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Econometrica. Vol. 50, No. | (January, 1982)

TOBIN’S MARGINAL ¢ AND AVERAGE ¢g: A NEOCLASSICAL
INTERPRETATION

By Fumio HayasHI!

It is increasingly recognized that Tobin’s conjecture that investment is a function of
marginal ¢ is equivalent to the firm’s optimal capital accumulation problem with adjust-
ment costs. This paper formalizes this idea in a very general fashion and derives the
optimal rate of investment as a function of marginal g adjusted for tax parameters. An
exact relationship between marginal ¢ and average ¢ is also derived. Marginal ¢ adjusted
for tax parameters is then calculated from data on average ¢ assuming the actual U.S. tax
system concerning corporate tax rate and depreciation allowances.

1. INTRODUCTION

IN THE LAST DECADE and a half, the literature on investment has been dominated
by two theories of investment—the neoclassical theory originated by Jorgenson
and the “g” theory suggested by Tobin. The neoclassical theory of investment
starts from a firm’s optimization behavior. The objective of the firm is to
maximize the present discounted value of net cash flows subject to the technolog-
ical constraints summarized by the production function. It seems useful to divide
the neoclassical theory into two stages. The earlier version of the neoclassical
approach developed by Jorgenson [11] derives the optimal capital stock under
constant returns to scale and exogenously given output. To make the rate of
investment determinate, the model is completed by a distributed lag function for
net investment. This earlier version of the neoclassical investment theory has a
couple of drawbacks. The assumption of exogenously given output (which makes
the optimal capital stock determinate) is inconsistent with perfect competition.
The theory itself cannot determine the rate of investment; rather, it relies on an
ad hoc stock adjustment mechanism. Some sort of adjustment costs are intro-
duced implicitly through the distributed lag function for investment.

This point was recognized by Lucas [13]. Gould [9], Uzawa [17]. and Treadway
[16]. Their solution was to introduce the cost of installing new investment goods
in the firm’s optimization problem. In this formulation, capital stock is given to
the firm at each moment of time because of the adjustment costs in changing
capital stock. What the firm can control at each moment of time is the rate of
investment, not the stock of capital. This modification of the earlier version of
neoclassical theory was in fact recommended by Jorgenson [12] who wrote:

A derivation of this model incorporating installation costs explicitly with constant
returns to scale in both production and installation is obviously much more satisfactory
than the original derivation. (Jorgenson [12, pp. 223-224]).

'T am grateful to Olivier Blanchard. Dale Jorgenson, and Marty Sullivan for helpful discussions.
An anonymous referee also provided useful comments, one of which lead to a simplification of the
proof of Proposition 1.
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214 FUMIO HAYASHI

The alternative theory, suggested by Tobin [15], is that the rate of investment is
a function of g, the ratio of the market value of new additional investment goods
to their replacement cost. Here again, some sort of adjustment costs lie behind
the theory. If a firm can freely change its capital stock, then it will continue to
increase or decrease its capital stock until g is equal to unity. Also, the role of the
production function is never clear in Tobin’s [15] exposition. One may wonder if
the “g” theory can be derived from the firm’s optimization.

It is increasingly recognized that the modified neoclassical investment theory
with installment costs and the “¢” theory are equivalent. Lucas and Prescott [14]
were the first to recognize this, although they never indicated the connection to
the “g” theory. Later Abel [1] showed that the optimal rate of investment is the
rate for which ¢ — 1 is equal to the marginal cost of installment. However, his
discussion is focused primarily on the Cobb-Douglas technology. Yoshikawa [18]
arrived at the same conclusion as Abel did, but his model is characterized by
static expectations. Section 2 of the present paper integrates the two theories of
investment in a very general model of the firm’s present value maximization and
derives the optimal rate of investment as a function of g¢. It turns out that the
form of investment function is independent of both the production function and
the demand curve for the firm’s output. All this comes from a simple application
of Pontryagin’s maximum principle.

