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Aims:

1. simple characterization of main determinants of investment spending in a
dynamic model of a “representative” firm (under certainty);

2. application of dynamic optimization methods in continuous time.

Topics:

1. Motivation

2. Mathematical methods:

- dynamic optimization in continuous time: general framework

- Hamiltonian solution

3. Cost-of-adjustment model of investment demand:

- forward-looking “q” theory

- steady-state and dynamics
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1. Motivation

Traditional (neoclassical) theory (Jorgenson):
→ optimization in an essentially static environment with perfectly “flexible” cap-
ital

max
K

π(K, ...) ⇒ f.o.c.
∂R(K∗, ...)

∂K| {z }
marg. revenue of capital

=

µ
r + δ − ∆pK

pK

¶
pK| {z }

user cost of capital

given (exogenously) price of capital pK and its change, interest rate r, depreciation
rate δ, product demand conditions and technology;

⇒ K∗ = K∗
µ
r, δ,

∆pK
pK

, ...

¶
“desired” capital stock

Then, ad hoc assumptions to explain gradual investment over time.

Problems:

• model for “desired” capital: changes in exogenous variables ⇒ immediate
discrete change in K∗ → not appropriate to model aggregate dynamics of
capital and investment;

• no role for expectations: marginal revenue and user cost expressed in current
terms, with no forward-looking behaviour.

⇒ Model with adjustment costs:

costs of changing K →

⎧⎨⎩ model of investment with smooth dynamics for K;

forward-looking behaviour of firms.
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2. Dynamic optimization in continuous time (under certainty)

General set-up:

f( t, z(t), y(t)) : istantaneous objective function

z(t) : control variable (flow)

y(t) : state variable (stock)

ẏ(t) ≡ dy(t)
dt
= g( t, z(t), y(t)) accumulation constraint (equation of motion)

Set-up of the optimization problem with infinite horizon:

max
z(t)

L(0) =

Z ∞

0

f( t, z(t), y(t)) e−ρt dt

subject to:

ẏ(t) = g( t, z(t), y(t))

y(0) = y0 (given) and terminal (transversality) condition

Solution

Form Lagrangian with μ(t) dynamic Lagrange multiplier (“costate variable”):

max L̃(0) =

Z ∞

0

f( t, z(t), y(t)) e−ρt dt+
Z ∞

0

μ(t) [g( t, z(t), y(t))− ẏ(t)] dt

To derive f.o.c. use the rule of integration by parts applied to:Z ∞

0

μ(t) ẏ(t) dt = lim
t→∞

[μ(t) y(t)]− μ(0) y(0)−
Z ∞

0

μ̇(t) y(t) dt

(from
d [μ(t) y(t)]

dt
= μ̇(t) y(t) + μ(t) ẏ(t)

integrating from 0 to T (finite):

μ(T ) y(T )− μ(0) y(0) =

Z T

0

μ̇(t) y(t) dt+

Z T

0

μ(t) ẏ(t) dt
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then let T →∞ ).
Lagrangian becomes:

max L̃(0) =

Z ∞

0

£
f( t, z(t), y(t)) e−ρt + μ(t) g( t, z(t), y(t))

¤
dt+

Z ∞

0

μ̇(t) y(t) dt+μ(0) y(0)

imposing limt→∞ μ(t) y(t) = 0.
F.o.c.:

∂L̃

∂ z
= 0⇒ ∂ f(.)

∂ z(t)
e−ρt + μ(t)

∂ g(.)

∂ z(t)
= 0

∂L̃

∂ y
= 0⇒ ∂ f(.)

∂ y(t)
e−ρt + μ(t)

∂ g(.)

∂ y(t)
+ μ̇(t) = 0

∂L̃

∂ μ
= 0⇒ ẏ(t) = g( t, z(t), y(t))

and limt→∞ μ(t) y(t) = 0 , y(0) = y0.

Hamiltonian solution procedure

Define the (present value) Hamiltonian:

H(t) = [f( t, z(t), y(t)) + λ(t) g( t, z(t), y(t))] e−ρt

where λ(t) is in current value terms:

μ(t) = λ(t) e−ρt

The f.o.c. are:
∂H

∂ z
= 0⇒ ∂ f(.)

∂ z(t)
e−ρt + λ(t) e−ρt

∂ g(.)

