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PROBLEM 1.
Yt = K(t)αL(t)1−α 0 < α < 1

L(t) = A(t)N(t)

·
At

At
= 0;

·
N t

Nt
= gN ; s, δ given

a)
Y (t)

L(t)
=

K(t)αL(t)1−α

L(t)αL(t)1−α
= k(t)α = f(k(t)) = y(t)

where

k(t) =
K(t)

L(t)

·
k(t) =

·
K(t)L(t)− L̇(t)K(t)

L(t)2
=

·
K(t)

L(t)
− gNk(t)

=⇒
·
K(t)

L(t)
= k̇(t) + gNk(t)

We know that:
I(t) = sY (t); I(t) = K̇(t) + δK(t)

C(t) = (1− s)Y (t)

K̇(t) = Y (t)− C(t)− δK(t)

=⇒ K̇(t)

L(t)
= f(k(t))− c(t)− δk(t)
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k̇(t) + gNk(t) = f(k(t))− c(t)− δk(t)

k̇(t) = f(k(t))− (1− s)f(k(t))− δk(t)− gNk(t)

= sf(k(t))− (δ + gN )k(t)

which is the fundamental equation of the Solow growth model.

In steady-state: k̇(t) = 0 :

sf(k(t)) = (δ + gN )k(t)

For the given production function:

k̇(t) = sk(t)α − (δ + gN )k(t)

ksst =

µ
s

δ + gN

¶ 1
1−α

ysst = (ksst )
α =

µ
s

δ + gN

¶ α
1−α

csst = (1− s)ysst = (1− s)

µ
s

δ + gN

¶ α
1−α

b) To find the saving rate which maximizes the steady-state consumption level,
we set

d(ct)
ss

ds
= 0

⇒ (1− s)
α

1− α

µ
s

δ + gN

¶ α
1−α−1µ 1

δ + gN

¶
−
µ

s

δ + gN

¶ α
1−α

= 0

=⇒
µ

s

δ + gN

¶ α
1−α−1µ

(1− s)
α

1− α

1

δ + gN
− s

δ + gN

¶
= 0

=⇒ (1− s)
α

1− α

1

δ + gN
=

s

δ + gN

⇒ (1− s)
α

1− α
= s

=⇒ s = α

When s = α, the Golden Rule level of capital ( i.e. the level corresponding to
the saving rate that maximizes consumption) is:

kGR =

µ
α

δ + gN

¶ 1
1−α

2



PROBLEM 2.
Yt = bKt +BKα

t L
1−α
t

(otherwise, same assumptions as in problem 1)

a) Check that the production function shows constant returns to scale:

λYt = λ[bKt +BKα
t L

1−α
t ]

F (λKt, λLt) = bλKt +B(λKt)
α(λLt)

1−α

= bλKt +BλαKt
αλ1−αLt

1−α

= bλKt + λBKt
αLt

1−α

= λ[bKt +BKα
t L

1−α
t ]

Since λF (K,L) = F (λKt, λLt), Yt displays CRS

f(k) =
Y

L
= b

K

L
+B

Kα
t L

1−α
t

Lαt L
1−α
t

= bk +Bkα

f 0(k) = b+ αBkα−1, lim
kt→∞

f 0(k) = b

Finally, we know that without technological progress, the dynamic equation for
k is:

k̇t = sf(kt)− (δ + gN )kt

⇒ k̇t = s(bk +Bkα)− (gN + δ)kt

b) Divide both sides by kt and obtain:

γk =
k̇t
kt
= s(b+Bkα−1)− (gN + δ)

∂γk
∂kt

= (α− 1)sBkα−2 < 0

The convergence result holds. In detail:

γk =
k̇t
kt
= s

µ
b+

B

k1−α

¶
− (gN + δ) = 0 in the steady-state equilibrium

This implies:

s

µ
b+

B

k1−α

¶
= gN + δ

or

s
B

k1−α
= gN + δ − sb
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Assume that for each country the parameters δ, gN , s, b and B are the same,
meaning that all countries have the same aggregate technology, saving rate (s),
depreciation rate (δ), and the same growth rate of the number of workers (gN ).
In this case, the steady-state level of capital (kss) is unique and equal across
countries. The smaller is k the higher the equilibrium growth rate

c)

lim
kt→+∞

k̇t
kt
= lim

kt→+∞
s

µ
b+

B

k1−α

¶
− (gN + δ) = sb− (gN + δ) > 0

if

sb > gN + δ

=⇒ s >
δ + gN

b
or b >

δ + gN
s

Under this condition, unlimited accumulation of capital is possible under the
assumed production function.
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PROBLEM 3. Consider the following aggregate production function