The “g” theory (or, equivalently, the modified neoclassical theory) is not
operational as long as ¢ is not observable. Remember that g, which we call
marginal ¢, is the ratio of the market value of an additional unit of capital to its
replacement cost. What we can observe is average g, namely the ratio of the
market value of existing capital to its replacement cost. Empirical work based on
the “¢” theory has utilized average g as a proxy for marginal g (see, e.g., von
Furstenberg [8]). Section 3 of the present paper derives an exact relationship
between marginal g and average g. If the firm is a price-taker with constant
returns to scale in both production and installation, then marginal g is equal to
average ¢. If the firm is a price-maker, then average ¢ is higher than marginal ¢
by what is legitimately called the monopoly rent. Section 3 also indicates how the
relationship should be modified if we take account of taxes and depreciation
allowances. The (marginal) ¢ that is relevant to the firm’s investment decision
should reflect tax rules concerning corporate tax rate, investment tax credits, and
depreciation formulas. We will call this g the modified q. In Section 4 we
calculate modified g from data on average ¢ taking into account the actual U.S.
tax system and estimate a simple linear investment function.

2. OPTIMAL CAPITAL ACCUMULATION

Consider a firm acting to maximize the present value of future after-tax net
receipts:

) v(0) =f0°°R(t)exp[ —fo’r(s) ds} dt,
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where r(s) is the nominal discount rate. In (1) net receipts R(z) are written as
profits after tax plus depreciation tax deductions minus purchases of investment
goods plus investment tax credits:

@) R(t)=[1—u(t)]m(r) + u(t)fOooD(x,t — x)p, (¢t — x)I(t — x)dx

—[1=k®)]p()I(2),

where 7(t) is profits before tax at time #,u(f) corporate tax rate, D(x,t — x)
depreciation allowance per dollar of investment for tax purposes on an asset of
age x according to the tax code that was in effect at time ¢ — x,” p,(¢) the price of
investment goods, I(¢) investment, and k(¢) the rate of investment tax credit. In
the earlier version of the neoclassical investment theory, profits are written as

(3a) 7(t) = p(H)F(K(t),N(),t) — w()N (1)

where p(?) is the price of the firm’s output at time #, F the production function,
K(¢) capital stock, N(#) the vector of variable factor inputs (e.g., labor), and w(¢)
the associated vector of input prices. If the firm is a price maker, the output price
p(2) depends on output F(¢). (1) is maximized subject to the capital accumula-
tion equation,

(3b) K=1-3K,

where § is the rate of physical depreciation. As is well known, the rate of optimal
investment is indeterminate in this model, while the optimal level of capital stock
can be defined under the assumption that output is exogenously given and the
production function is linearly homogenous.® If the existing level of capital stock
K(0) is lower (higher) than the optimal level K*, investment will be infinitely
positive (negative).

The modification introduced by Lucas [13], Gould [9], and Treadway [16] is to
introduce installation costs in (3a):*

(4a) m=p[F(K,N;t) — G(I,K;1)] — wN.

The installation function G depends on K as well as on I because the cost of
installing 7 units of investment goods is likely to depend on the size of I relative
to K. G will be an increasing and convex function of I: G, >0, G, >0,
reflecting the presumption that the cost of installment per unit of investment will
be greater, the greater the rate of investment for any given K.

2This formulation implicitly assumes that changes in the depreciation formula D(x,¢) do not
apply retrospectively to past investments, which is the case in the postwar U.S. except for the 1962
change.

3An alternative way to make the optimal capital stock determinate is to assume diminishing
returns to scale. See Arrow [2] for the derivation of the optimal capital stock under this assumption.

“This is anticipated by Eisner and Strotz [7].
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FIGURE 1.

An alternative way to introduce adjustment costs associated with investment
was introduced by Uzawa [17]. He leaves (3a) intact but modifies (3b) as follows:

(4b) K=y(I,K;1t)— 8K.

In this formulation, I units of gross investment do not necessarily turn into
capital; only ¢ X 100 per cent of investment does. The graph of ¢ is drawn in
Figure 1.y is increasing and concave in I, reflecting the same presumption stated
above. In Figure 1, y drops sharply as I changes from O to negative, reflecting
the irreversibility of investment. We shall call ¢ the installation function.

Since the two formulations of adjustment costs give similar results concerning
the optimal investment rule, we henceforth focus on Uzawa’s formulation. Under
(4a), the reader can easily derive formulas corresponding to the ones we will
derive below under (4b).> Thus the firm is assumed to maximize (1) with 7
defined by (3a) subject to the capital accumulation constraint (4b). After some
manipulations, (1) reduces to

® V= ["[(1-wm— (k- Z)pll]exp(_fofrds)dt

+f0°°{u(t)U_°wD(z - u,u)p,(v)](v)dv}exp(—j(;trds)} @,

where:
(6) z(?) =f0°°u(t + x)D(x, t)exp[ —foxr(t + s)ds] dx.