∂ z(t)
= 0

−∂H
∂ y

=
d [λ(t) e−ρt]

dt
⇒ −

⎛⎜⎝∂ f(.)

∂ y(t)
e−ρt + λ(t) e−ρt| {z }

μ(t)

∂ g(.)

∂ y(t)

⎞⎟⎠ = λ̇(t) e−ρt − ρλ(t) e−ρt| {z }
μ̇(t)

∂H

∂ [λ(t) e−ρt]
= ẏ ⇒ ẏ(t) = g( t, z(t), y(t))

lim
t→∞

λ(t) e−ρt y(t) = 0 and y(0) = y0.
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3. Dynamic, cost-of-adjustment model of investment demand

Objective function of “representative” firm with infinite horizon under cer-
tainty:

F (t) = R (t,K(t), N(t))− pK(t)G (I(t),K(t))− w(t)N(t)

F (t) : cash flow at time t

K(t) : capital stock used in production at time t → “predetermined” variable

R(.) : revenue function (depending on technology and product demand condi-
tions), with RK > 0, RN > 0, RKK < 0, RNN < 0

N(t) : labour→ perfectly “flexible” input (only wage costs, no adjustment costs)

I(t) : investment at time t→ changesK entailing costs given by: pK(t)G(I(t),K(t))

G (I(t),K(t)) : (physical) investment costs with GI > 0, GII > 0 (convex function
in I) and

G (0,K(t)) = 0 ∀K(t)
GI (0,K(t)) = 1 ∀K(t)

¾
⇒

⎧⎨⎩ if I = 0 : no costs
if I > 0 : unit investment cost > pK

if I < 0 : unit investment “revenue” < pK

Consequences on firm’s behaviour :

• graduality in investment/disinvestment;

• investments followed by disinvestments are costly→ investments are (partly)
irreversible.

Accumulation constraint:
in discrete time

K(t+∆t) = K(t) + I(t)∆t− δK(t)∆t

in continuous time

lim
∆t→0

K(t+∆t)−K(t)

∆t
= I(t)− δK(t)

⇒ K̇ (t) = I(t)− δK(t)

From the equation of motion, K can be expressed as the result of past invest-
ment decisions: h

K̇ (t) + δK(t)
i
eδt = I(t) eδt

6



Z T

t0

h
K̇ (t) + δK(t)

i
eδt dt =

Z T

t0

I(t) eδt dt

K(t) eδt
¯̄T
t0
=

Z T

t0

I(t) eδt dt

K(T ) eδT −K(t0) eδt0 =
Z T

t0

I(t) eδt dt

K(T ) = K(t0) e−δ(T−t0) +
Z T

t0

I(t) e−δ(T−t) dt

letting t0 → −∞ :

K(T ) =

Z T

−∞
I(t) e−δ(T−t) dt .

Firm’s dynamic optimization problem

max
I(t),N(t),K(t)

V (0) =

Z ∞

0

[R (t,K(t), N(t))− pK(t)G (I(t),K(t))− w(t)N(t)]| {z }
F (t)

e−
t
0 r(s)ds dt

subject to:

K̇ (t) = I(t)− δK(t)

K(0) = K0 (given) and transversality condition

Solution

Hamiltonian:

H(t) = {[R (t,K(t), N(t))− pK(t)G (I(t),K(t))− w(t)N(t)] + λ(t) [I(t)− δK(t)]} e−
t
0 r(s)ds
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f.o.c.:

∂H

∂N
= 0⇒ ∂ R(.)

∂ N(t)
= w(t)

∂H

∂I
= 0⇒ pK(t)

∂ G(.)

∂ I(t)
= λ(t)

−∂H
∂K

=
d
h
λ(t) e−

t
0 r(s)ds

i
dt

⇒ −
µ
∂ R(.)

∂ K(t)
− pK(t)

∂ G(.)

∂ K(t)
− δ λ(t)

¶
e−

t
0 r(s)ds =

= λ̇(t) e−
t
0 r(s)ds − r(t)λ(t) e−

t
0 r(s)ds

⇒ r(t)λ(t) =

µ
∂ R(.)

∂ K(t)
− pK(t)

∂ G(.)

∂ K(t)
− δ λ(t)

¶
+ λ̇(t)

K̇ (t) = I(t)− δK(t)

lim
t→∞

λ(t) e−
t
0 r(s)dsK(t) = 0 , K(0) = K0

Simplified case

F (t) = R (K(t), N(t))− pK G (I(t))− wN(t)

r, w, pK constant.
F.o.c. become:

∂ R(.)

