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PROBLEM 3.
a) Let

R(K) = K − 1
2
K2

δ = 0.25

G(I) = I +
1

2
I2

r = 0.25

and assume
Pk = 1 constant

The firm solves the following general dynamic optimization problem:

max
{It,Kt,Nt}∞

t=0

V (0) ≡
∞Z
0

[R(Kt, Nt, t)− Pk(t) ·G(It,Kt)− wtNt]e
−rt

s.t.
·
K(t) = It − δK

K(0) = K0, given

lim
t→∞

λ(t) ·K(t)e−rt = 0

The Hamiltonian function associated to this problem:

Ht = {[R(Kt, Nt, t)− Pk(t) ·G(It,Kt)− wtNt] + λt[It − δKt]} e−rt

where λt is in current value terms. The f.o.c. are:

∂H

∂I
= 0 =⇒ [−Pk(t) ·

∂G(·)
∂I

+ λ(t)]e−rt = 0 =⇒ Pk(t)
∂G(·)
∂I

= λ(t) (1)
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(there is no labor in this problem, so we omit the condition ∂H
∂N = 0)

∂H

∂K
= − ∂

∂t
[λ(t)e−rt]

=⇒ rλt =
·
λt +

∂R(·)
∂K

− Pk(t)
∂G(·)
∂K

− δλ(t) (2)

∂H

∂λ
=

·
K(t)e−rt

·
K(t) = I(t)− δK(t) (3)

and
lim
t→∞

λ(t) ·K(t)e−rt = 0

Using the functional forms proposed in the problem, we get:

∂G(·)
∂I

= 1 + I

∂G(·)
∂K

= 0

∂R(·)
∂K

= 1−K

and the f.o.c. become:

1 + I = λ assuming Pk = 1

rλ =
·
λ+ (1−K − δλ) (4)

Define
q(t) = λ(t) =⇒ ·

q(t) =
·
λ(t) given Pk(t) = 1

and call ι(·) the inverse of

∂G(·)
∂I

= 1 + I = q

=⇒ I = q − 1 ≡ ι(q)

Plugging ι(·) into the accumulation constraint:
·
K(t) = I(t)− δK(t) = q(t)− 1− δK(t)

= q(t)− 1− 0.25K(t)

From (4):

·
q(t) = (r + δ)q(t)− (1−K(t))

= 0.5q(t)− (1−K(t))
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The
·
K = 0 locus is then:

·
K = 0 : q = 1 + 0.25K

and the
·
q = 0 locus:

·
q = 0 : q = 2(1−K)

b) Now let

Pk =
1

2

and see what happens to the
·
q = 0 and

·
K = 0 loci. The f.o.c. become:

1

2
(1 + I) = λ this condition changes (in terms of λ)

rλ =
·
λ+ (1−K − δλ) this condition does not change (in terms of λ) (5)

Then, define:

q(t) =
λ(t)

Pk(t)
= 2λ(t) =⇒ ·

q(t) ≡ 2
·
λ(t)

∂G(·)
∂I

=
λ(t)

Pk(t)
=⇒ 1 + I = q(t) =⇒ I = q(t)− 1 ≡ i(q)
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·
K(t) = I(t)− δK(t) = q(t)− 1− δK(t)

= q(t)− 1− 0.25K(t)

• Notice that ι(·) and
·
K(t) do not change with respect to the previous situation.(in terms of

q(t)). From (2):
·
q = (r + δ)q − 2(1−K)

= 0.5q − 2(1−K)

with:

r + δ = 0.5; λ =
q

2
;
·
λ =

·
q

2

• Notice also that ·q has changed with respect to the previous situation

The
·
K = 0 locus does not change:

·
K = 0 : q = 1 + 0.25K

whereas the
·
q = 0 locus changes:

·
q = 0 : q = 4(1−K)

in psrticular, the
·
q = 0 schedule rotates clockwise around its intersection with the horizontal axis

and q jumps onto the new saddle path (if the reduction in Pk is permanent).
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c) At time t = 0, when Pk is halved, it is also announced that at some future time T > 0 the
interest rate will be tripled, so that r(t) = 0.75 for t ≥ T.