The second term in (5), often neglected in the literature, represents the present
value of current and future tax deductions attributable to past investments. This
important term will be referred to as 4 (0). Note that z(¢) corresponds to uz in the
notation in Hall and Jorgenson [10] which assumes static expectations about

SIf (4a) instead of (4b) is assumed, then equation (8) becomes: (1 — k — z)p; + pG,(1 — u) = A.
Also, the homogeneity of ¢ is replaced by that of G in Propositions 1 and 2. Actually, with these
adjustments Propositions 1 and 2 will hold even if (4a) is generalized to a non-separable form
7 = pF(K,N,I,1) — wN. However, in this case the optimal investment will depend on w/p as well as
on g.
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future tax rate u(#). Since A4 (0) is independent of current and future decisions by
the firm, the optimization problem is equivalent to maximizing the first term in
(5) with respect to I and N subject to (4b).

The first-order conditions for optimality are:

@) my =0,
(®) (I =k—=2)p =My,
Q) A=(r+8— YA — (1 — u)my,

and the transversality condition is:

!
1 lim A - =
(10) [gg) (t)K(t)exp( fords) 0,

where A is the shadow price for constraint (4b). Equation (7) is the familiar
marginal productivity condition. Equation (9) states that A is the present dis-
counted value of additional future (after-tax) profits that are due to one addi-
tional unit of current investment.® To interpret (8) in economic terms, write (8) as

@) (I=-K)p+(1 =Y ) A=A+ zp,.

The first term in (8’) is the acquisition price of new investment goods from the
viewpoint of the firm. Because of the investment tax credits, it is less than the
market price by kp, where k is the rate of investment tax credits. The second
term in (8’) represents (implicit) adjustment costs associated with investment. If
there were no adjustment costs so that (7, K;¢) = 1, then the market value of
the firm would increase by A for one additional unit of investment. But the
capital stock actually increases by only ;. Thus (1 — ¢,)A represents the market
value foregone due to the concave installation function. The second term on the
right side of (8’) is the present value of tax deductions due to one unit of current
investment. Therefore (8’) states that the marginal benefit of installing one unit
of new investment goods is equal to the marginal cost of doing so.
Now we can rigorously define Tobin’s marginal q as

(11) q=M\/pn
and average q as

(1) h=V/(pK).

In terms of ¢ just defined, (8) and (9) can be written as:

" -9 _1

. A : Tk
%) q=(’+8_P1_4’K)‘1_(1““)7[’

SThere are two benefits from increasing capital stock in our formulation. The first is the resulting
increase in the productive capacity of the firm. This is represented by 7x. The second is that the
installation function ¢ as a function of / shifts downward as K increases. This is represented by y in

9).
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where p, = p,/p,. We can solve (8”) for I to obtain the optimal investment rule:
(13) I=a(4§,K;1),

where g, to be called the modified ¢, is defined as q/(1 — k — z). The remarkable
information content of g should be noted. Once g is known (along with
1 — k — z and K), the firm can decide the optimal rate of investment through the
knowledge of the installation function ¢ alone. All the information about the
demand curve for the firm’s output and the production function that are relevant
to the investment decision is summarized by g. Expectations about future course
of the rate of investment tax credits k are also incorporated in g and do not
affect the form of the investment function (13).
In passing, we note that (13) reduces to the form:

(13)  I/K=B(4:1),
if and only if the installation function is linear homogeneous in I and K. The

linear homogeneity of ¢ will play an important role in the discussion of marginal
g and average ¢, to which we now turn.

3. MARGINAL g AND AVERAGE ¢

[3Pll

If we knew marginal ¢, then econometric implementation of the *“g” theory
would be quite straightforward. Unfortunately, however, marginal g is not
directly observable. What we can (in principle) observe is average ¢g. There have
been increasing efforts to measure average g for U.S. corporations (Ciccolo [5],
von Furstenberg [8]), and people are busying themselves regressing investment on
average g. Researchers should feel uneasy about doing this, unless they are sure
that average g and marginal ¢ are practically the same thing. The following
proposition states that marginal g and average g are essentially the same in the
special yet important case where the firm is a price-taker and the production
function and the installation function are homogeneous.