∂ N(t)
= w ⇒ N(t) = n (w,K(t))

pK
∂ G(.)

∂ I(t)
= λ(t)

r λ(t) =
∂ R(.)

∂ K(t)
− δ λ(t) + λ̇(t)

Define:

q (t) ≡ λ (t)

pK

⇒ ∂ G(.)

∂ I(t)
= q (t)
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since GI > 0 and GII > 0 → GI invertible

⇒ I (t) = ι (q (t)) with ι0 ≡ dI

dq
=

1

GII
> 0

Using definition of q(t) and q̇(t) = λ̇ (t)
pK

, f.o.c. are expressed as:

∂ R(.)

∂ N(t)
= w ⇒ N(t) = n (w,K(t))

∂ G(.)

∂ I(t)
= q (t)

r q(t) =
1

pK

∂ R(.)

∂ K(t)
− δ q(t) + q̇(t)

K̇ (t) = ι (q (t))− δK(t)

⇒ system of two differential equations in q and K :⎧⎨⎩
q̇(t) = (r + δ) q(t)− 1

pK

∂ R(K(t), n(w,K(t)))
∂ K(t)

K̇ (t) = ι (q (t))− δK(t)

Qualitative analysis of steady state and dynamic properties

Stationary loci for q and K :

• q̇(t) = 0

⇒ q =
1

r + δ

1

pK

∂ R (K, n(w,K))

∂ K

slope:

dq

dK

¯̄̄̄
q̇=0

=
1

r + δ

1

pK

⎛⎝∂ 2R (.)

∂ K2

(−)

+
∂ 2R (.)

∂ K ∂ N
(+)

∂ n

∂ K
(+)

⎞⎠
| {z }

(−) by assumption

< 0
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• K̇(t) = 0
⇒ ι (q ) = δK

slope:
dq

dK

¯̄̄̄
K̇=0

=
δ

ι 0
> 0

Linearizing the system around the steady state (qss,Kss):µ
q̇

K̇

¶
=

Ã
r + δ − 1

pK

d
dK

³
∂ R(.)
∂ K

´
ι 0 −δ

!µ
q − qss
K −Kss

¶
Determinant of matrix of derivatives (evaluated at steady state):

−δ(r + δ) + ι 0
1

pK

d

dK

µ
∂ R(.)

∂ K

¶
< 0 ⇒ “saddlepoint” stability

Forward-looking interpretation of λ and q

Solving “forward” the dynamic equation

λ̇(t)− (r + δ)λ(t) = − ∂ R(.)

∂ K(t)

h
λ̇(t)− (r + δ)λ(t)

i
e−(r+δ) t = − ∂ R(.)

∂ K(t)
e−(r+δ) t

Z T

t0

h
λ̇(t)− (r + δ)λ(t)

i
| {z }

d
dt(λ(t) e−(r+δ) t)

e−(r+δ) tdt = −
Z T

t0

∂ R(.)

∂ K(t)
e−(r+δ) tdt

λ(T ) e−(r+δ)T − λ(t0) e−(r+δ) t0 = −
Z T

t0

∂ R(.)

∂ K(t)
e−(r+δ) tdt

Letting T →∞ with limT→∞ λ(T ) e−(r+δ)T = 0

⇒ λ(t0) e−(r+δ) t0 =
Z ∞

t0

∂ R(.)

∂ K(t)
e−(r+δ) tdt
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λ(t0) =

Z ∞

t0

∂ R(.)

∂ K(t)
e−(r+δ) (t−t0)dt

and

q(t0) =

Z ∞

t0

1

pK

∂ R(.)

∂ K(t)
e−(r+δ) (t−t0)dt

Marginal q and average q

If R(.) and G(.) are linearly homogeneous in K,N and I,K respectively:

R (αK,αN) = αR (K,N) and G (αI, αK) = αG (I,K)

the Euler theorem holds:

R (K,N) = RK K +RN N and G (I,K) = GI I +GK K

so that the cash flow function F (t) becomes.

F (t) = R (K(t), N(t))− pK G (I(t), K(t))− wN(t)

= (RK K +RN N)| {z }
R(.)