Yt = F (K,L) = A0L+ 2B
p
KL

This technology displays constant returns to scale in L and K.

a)

Y

L
=

A0L

L
+
2B
√
KL

L

= A0 + 2B
√
k ≡ f(k)

The aggregate budget constraint is:

Y = C + K̇ + δK

which, in per-capita terms, becomes:

Y

L
=

C

L
+

K̇

L
+ δ

K

L

y ≡ f(k) = c+
K̇

L
+ δk c ≡ C

L

In order to determine K̇
L , start with k:

k =
K

L
=⇒ k̇ =

·
KL− LK

L2
=

·
K

L
− L̇

L
k =

·
K

L
since L is constant.

Therefore:

f(k) = c+ k̇ + δk

=⇒ k̇ = f(k)− c− δk

k̇ = A0 + 2B
√
k − c− δk

The Hamiltonian function is

Ht =

½
c1−σt − 1
1− σ

+ λt[A0 + 2B
p
kt − ct − δkt]

¾
e−ρt

and the f.o.c. of the dynamic optimization problem are derived as

1.

∂Ht

∂ct
= 0 =⇒ (c−σt − λt)e

−ρt = 0

=⇒ c−σt = λt
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Taking logs:
−σ log ct = log λt

and differentiating with respect to time, we get:

−σ ċt
ct

=
λ̇t
λt

=⇒ ċt
ct
=

1

σ|{z}
IES

"
− λ̇t
λt

#

IES =
−u0(c)
u00(c)c

=
1

σ

2.

∂Ht

∂Kt
= − ∂

∂t
[λt · e−ρt] =⇒ λt[Bk

− 1
2

t − δ]e−ρt = −[λ̇t − ρλt]e
−ρt

=⇒ − λ̇t
λt
= Bk

− 1
2

t − δ − ρ| {z }
excess return on alternative investment

3.
∂Ht

∂λt
= k̇te

−ρt =⇒ k̇t = A0 + 2B
p
kt − ct − δkt

Law of motion of per-capita capital.

4.
lim

t→+∞
λt ·Kt · e−ρt = 0, k(0) = k0 given

transversality condition.

Combining the f.o.c.

ċt
ct
=
1

σ

⎡⎢⎣Bk− 1
2

t| {z }
≡f 0(k)

− δ − ρ

⎤⎥⎦
b) Setting ċ = 0 ans k̇ = 0 into the dynamic equations for consumption and
the capital stock respectively, we obtain the stationary loci for c and k. The
dynamics of c and k outside the stationary loci is ploitted in the phase diagram
below, together with the convergent saddlepath:

6



c) At time t0 there is an unexpected permanent increase in A from A0 to
A1 > A0. The locus ċt = 0 is not affected. Indeed:

ċt = 0 =⇒ ksst =

∙
B

δ + ρ

¸2
independent of A. The locus k̇t = 0 does change, since

k̇t = 0 =⇒ ct = A1 + 2B
p
kt − δkt

Note that the Golden Rule level of the capital stock kGR (obtained by maxi-
mizing consumption along the stationary locus k̇ = 0) does not change

dct
dkt

¯̄̄̄
k̇=0

= 0 ⇒ kGR =

µ
B

δ

¶2
> kss
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In the transition from t0 to t1, consumption jumps immediately from E0 to E1.
An exogenous positive productivity shock makes labour more productive and
people "richer". This induces people to consume more instantaneously. The
optimal level of k depends uniquely on the marginal productivity of capital and
on parameters δ and ρ

d) Assume that all markets (final output and factor inputs markets) are compet-
itive. Since the aggregate production function is linearly homogenous, the Euler
Theorem applies and each input is compensated according to its own marginal
productivity.

∂Y (·)
∂Kt

=
BL√
KL

= r + δ in steady-state

∂Y (·)
∂L

= A0 +
BK√
KL

= w in steady-state

An increase in A from A0 to A1 increases the wage rate (w) and keeps unchanged
the interest rate (r) in the new steady-state.

e) The increase in A is only temporary (from t0 to t1):
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From equilibrium E0, consumption jumps immediately (at t0), but does not
reach E1. The original saddle-path trajectory is reached at t1 (with consump-
tion decreasing and capital increasing). After t1 both capital and consumption
decrease and reach the old equilibrium E0 asymptotically.