PROPOSITION 1: Let A(0) be the present discounted value of current and future
tax deductions attributable to past investments (the last term in (5)). Suppose the

firm is a price-taker in its output market and suppose the transversality condition
(10) holds. Then:

4(0)

14 0)=h(0) — ————
19 4(0)=h0) - G2

if and only if the installation function y(I,K;t) is linearly homogeneous in I and K
and the production function F(K,N;t) is linearly homogeneous in K and N.

Proor: First suppose F and i are linearly homogeneous. Since the firm is a
price-taker, we have, from (7),

(15) Fy=w/p.
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Since F is homogeneous, (15) implies
(16) 7/ K=m.
Since ¢ is homogeneous, we have

a7 Yl + K=y

Now consider

d _ 7 _ . . _ _ 1
(18) p [}\(I)K(t)exp( fo rds” =[AK +AK r)\K]exp( fo rds)
along an optimal path. Using (16), (17),(8), (9), (4b), we can easily establish

(19) % [)\Kexp(~ .Llrds)

Integrating (19) from O to infinity and using the transversality condition (10), we
obtain

= [0 wm = (1 k= 2yt Jexo(— [ ras)

200 AOK(©O)= [“[(1 = pwya— (1 —k—z)p,1 - _)d,

Q0)  NOKO) = [“[(1 = w7~ (1~ k= z)p Jexp( ~ ['ras)

which immediately implies (14). The converse is now obvious. Q.ED.
REMARK |: The proposition holds at any point in time along the optimal path.

REMARK 2: Since the installation function is concave in /, the optimal path is
unique if it exists.

REMARK 3: The relationship (20) has already been noted in a different context
by Blinder and Weiss [3].

The economic intuition behind this result is the following. For simplicity, let us
ignore for the moment taxes and depreciation. Let /(¢) and N(¢) be the optimal
policy for the firm with capital stock K, at time 0. Now consider another firm
with identical production function and installation function but with a different
level of capital stock K. It is clear that this second firm’s optimal policy is
I(HK, /K, and N(1)K,' /K, if the production and installation functions are
characterized by constant returns to scale. Hence the expected future profits of
the second firm are equal to K,/ K|, time those of the first firm, implying that the
first firm’s average ¢ is equal to the second firm’s average g. In other words,
average ¢ is independent of the initial capital stock if the production and
installation functions are linearly homogeneous and if the firm is a price-taker.
Now consider a firm undertaking 7 units of investment which will be turned into
AK = ¢(I,K;t) units of additional capital stock. What is the market value of



220 FUMIO HAYASHI

these additional units of capital? It is AK times average g because the average
market value of the firm with K is equal to that of the firm with K + AK.

As we have seen at the end of Section 2, (13’) is a necessary and sufficient
condition for the installation function to be linearly homogeneous. A corollary to
Proposition 1 is therefore the following. If (i) the optimal investiment rule is (13"),
(ii) the production function is linearly homogeneous, and (iii) the firm is a
price-taker, then (13’) is written as:

a3y 1/K=B( A ),

where a = a/(p,;K).

The economic intuition behind Proposition 1 does not carry over to a price-
making firm, since if the firm expands its output, the output price will fall. The
market value of additional units of capital is therefore less than the average
market value of the existing capital stock. However, a fairly simple relationship
between marginal g and average g still exists. The following proposition is a
generalization of Proposition 1.

PROPOSITION 2: Suppose the firm is a price-maker in the output market. If the
production and installation functions are linearly homogeneous and if the transvers-
ality condition holds, then:

Q1) q(0)=h(0) — a(0) — mfow[n(t)(l - u)pFexp(— forrds”dt,

where a(0) = A(0)/(p;(0)K(0)) and n(t) = —(F/p)(dp (t)/dF), the inverse of the
elasticity of demand for the firm’s output.

ProoF: The first-order condition (7) becomes
(22) (1 =) pFy=w.
This and the homogeneity of F imply
(23) 7=pFK+ npFyN.
We also have
4)  me=(1-m)pFx
from (3a). Equations (23) and (24) imply
(25) 7/K=m,+ npF/K.