− pK (GI I +GK K)| {z }
G(.)

− wN

since (RN − w) N = 0 by f.o.c. (along an optimal path)

= (RK − pK GK)| {z }
(r + δ)λ− λ̇
by f.o.c.

K − pK GI| {z }
λ

by f.o.c.

I|{z}
K̇ + δK
by f.o.c.

⇒ F (t) = r λ(t)K(t)− λ̇(t)K(t)− λ(t) K̇(t)

This is equivalent to:

e−rt F (t) = e−rt r λ(t)K(t)− e−rt λ̇(t)K(t)− e−rt λ(t) K̇(t)

or e−rt F (t) =
d

dt

¡
−e−rt λ(t)K(t)

¢
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Integrating:

V (0) =

Z ∞

0

e−rt F (t) dt =
£
−e−rt λ(t)K(t)

¤∞
0

⇒ V (0) = λ(0)K(0)

using limt→∞ e− rt λ(t)K(t) = 0

⇒ λ(0) = V (0)/K(0)

Then, for every time t:

q(t) ≡ λ(t)

pK
=

V (t)

pK K(t)

⇒ marginal and average q coincide.
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Problems

1. Consider a firm with capital as the only factor of production. Its revenues at
time t are R(K(t)) if installed capital is K(t). The accumulation constraint
has the usual form, K̇(t) = I(t) − δK(t), and the cost of investing I(t) is
a function G(I(t)) that does not depend on installed capital (for simplicity,
pk ≡ 1).

• (a) Suppose the firm aims at maximizing the present discounted value at
rate r of its cash flows, F (t). Express cash flows in terms of the func-
tions R(·) and G(·), derive the relevant first-order conditions, and char-
acterize the solution graphically making specific assumptions as to the
derivatives of R(·) and G(·).

(b) Characterize the solution under more specific assumptions: suppose
revenues are a linear function of installed capital, R(K) = αK, and let
the investment cost function be quadratic, G(I) = I + bI2. Derive and
interpret an expression for the steady-state capital stock: what happens
if δ = 0?

2. A firm’s production function is

Y (t) = α
p
K(t) + β

p
L(t),

and its product is sold at a given price, normalized to unity. Factor L is not
subject to adjustment costs, and is paid w per unit time. Factor K obeys
the accumulation constraint

K̇(t) = I(t)− δK(t)

and the cost of investing I is

G(I) = I +
γ

2
I2

per unit time (we let pk = 1). The firm maximizes the present discounted
value at rate r of its cash flows.

(a) Write the Hamiltonian for this problem, derive and discuss briefly the
first-order conditions, and draw a diagram to illustrate the solution.
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(b) Analyze graphically the effects of an increase in δ (faster depreciation of
installed capital) and give an economic interpretation of the adjustment
trajectory.

3. As a function of installed capital K, a firm’s revenues are given by

R(K) = K − 1
2
K2.

The usual accumulation constraint has δ = 0.25, so K̇ = I−0.25K. Investing
I costs pkG(I) = pk

¡
I + 1

2
I2
¢
. The firm maximizes the present discounted

value at rate r = 0.25 of its cash flows.

(a) Write the first-order conditions of the dynamic optimization problem,
and characterize the solution graphically supposing that pk = 1 (con-
stant).

(b) Starting from the steady state of the pk = 1 case, show the effects of a
50% subsidy of investment (so that pk is halved).

(c) Discuss the dynamics of optimal investment if at time t = 0, when pk is
halved, it is also announced that at some future time T > 0 the interest
rate will be tripled, so that r(t) = 0.75 for t ≥ T .

4. The revenue flow of a firm is given by

R(K,N) = 2K1/2N1/2

where N is a freely adjustable factor, paid a wage w(t) at time t; K is
accumulated according to

K̇ = I − δK

and an investment flow I costs

G(I) =

µ
I +

1

2
I2
¶

(note that pk = 1, hence q = λ).

(a) Write the first-order conditions for maximization of present discounted
(at rate r) value of cash flows over an infinite planning horizon.
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(b) Given r e δ constant, write an expression for λ(0) in terms of w(t), the
function describing the time path of wages.

(c) Evaluate that expression in the case where w(t) = w̄ is constant, and
characterize the solution graphically.

(d) How could the problem be modified so that investment is a function of
the average value of capital (that is, of Tobin’s average q)?
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