different investment options for each worker depending on her 
wealth beside her age. This may make pension plan management highly costly. It is however 
possible to evaluate the performance and the associated participants' welfare when the funds 
implement simpler rules that partially account for the heterogeneity of optimal portfolio shares, 
e.g. by grouping members into age classes and applying the optimal "median" share to all 
members in a specified class. In this respect, further research may be carried to scrutinize our 
conclusion that the 1/N portfolio strategy is likely to be cost efficient for both high wealth and 
highly-risk-averse-average-wealth workers in medium-to-high replacement ratios countries. 
    Our simulations are based on US data. Clearly, the model can be used for assessing pension 
fund performance in other countries as well, conditionally on availability of labour income 
profiles.  
    In our simulation exercise, the available financial assets include a riskless short term asset, a 
high risk premium asset and a low risk premium asset, with potentially correlated returns. The 
calibrated version of the model uses US stock index and bond index returns. However, any pair 
of assets (or baskets of assets, such as the Fama French portfolios) can be accomodated, to the 
extent that their mean returns, their variances and covariances can be estimated precisely. 
Returns on foreign assets ought to be expressed in foreign currency, with currency risk fully 
hedged, since there is no explicit dynamics of the exchange rate in this simple version of the 
model. Furthermore, the model can be used in its current version in economies where inflation is 
not highly volatile, as the model assumes constant inflation. 
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Table 1  Welfare Gains  
 
This table reports welfare gains of the optimal strategy relative to two suboptimal strategies, e.g. the age 
rule in the first column and the 1/N rule in the second column. Welfare gains are the yearly percentage 
increase in consumption granted by the optimal asset allocation. The correlation between labor income 
risk and stock returns (the risk aversion parameter) increases from the top (left) to the bottom (right) 
panel. Each panel reports mean welfare gains for the overall population,  as well as gains corresponding 
to percentiles of financial wealth accumulated at age 65. 
  
 

Risk aversion 5 Risk aversion 15 
  

                                      ρsy=0                                                    
      
   (100-age)/2   1/3   (100-age)/2   1/3 
Mean  0.021 0.018  0.015 0.013 
          
5th percentile  0.032 0.027  0.043 0.037 
          
50thpercentile  0.024 0.021  0.012 0.011 
          
95thpercentile  0.004 0.003  0.004 0.004 

  
                                    ρsy=0.4 

       
   (100-age)/2   1/3   (100-age)/2   1/3 
Mean  0.012 0.012  0.012 0.011 
          
5th percentile  0.027 0.022  0.036 0.034 
          
50thpercentile  0.013 0.011  0.006 0.005 
          
95thpercentile  0.001 0.001  0.002 0.001 

  
                                    ρsy=1                                                     

      
   (100-age)/2   1/3  (100-age)/2   1/3 
Mean  0.012 0.011  0.011 0.010 
          
5th percentile  0.025 0.023  0.032 0.031 
          
50thpercentile  0.012 0.011  0.005 0.005 
          
95thpercentile   0.002 0.001   0.002 0.002 
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Table 2  Welfare Ratios 
The upper part of each panel displays the Sharpe Ratio of the portfolios under both the optimal asset 
allocation and the asset allocation followed by workers’ pension  plan, e.g. the age rule. The lower part 
of each panel reports the worker's ex-ante welfare under the optimal asset allocation divided by her ex-
ante welfare level under the age rule. Both mean welfare ratio for the overall population as well as  
welfare ratios corresponding to percentiles of financial wealth accumulated at age 65 appear in each 
panel Results are ordered according to both stock-labor income correlation (0, 0.4 and 1) and  
replacement ratio (0.4, 0.68 and 0.8); other parameters are set as in our benchmark case. 

 
Risk aversion 5 

 
Replacement ratio 0.68  0.4  0.8 

                                      ρsy=0 
Sharpe ratio 
 

     

Optimal 0.260  0.286  0.244 
Age rule 0.337  0.337  0.337 
      
Welfare Ratio 
      
Mean 1.051  1.096  1.044 
       
5th percentile 1.101  1.096  1.048 
       
50thpercentile 1.056  1.074  1.057 
       
95thpercentile 1.014  1.011  1.007 
      

                                    ρsy=0.4 
Sharpe ratio      
Optimal 0.273  0.310  0.257 
Age rule 0.337  0.337  0.337 
      
Welfare Ratio 
      
Mean 1.033  1.049  1.028 
       
5th percentile 1.049  1.076  1.028 
       
50thpercentile 1.040  1.054  1.032 
       
95thpercentile 1.009  1.012  1.007 
      

                                    ρsy=1                                                    
Sharpe ratio      
Optimal 0.296  0.314  0.264 
Age rule 0.337  0.337  0.337 
      
Welfare Ratio 
      
Mean 1.025  1.037  1.020 
       
5th percentile 1.042  1.029  1.032 
       
50thpercentile 1.031  1.043  1.021 
       
95thpercentile 1.002  1.009  1.002 
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Figure 1  Labor income process 
The figure reports the fitted polynomial in age and personal characteristics derived according Cocco et 
al. (2005) calibrations for households with high school education.  
 