"If taxes and subsidies are all ignored, then (13”) reduces to the investment function derived by
Lucas and Prescott [14].
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Using (25),(17),(8), (9), (4b), it is easy to show that
(26) d%[)\exp(—j:rds)]= —[(l—u)w—(l—k—z)p,l

t
+npF(1 — xp{ — ds ).
npF(1 — u)]e p( for s)
Integrating (26) from O to infinity and using (10), we obtain (21). Q.E.D.

The last term in (21) has the clear interpretation of monopoly rent. Suppose
the price-making firm chooses I and N as optimum. We note that a price-taking
firm with the same production and installation functions and with the same
capital stock will choose the same I and N if the output price is (1 — n)p. Hence
the difference between the price-maker’s profits and the price-taker’s profits is

npF.

4. SOME EMPIRICAL EVIDENCE

We have seen in equation (13) that the optimal investment is a function of

modified g. We have also seen that modified ¢ can be written as ®
~_  h—a

@ i=i0r—z
if the firm is a price-taker and if the production and installation functions are
linear homogeneous. In this section we calculate a,z, and § for the period
1952-78 for the U.S. corporate sector as a whole assuming the actual U.S.
postwar tax system. To compute a and z, we have to make some assumptions on
expectations about future tax rate u(#) and the future nominal discount rate r(¢).
We assume static expectations about r(¢). Since we will use the long rate — the
Baa corporate bond rate plus 4 percent — for r(z), this assumption seems
innocuous. We also assume that future corporate tax rate is expected to be
constant at 48 per cent. Under these assumptions, the discrete-time analogue of
the expression for A4 is:

8

(28) A,=u§: D(n+it—n)(1+r)"""'p,(t = n)I(t — n)
n=1i=1

I

(¢=1952,...,1978),

where I(¢ — n) is investment in year ¢ — n, T, asset life for tax purposes, r, Baa
rate at time ¢ plus 4 percent, D(n,t — n) depreciation formula, i.e., depreciation
allowance on an asset of age n according to the tax code as of t — n, and u

8 Ciccolo [6] arrived at the same formula (27), but his argument is highly intuitive and is not based
on the firm’s value maximization problem. His implicit assumption is that adjustment costs are
introduced through (4b).
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corporate tax rate (48 per cent). Similarly, the present discounted value of tax
deductions on new investment, z, is calculated by the formula

T,

29) z,=u> D(nt)(1+r) " (r=1952,...,1978).
n=1

It is assumed that the straight line depreciation formula was adopted by the

corporations prior to 1954 and that the sum-of-years-digits formula was adopted

after 1954.” The data on tax life (7,) and corporate investment for each of the

three types of assets—producers’ durable equipment, nonresidential structures,

and residential structures—are taken from Christensen and Jorgenson [4]. 4, and

z, are calculated for each type of assets.'” Column 1 of Table I reports A,

TABLE 1
Year (HA 2)p, K (3)a (4)z (5)k (6)h (g 8)p,1
1952 36.74 172.27 213 298 564 499 22.58
1953 36.75 182.63 201 294 .596 559 24.88
1954 4435 191.57 232 .309 587 S15 24.59
1955 49.74 202.25 246 316 11 .680 27.75
1956 54.60 227.18 .240 318 174 783 32.46
1957 58.81 250.49 235 3i4 727 718 34.78

1958 65.52 261.59 250 321
1959 69.25 270.36 256 .330
1960 73.86 278.43 265 329 .842 .859 35.22
1961 79.16 286.35 276 .329 853 .859 35.04
1962 83.30 295.30 282 .330 0216 954 1.036 38.68
1963 88.01 307.90 288 332 .0276 .898 956 40.58
1964 91.98 322.59 285 354 0289 .009 1.174 45.58
1965 96.87 342.97 .282 354 .0314 .062 1.268 54.71
1966 100.70 376.77 267 345 0319 116 1.363 62.94
1967 106.27 418.58 254 .339 0325 919 1.058 63.79