Consider again the
·
q = 0 and

·
K = 0 loci of part (b) of the problem. The

·
K = 0 locus does not

change:

·
K(t) = I(t)− δK(t) = q(t)− 1− δK(t)

= q(t)− 1− 0.25K(t)
·
K = 0 : q = 1 + 0.25K

whereas the
·
q = 0 locus changes

·
q = (r + δ)q − 2(1−K)

·
q = 0 : q =

2(1−K)

r + δ
= 2(1−K), with r + δ = 1

The only locus to change is the
·
q = 0 locus. From T onwards, the

·
q = 0 locus returns to its original

position (the combination of the subsidy and higher interest rate exactly offset each other) When
Pk is halved the system jumps from A to B. The magnitude of the jump depends on how far in the
future is T (if T −→ 0, there is no movement away from A) If at t = 0, when Pk is halved, it is
also announced that there will be an increase in the interest rate (r), q jumps but does not reach
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the saddle path (of the previous case). Its trajectory reaches and crosses the
·
K = 0 locus (and

would diverge if parameters did not change again at T ). At time T , the original saddle path is met,
and the trajectory converges back to its starting point. (Intuitively, the firm finds it convenient to
dilute over time the adjustment it foresees). The further in the future is T , the longer lasting is the
investment increase. In the limit, as T goes to infinity, the trajectory tends to coincide with the
saddle path of the previous case (case (b)), at least initially.

PROBLEM 4.
a) The cash flow of the firm IS:

F (t) = R(t,K(t), N(t))− Pk(t) ·G(I(t),K(t))− w(t)N(t)

= 2K
1
2N

1
2 − I − 1

2
I2 − wN

The firm solves the problem:

max
{It,Kt,Nt}∞

t=0

V (0) ≡
∞Z
0

e−rtF (t)dt =

∞Z
0

e−rt[2K
1
2N

1
2 − I − 1

2
I2 − wN ]dt

s.t.
·
K(t) = It − δK

lim
t→∞

λ(t) ·K(t)e−rt = 0 and K(0) = K0, given

with the associated Hamiltonian function:

Ht =

½
[2K

1
2N

1
2 − I − 1

2
I2 − wN ] + λ[I − δK]

¾
e−rt

The f.o.c. are:
∂H

∂N
=

∂R(·)
∂N

− w = 0 =⇒ K
1
2N−

1
2 = w (6)

∂Ht

∂It
= 0 =⇒ 1 + I = λ

∂H

∂K
= − ∂

∂t
[λ(t)e−rt]

=⇒ [K−
1
2N

1
2 − δλ]e−rt = [−

·
λ+ rλ]e−rt

=⇒ K−
1
2N

1
2 − δλ =

·
−λ+ rλ (7)

∂H

∂λ
=

·
Ke−rt

=⇒ [I − δK]e−rt =
·
K(t)e−rt

=⇒
·
K = I − δK (8)

lim
t→∞

λ(t) ·K(t)e−rt = 0, K(0) = K0 given
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b) From the f.o.c. (6) we get:

N =
K

w2

Hence:

=⇒ ∂F (t)

∂K(t)
= K−

1
2N

1
2 =

1

w(t)

Recall that:

λ(0) =

∞Z
0

e−(r+δ)t
∂R(·)
∂K(t)

dt

This means that the shadow value of capital at time t = 0 (λ(0)) is equal to the discounted value
of all the marginal contributions of the capital stock to the firm’s cash flows from now (t = 0) to
infinity. Discounting is done at the rate (r + δ), to take into account the depreciation (δ).In our
case

λ(0) =

∞Z
0

e−(r+δ)t
1

w(t)
dt

c) If
w(t) = w = constant

λ(0) =
1

(r + δ)w
= λ(t) = λ ∀t

In other words λ is constant (being independent of time) and does not depend on K. As usual, let
us define

q ≡ λ

Pk
=⇒ q = λ

∂G(·)
∂I

= 1 + I = q =⇒ I = q − 1 ≡ ι(q)

where ι(q) is the inverse of ∂G(·)
∂I = q. Plug ι(·) into the accumulation constraint to get:

·
K(t) = q − 1− δK(t)

The dynamic equation for q then becomes

q̇ = (r + δ)q −K−
1
2N

1
2 = (r + δ)q − 1

w
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The two stationary loci are:=⇒
·
K = 0 : q = 1 + δK

·
q = 0 : q =

1

r + δ

1

w

Note:In this case, the saddle path coincides with

q = λ =
1

(r + δ)w

and

1 + δKss =
1

(r + δ)w

=⇒ Kss =

∙
1

(r + δ)w
− 1
¸
1

δ

d) For investment to be a function of the average value of capital one should be sure that R(·) and
G(·) are linearly homogeneous in N,K and I.Let us check:

R(K,N) = 2K1/2N1/2

is linearly homogeneous since
R(λK, λN) = λR(K,N)
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The function G(I) is not homogeneous of degree one in I. If the G(·) function were, instead,
modified in the following way

G(K, I) = I +
I2

2K

then it would be linearly homogeneous in (I,K), in fact

G(λK, λI) = λG(K, I)

In this case, investment would be a function of the average value of capital (Tobin’s average q)
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