PROBLEM 4. Consider the followinf aggregate production function

Yt = F (K,L) = aL+ bK(t)αL
1−α

a) Start from the aggregate budget constraint:

Y = C + K̇ + δ0K

which, in per-capita terms, becomes:

Y

L
=

C

L
+

K̇

L
+ δ0

K

L

y ≡ f(k) = c+
K̇

L
+ δ0k k ≡ K

L

In order to determine K̇
L , start with k:

k =
K

L
=⇒ k̇ =

·
KL− LK

L2
=

·
K

L
− L̇

L
k =

·
K

L
since L is constant.
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Therefore, we have:

f(k) = c+ k̇ + δ0k

=⇒ k̇ = f(k)− c− δ0k

In this case

f(k) =
aL

L
+

bKαL1−α

LαL1−α
= a+ bkα

from which we get
k̇ = a+ bkα − c− δ0k

Compute the returns to scale of the aggregate production function. Since
λF (K,L) = F (λK, λL), the aggregate technology exhibits constant returns to
scale and each productive unit may be rewarded according to its own mar-
ginal productivity (provided that the factor inputs markets are competitive).
In an economy where the aggregate production function displays CRS and each
productive input is rewarded according to its own marginal productivity, the
"Decentralized Competitive Solution" coincides with the "Centralized Social
Planner Solution".
The dynamic problem faced by a representative agent can be stated as:

max
{ct}∞

t=0

U0 ≡
∞Z
0

µ
1− 1

ct

¶
e−ρtdt

s.t. k̇t = a+ bkαt − ct − δ0kt

The corresponding Hamiltonian function is:

Ht =

½µ
1− 1

ct

¶
+ λt[a+ bkαt − ct − δ0kt]

¾
e−ρt

anf the f.o.c. are derived as:

1.

∂Ht

∂ct
= 0 =⇒

µ
1

c2t
− λt

¶
e−ρt = 0

=⇒ 1

c2t
= λt

Taking logs:
−2 log ct = log λt

and differentiating with respect to time:

−2 ċt
ct

=
λ̇t
λt

=⇒ ċt
ct
= −1

2|{z}
IES

"
λ̇t
λt

#
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IES =
−u0(c)
u00(c)c

=
1

2

2.

∂Ht

∂Kt
= − ∂

∂t
[λte

−ρt] =⇒ λt[bαk
α−1
t − δ0]e

−ρt = −[λ̇t − ρλt]e
−ρt

=⇒ − λ̇t
λt
= bαkα−1t − δ0 − ρ

3.

∂Ht

∂λt
= k̇t · e−ρt =⇒ (a+ bkαt − ct − δ0kt)e

−ρt = k̇t · e−ρt

⇒ k̇t = a+ bkαt − ct − δ0kt

4.
lim

t→+∞
λt · kt · e−ρt = 0

Combining the f.o.c. we get

ċt
ct
=
1

2

⎡⎢⎣bαkα−1t| {z }
≡f 0(k)

− δ0 − ρ

⎤⎥⎦
as the optimal path for consumption.

b) The two equations composing the dynamic system are:

ċt =
1

2

£
αbkα−1t − δ0 − ρ

¤
ct

k̇t = a+ bkαt − ct − δ0kt

From which he stationary loci are derived:

ċt = 0 =⇒ αbkα−1t| {z }
f 0(k)

− δ0 − ρ = 0

=⇒ ksst =

∙
αb

δ0 + ρ

¸ 1
1−α

k̇t = 0 =⇒ ct = a+ bkαt − δ0kt
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dct
dkt

¯̄̄̄
k̇=0

= 0 ⇒ αbkα−1t| {z }
f 0(k)

− δ0 = 0

=⇒ kGR =

∙
αb

δ0

¸ 1
1−α

> kss

kGR is the consumption-maximising level of k in equilibrium (when k̇t = 0).
The stationary loci and the saddlepath are shown in the figure below.

c) An increase (unexpected and permanent) of the depreciation rate δ from δ0
to δ1 > δ0 makes the loci k̇t = 0 and ċt = 0 shift downwards and to the left
respectively. In fact:

ċt = 0 =⇒ ksst =

∙
αb

δ1 + ρ

¸ 1
1−α

↓

and
k̇t = 0 =⇒ ct = a+ bkαt − δ1kt ↓

(with the same vertical intercept). Moreover

kGR =

∙
αb

δ1

¸ 1
1−α

↓
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When there is the change in the depreciation rate output remains stable since k
is unchanged. However since capital must be decumulated we start immediately
dissaving by increasing consumption. When disinvestment is sufficiently high
then consumption falls below the starting value cSS until its new equilibrium
value c∗SS is attained In the new steady state both consumption and capital
will be at a lower level.

13