.674 .624 30.09
.807 .822 32.66

coocooocoocooo

1968 109.82 461.67 238 332 .0341 .949 1.121 6991
1969 113.10 514.89 220 322 .0244 979 1.162 78.23
1970 115.85 577.54 .201 327 0110 789 .888 78.75
1971 123.28 637.27 193 332 .0196 761 875 83.34
1972 129.83 689.65 .188 336 .0321 794 959 94.15
1973 136.33 756.54 .180 336 .0339 .869 1.094 110.72
1974 141.95 903.56 157 327 0347 753 933 121.64
1975 149.12 1074.71 139 317 .0548 581 704 117.81
1976 159.50 1143.43 139 327 .0692 623 .800 130.30
1977 172.29 1244.44 .138 335 0724 n.a. n.a. 152.08
1978 184.58 1386.22 133 328 .0706 n.a. n.a. 178.48
Note: See the text for definitions and data sources.

“Under the Revenue Act of 1954, three depreciation formulas including the sum-of-years-digits
were allowed for tax purposes. For a wide range of tax life and the interest rate, the sum-of-years-
digits formula dominates the other two depreciation formulas in that it gives the highest value of -.
See Hall and Jorgenson [10] for more details on the depreciation formulas in the postwar U.S. Actual
depreciation practice by the U.S. corporations are much more complicated than our assumption
presumes. More fact-finding empirical research on this is highly desirable.

'0A detailed description of the calculation along with a FORTRAN program for the calculation is
available upon request from the author. This offer will expire in July, 1982.
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aggregated over the three types of assets. Column 2 reports the replacement cost
of corporate capital (source: Christensen and Jorgenson [4]).!' Column 3 is the
ratio of column I and column 2. Column 4 gives the weighted average of z, with
weights being corporate investment in each of the three types of assets. Column 5
reports the rate of investment tax credits which is defined as the ratio of
corporate investment tax credits claimed (source: Christensen and Jorgenson [4])
to corporate investment in the three types of assets. Column 6 gives average q
taken from von Furstenberg [8].'> Modified g as defined by (27) is given in
column 7. Column 8 reports corporate investment in the three types of assets.

Several features stand out in Table I. Both 4, and z, increase during the period
ending in the mid-sixties. This is because the U.S. tax law has been allowing
faster write-offs (shorter tax lives). From the late sixties the nominal interest rate
began to increase noticeably. This explains the downward trend in z, since 1967.
This also partly explains the drastic downward trend in g, in the late sixties and
the seventies, but the main reason for the downward trend in q, is that 4, is
evaluated at acquisition prices. The denominator (i.e., the capital stock at
replacement costs) immediately reflects changes in the price of investment goods,
while the numerator 4, depends on the prices at which the existing assets were
acquired in the past. Therefore, in a period of sustained inflation, the denomina-
tor grows faster than the numerator.'”> Comparing average g with modified ¢, we
notice that the movement in modified ¢ is less pronounced than that in average
g. This is explained by the downward trend in a, after the mid-sixties and by the
upward trend in the rate of investment tax credits.

Finally, to get a rough idea about how much § can explain aggregate
investment, the linear form of (13”) is estimated by ordinary least squares (OLS)
on the data presented in Table I. Our OLS estimate is:

(300  1/K=.0980+.0423§5, DW.=43  R?=.46,
(.00840)(.00912)

sample period: 1953-1976, mean of dependent variable =.136.

The figures in the parentheses are standard errors. The Durbin-Watson statistic

""This does not include land and inventories. Capital stock is calculated by the perpetual
inventory method which does not take the installation costs into account. A convenient interpretation
is to say that the installation costs are submerged in physical depreciation. Anyway, capital stock is a
smooth time series and would not play a crucial role in the discussion below. This problem will not
arise if adjustment costs are represented by (4a).

2In obtaining quarterly series, von Fustenberg took the moving average of two successive
end-of-quarter values of average g. To obtain the beginning-of-year value, we take the simple average
of the last quarter value of the previous year and the first quarter value of the current year.

'3However, this is not a channel through which inflation depresses investment. To see this,
suppose a change occurs in the corporate tax law which now allows a firm to evaluate the existing
assets at current prices in calculating depreciation allowances. Then, 4, will immediately change to
reflect current asset prices, but that change will be exactly offset by a re-evaluation of the firm in the
stock market, leaving modified ¢ unchanged.
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(D.W)) is very low and indicates a strong positive serial correlation in the error
term.

Northwestern University

Manuscript received August, 1979; final revision received April, 1981.
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