 
 
 
 
 
 
 
 
Figure 2 Life cycle profiles of consumption, income and wealth 
This figure reports age profiles for consumption, income and wealth  averaged over all the simulations. 
Parameters are set as in the benchmark case: risk aversion 5, replacement ratio 0.68, correlation between 
stock and bond returns 0.2, zero correlation between stock returns and labor income. 
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Figure 3 Policy functions 
The figure reports the policy functions for the portfolio shares invested in stocks at different ages. 
Parameters are set as in the benchmark case: risk aversion 5, replacement ratio 0.68, correlation between 
stocks and bonds  0.2,  zero correlation between stock returns and labor income. 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4 Policy functions 
The figure reports the policy functions for the portfolio shares invested in bonds at different ages. 
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Figure 5 
The figure reports mean share profiles, as a function of age, for stocks (dashed –dotted) and bonds (solid). The replacement ratio is equal to 0.68, the correlation between stock 
and bond returns is set to 0.2 while the one between stocks and labour income (sy) is 0 in the upper  and 0.4 in the lower panel. The variance of permanent and transitory shocks 
are 0.0106 and 0.0738 (Benchmark) and 0.0408 and 0.269 respectively (High variance). 

, the correlation between stock 
and bond returns is set to 0.2 while the one between stocks and labour income (sy) is 0 in the upper  and 0.4 in the lower panel. The variance of permanent and transitory shocks 
are 0.0106 and 0.0738 (Benchmark) and 0.0408 and 0.269 respectively (High variance). 
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Figure 6 
This figure reports share profiles, as a function of age, for stocks and bonds.  The solid line represents the shape of the median portfolio share, while the (dotted) dashed refer to 
the (5th) 95th percentiles. The replacement ratio is equal to 0.68, the correlation between stock and bond returns (sb) is set to 0.2 while the one between stocks and labour income 
(sy) varies between 0 and 1.  
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Figure 7  
This figure reports share profiles, as a function of age, for stocks and bonds.  The solid line represents the shape of the median portfolio share, while the (dotted) dashed refer to 
the (5th) 95th percentiles. The replacement ratio is equal to 0.68, the correlation between stock and bond returns (sb) is set to 0.2 while the one between stocks and labour income 
(sy) varies between 0 and 1. 

3 0 4 0 5 0 6 0
0

0 . 2

0 . 4

0 . 6

0 . 8

1

st
oc

k
s b 0 2  s y 0

2 0 4 0 6 0
0

0 . 2

0 . 4

0 . 6

0 . 8

1

bo
nd

3 0 4 0 5 0 6 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7
s b 0 2  s y 0 4

3 0 4 0 5 0 6 0
0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 3 0 4 0 5 0 6 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7
s b 0 2  s y 1

3 0 4 0 5 0 6 0

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

5 t h 5 0 t h 9 5 t h

 

 35 



Figure 8 
This figure reports share profiles, as a function of age, for stocks and bonds.  The solid line represents the shape of the median portfolio share, while the (dotted) dashed refer to 
the (5th) 95th percentiles. The replacement ratio is equal to 0.40 ,the correlation between stock and bond returns (sb) is set to 0.2 while the one between stocks and labour income 
(sy) varies between 0 and 1 
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Figure 9 
This figure reports share profiles, as a function of age, for stocks and bonds.  The solid line represents the shape of the median portfolio share, while the (dotted) dashed refer to 
the (5th) 95th percentiles. The replacement ratio is equal to 0.80, the correlation between stock and bond returns (sb) is set to 0.2 while the one between stocks and labour income 
(sy) varies between 0 and 1. 
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Figure 10 
This figure reports share profiles, as a function of age, for stocks and bonds.  The solid line represents the shape of the median portfolio share, while the (dotted) dashed refer to 
the (5th) 95th percentiles. pension treatments at the beginning of retirement correspond to a replacement ratio of 0.68 and then decrease by 0.02 per year due to inflation (which 
implies an average replacement ratio of about 0.45 over all retirement ages). The correlation between stock and bond returns (sb) is set to 0.2 while the one between stocks and 
labour income (sy) varies between 0 and 1. 
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